1
|
Zhao Y, Li Z, Li B, Wang C. DNA Windmill Probe for Multiplexed mRNA Detection and Cell Type Discrimination. Chemistry 2023; 29:e202301300. [PMID: 37314386 DOI: 10.1002/chem.202301300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 06/15/2023]
Abstract
Accurate cancer diagnosis especially early diagnosis is of great importance for prompt therapy and elevated survival rate. mRNAs are widely used as biomarkers for cancer identification and treatment. mRNA expression levels are highly associated with cancer stage and malignant progression. Nevertheless, single type mRNA detection is insufficient and unreliable. Herein, we developed a DNA nano-windmill probe for in situ multiplexed mRNAs detection and imaging in this paper. The probe is designed to simultaneously target four types of mRNA through wind blades. Importantly, recognition of targets is independent from each other, which further facilitate cell type discrimination. The probe can specifically distinguish cancer cell lines from normal cells. In addition, it can identify changes in mRNA expression levels in living cells. The current strategy enriches the toolbox for improving the accuracy of cancer diagnosis and therapeutic solutions.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010020, China
| | - Zhihao Li
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010020, China
| | - Bo Li
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010020, China
| | - Chunyan Wang
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010020, China
| |
Collapse
|
2
|
Morano A, Angrisano T, Russo G, Landi R, Pezone A, Bartollino S, Zuchegna C, Babbio F, Bonapace IM, Allen B, Muller MT, Chiariotti L, Gottesman ME, Porcellini A, Avvedimento EV. Targeted DNA methylation by homology-directed repair in mammalian cells. Transcription reshapes methylation on the repaired gene. Nucleic Acids Res 2013; 42:804-21. [PMID: 24137009 PMCID: PMC3902918 DOI: 10.1093/nar/gkt920] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We report that homology-directed repair of a DNA double-strand break within a single copy Green Fluorescent Protein (GFP) gene in HeLa cells alters the methylation pattern at the site of recombination. DNA methyl transferase (DNMT)1, DNMT3a and two proteins that regulate methylation, Np95 and GADD45A, are recruited to the site of repair and are responsible for selective methylation of the promoter-distal segment of the repaired DNA. The initial methylation pattern of the locus is modified in a transcription-dependent fashion during the 15–20 days following repair, at which time no further changes in the methylation pattern occur. The variation in DNA modification generates stable clones with wide ranges of GFP expression. Collectively, our data indicate that somatic DNA methylation follows homologous repair and is subjected to remodeling by local transcription in a discrete time window during and after the damage. We propose that DNA methylation of repaired genes represents a DNA damage code and is source of variation of gene expression.
Collapse
Affiliation(s)
- Annalisa Morano
- Dipartimento di Medicina Molecolare e Biotecnologie mediche, Istituto di Endocrinologia ed Oncologia Sperimentale del C.N.R., Università Federico II, 80131 Napoli, Italy, IRCCS CROB, Dipartimento di Oncologia Sperimentale, via Padre Pio, 1 85028 Rionero in Vulture, Italy, Dipartimento di Medicina e di Scienze della Salute, Università del Molise, 86100 Campobasso, Itay, Dipartimento di Biologia, Università Federico II, 80126 Napoli, Italy, Dipartimento di Biologia Strutturale e Funzionale, Università dell'Insubria, Varese 21100, Italy, Department of Molecular Biology and Microbiology and Biomolecular Science Center, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA and Institute of Cancer Research, Departments of Microbiology and Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Barnes T, Kim WC, Mantha AK, Kim SE, Izumi T, Mitra S, Lee CH. Identification of Apurinic/apyrimidinic endonuclease 1 (APE1) as the endoribonuclease that cleaves c-myc mRNA. Nucleic Acids Res 2009; 37:3946-58. [PMID: 19401441 PMCID: PMC2709568 DOI: 10.1093/nar/gkp275] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 04/01/2009] [Accepted: 04/13/2009] [Indexed: 11/28/2022] Open
Abstract
Endonucleolytic cleavage of the coding region determinant (CRD) of c-myc mRNA appears to play a critical role in regulating c-myc mRNA turnover. Using (32)P-labeled c-myc CRD RNA as substrate, we have purified and identified two endoribonucleases from rat liver polysomes that are capable of cleaving the transcript in vitro. A 17-kDa enzyme was identified as RNase1. Apurinic/apyrimidinic (AP) DNA endonuclease 1 (APE1) was identified as the 35-kDa endoribonuclease that preferentially cleaves in between UA and CA dinucleotides of c-myc CRD RNA. APE1 was further confirmed to be the 35-kDa endoribonuclease because: (i) the endoribonuclease activity of the purified 35-kDa native enzyme was specifically immuno-depleted with APE1 monoclonal antibody, and (ii) recombinant human APE1 generated identical RNA cleavage patterns as the native liver enzyme. Studies using E96A and H309N mutants of APE1 suggest that the endoribonuclease activity for c-myc CRD RNA shares the same active center with the AP-DNA endonuclease activity. Transient knockdown of APE1 in HeLa cells led to increased steady-state level of c-myc mRNA and its half-life. We conclude that the ability to cleave RNA dinucleotides is a previously unidentified function of APE1 and it can regulate c-myc mRNA level possibly via its endoribonuclease activity.
Collapse
Affiliation(s)
- Tavish Barnes
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| | - Wan-Cheol Kim
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| | - Anil K. Mantha
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| | - Sang-Eun Kim
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| | - Tadahide Izumi
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| | - Sankar Mitra
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| | - Chow H. Lee
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Gao PF, Cao GQ, Zhao HT, Zhang GX, Jiang YS, Wang QD. Molecular cloning and characterization of pigeon (Columba liva) ubiquitin and ubiquitin-conjugating enzyme genes from pituitary gland library. Int J Biol Sci 2008; 5:34-43. [PMID: 19158944 PMCID: PMC2605574 DOI: 10.7150/ijbs.5.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 12/14/2008] [Indexed: 11/10/2022] Open
Abstract
In the study of the regulation of incubation, broodiness and laying performance in pigeons (Columba liva), a cDNA library, which was enriched with full-length brooding-related genes, was constructed by SMART LD-PCR techniques using the pituitary glands of incubating White King pigeons. The titers of optimal primary libraries were 1.54×106 pfu/mL and 1.80×106 pfu/mL and the titers of amplified libraries were 1.89×108 pfu/mL and 2.32×109 pfu/mL. The percentages of recombinant clones of primary libraries and amplified libraries were all over 90%. A positive clone was sequenced and named ubiquitin based on the highly similar from other species. The fragment has the four initial codons of ATG, a termination codon of TAA and a signal sequence of AATAAA for adding the poly-A tail. The open reading frame of 918bp encodes 305 amino acids (NCBI accession number is EU981283). Recombinant pigeon ubiquitin protein was efficiently expressed with the form of insoluble inclusion bodies in E. coli BL21 transformed with a pET28a+ expression vector containing the DNA sequence encoding mature pigeon ubiquitin. The molecular weight of expressed protein is the same as predicted size of approximately 35kD. To improve the efficiency of cloning full-length cDNA, strategies of RACE combined with cDNA library were used. The length of pigeons ubiquitin-conjugating enzyme gene obtained was 1263 bp containing a complete open reading frame of 435 bp that encodes 144 aa (NCBI accession number is EU914824). The results of this study not only provide a starting point for further study of ubiquitin function in pigeon species, but also provide a starting point for investigating the brooding mechanisms of pigeons.
Collapse
Affiliation(s)
- Peng-fei Gao
- The Key Laboratory of Animal Breeding and Genetics & Reproduction, Shanxi Agriculture University, Taigu, 030801, Shanxi, China
| | | | | | | | | | | |
Collapse
|
5
|
Trajanovska S, Donald JA. Molecular cloning of natriuretic peptides from the heart of reptiles: loss of ANP in diapsid reptiles and birds. Gen Comp Endocrinol 2008; 156:339-46. [PMID: 18295764 DOI: 10.1016/j.ygcen.2008.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 10/08/2007] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
Abstract
Atrial natriuretic peptide (ANP) and B-type NP (BNP) are hormones involved in homeostatic control of body fluid and cardiovascular regulation. Both ANP and BNP have been cloned from the heart of mammals, amphibians, and teleost fishes, while an additional cardiac peptide, ventricular NP, has been found in selected species of teleost fish. However, in chicken, BNP is the primary cardiac peptide identified thus far. In contrast, the types of NP/s present in the reptilian heart are unknown, representing a considerable gap in our understanding of NP evolution. In the present study, we cloned and sequenced a BNP cDNA from the atria of representative species of reptile, including crocodile, lizard, snake, and tortoise. In addition, we cloned BNP from the pigeon atria. The reptilian and pigeon BNP cDNAs had ATTTA repeats in the 3' untranslated region, as observed in all vertebrate BNP mRNAs. A high sequence homology was evident when comparing reptile and pigeon preproBNP with the previously identified chicken preproBNP. In particular, the predicted mature BNP-29 was identical between crocodile, tortoise, and chicken, with pigeon having a single amino acid substitution; lizard and snake BNP had seven and nine substitutions, respectively. Furthermore, an ANP cDNA could only be cloned from the tortoise atria. Since ANP was not isolated from the heart of any non-chelonian reptile and appears to be absent in birds, we propose that the ANP gene has been lost after branching of the turtles in the amniote line. This data provides new avenues for research on NP function in reptiles.
Collapse
Affiliation(s)
- Sofie Trajanovska
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.
| | | |
Collapse
|
6
|
Tafech A, Bennett WR, Mills F, Lee CH. Identification of c-myc coding region determinant RNA sequences and structures cleaved by an RNase1-like endoribonuclease. ACTA ACUST UNITED AC 2006; 1769:49-60. [PMID: 17198736 DOI: 10.1016/j.bbaexp.2006.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Revised: 11/14/2006] [Accepted: 11/30/2006] [Indexed: 11/29/2022]
Abstract
The coding region of c-myc mRNA encompassing the coding region determinant (CRD) nucleotides (nts) 1705-1792 is critical in regulating c-myc mRNA stability. This is in part due to the susceptibility of c-myc CRD RNA to attack by an endoribonuclease. We have previously purified and characterized a mammalian endoribonuclease that cleaves c-myc CRD RNA in vitro. This enzyme is tentatively identified as a 35 kDa RNase1-like endonuclease. In an effort to understand the sequence and secondary structure requirements for RNA cleavage by this enzyme, we have determined the secondary structure of the c-myc CRD RNA nts 1705-1792 using RNase probing technique. The secondary structure of c-myc CRD RNA possesses five stems; two of which contain 4 base pairs (stems I and V) and three consisting of 3 base pairs (stems II, III, and IV). Endonucleolytic assays using the c-myc CRD and several c-myc CRD mutants as substrates led to the following conclusions: (i) the enzyme prefers to cleave in between the dinucleotides UA, CA, and UG in single-stranded regions; (ii) the enzyme is more specific towards UA dinucleotides. These properties further distinguish the enzyme from previously described mammalian endonuclease that cleaves c-myc mRNA in vitro.
Collapse
Affiliation(s)
- Alaeddin Tafech
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, Canada BC V2N 4Z9
| | | | | | | |
Collapse
|
7
|
Abstract
The ability to regulate cellular gene expression is a key aspect of the lifecycles of a diverse array of viruses. In fact, viral infection often results in a global shutoff of host cellular gene expression; such inhibition serves not only to ensure maximal viral gene expression without competition from the host for essential machinery and substrates but also aids in evasion of immune responses detrimental to successful viral replication and dissemination. Within the herpesvirus family, host shutoff is a prominent feature of both the alpha- and gamma-herpesviruses. Intriguingly, while both classes of herpesviruses block cellular gene expression by inducing decay of messenger RNAs, the viral factors responsible for this phenotype as well as the mechanisms by which it is achieved are quite distinct. However, data suggest that the host shutoff functions of alpha- and gamma-herpesviruses are likely achieved both through the activity of virally encoded nucleases as well as via modulation of cellular RNA degradation pathways. This review highlights the processes governing normal cellular messenger RNA decay and then details the mechanisms by which herpesviruses promote accelerated RNA turnover. Parallels between the viral and cellular degradation systems as well as the known interactions between viral host shutoff factors and the cellular RNA turnover machinery are highlighted.
Collapse
Affiliation(s)
- Britt A Glaunsinger
- Howard Hughes Medical Institute, Department of Microbiology, University of California, San Francisco, 94143, USA
| | | |
Collapse
|
8
|
Bergstrom K, Urquhart JC, Tafech A, Doyle E, Lee CH. Purification and characterization of a novel mammalian endoribonuclease. J Cell Biochem 2006; 98:519-37. [PMID: 16317762 DOI: 10.1002/jcb.20726] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endonuclease-mediated mRNA decay appears to be a common mode of mRNA degradation in mammalian cells, but yet only a few mRNA endonucleases have been described. Here, we report the existence of a second mammalian endonuclease that is capable of cleaving c-myc mRNA within the coding region in vitro. This study describes the partial purification and biochemical characterization of this enzyme. Five major proteins of approximately 10-35 kDa size co-purified with the endonuclease activity, a finding supported by gel filtration and glycerol gradient centrifugation analysis. The enzyme is an RNA-specific endonuclease that degrades single-stranded RNA, but not double-stranded RNA, DNA or DNA-RNA duplexes. It preferentially cleaves RNA in between the pyrimidine and purine dinucleotides UA, UG, and CA, at the coding region determinant (CRD) of c-myc RNA. The enzyme generates products with a 3'hydroxyl group, and it appears to be a protein-only endonuclease. It does not possess RNase A-like activity. The enzyme is capable of cleaving RNAs other than c-myc CRD RNA in vitro. It is Mg(2+)-independent and is resistant to EDTA. The endonuclease is inactivated at and above 70 degrees C. These properties distinguished the enzyme from other previously described vertebrate endonucleases.
Collapse
Affiliation(s)
- Kirk Bergstrom
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada
| | | | | | | | | |
Collapse
|
9
|
Meyer S, Temme C, Wahle E. Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit Rev Biochem Mol Biol 2005; 39:197-216. [PMID: 15596551 DOI: 10.1080/10409230490513991] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The control of mRNA degradation is an important component of the regulation of gene expression since the steady-state concentration of mRNA is determined both by the rates of synthesis and of decay. Two general pathways of mRNA decay have been described in eukaryotes. Both pathways share the exonucleolytic removal of the poly(A) tail (deadenylation) as the first step. In one pathway, deadenylation is followed by the hydrolysis of the cap and processive degradation of the mRNA body by a 5' exonuclease. In the second pathway, the mRNA body is degraded by a complex of 3' exonucleases before the remaining cap structure is hydrolyzed. This review discusses the proteins involved in the catalysis and control of both decay pathways.
Collapse
Affiliation(s)
- Sylke Meyer
- Institut für Biochemie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | | | | |
Collapse
|
10
|
Eberding A, Rehaume V, Lee CH. Detection of mRNA degradation intermediates in tissues using the 3'-end poly(A)-tailing polymerase chain reaction method. Anal Biochem 2005; 335:58-65. [PMID: 15519571 DOI: 10.1016/j.ab.2004.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2004] [Revised: 08/07/2004] [Indexed: 11/30/2022]
Abstract
It has become increasingly clear that mRNA stability is an important determinant of mRNA abundance in virtually all organisms. Although our understanding of prokaryotic lower eukaryotic mRNA stability mechanisms has progressed considerably, little is known about mammalian mRNA stability mechanisms, particularly at the tissue and animal levels. This is due largely to the lack of suitable methods to approach the problem. In this study, we have developed and refined the 3'-end poly(A)-tailing polymerase chain reaction (PCR) method to detect degradation intermediates in vivo. Using an in vitro transcribed RNA as a template, we found that the method could be used to detect a homogeneous pool of RNA down to 0.1 ng. The addition of 10 microg of total RNA from tissues decreased the sensitivity limit to 4 ng. Detection limits of the technique were determined precisely by varying the concentrations of in vitro transcribed RNA in a constant amount of total RNA and varying the concentration of total RNA while maintaining a constant amount of in vitro transcribed RNA. Our overall results showed that the poly(A)-tailing PCR method could be used to detect specific RNA species of approximately 1000 nt in a pool of heterogeneous RNA in the range of 1 in 2500 to 1 in 10,000. To our knowledge, this is the most sensitive method to date for identifying mRNA degradation intermediates. Employing sense strand gene-specific primers in this method, we have discovered the class II and class III P-glycoprotein (Pgp) mRNA degradation intermediates in normal rat tissues. This method should serve as an additional tool to help us understand mRNA decay mechanisms in tissues and at animal levels.
Collapse
Affiliation(s)
- Andy Eberding
- Department of Chemistry, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia, Canada V2N 4Z9
| | | | | |
Collapse
|
11
|
Ioannidis P, Kottaridi C, Dimitriadis E, Courtis N, Mahaira L, Talieri M, Giannopoulos A, Iliadis K, Papaioannou D, Nasioulas G, Trangas T. Expression of the RNA-binding protein CRD-BP in brain and non-small cell lung tumors. Cancer Lett 2004; 209:245-50. [PMID: 15159028 DOI: 10.1016/j.canlet.2003.12.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Revised: 12/15/2003] [Accepted: 12/18/2003] [Indexed: 11/15/2022]
Abstract
The coding region determinant-binding protein (CRD-BP) is an RNA binding protein that recognizes c-myc and IGF-II leader 3 mRNAs as well as the oncofetal H19 RNA. CRD-BP exhibits an oncofetal pattern of expression and has been detected in the majority of colon (81%), breast (58.5%) and sarcoma (73%) tumors. The study of CRD-BP expression was extended in brain tumors and Non small cell lung (NSCL) carcinomas and 12/24 malignant, 2/5 benign neuroepithelial tumors and 4/15 of NSCL carcinomas were found positive. All normal matching tissues tested were found negative. The highest frequency (60%) of CRD-BP positive tumors was observed in meningiomas, either benign (11/18) or atypical (3/3). These findings confirm that CRD-BP expression is restricted in tumors; the frequency of its de novo expression may vary according to tumor type and appears to be an early event in the transformation process.
Collapse
|
12
|
Abstract
The steady-state levels of mRNAs depend upon their combined rates of synthesis and processing, transport from the nucleus to cytoplasm, and decay in the cytoplasm. In eukaryotic cells, the degradation of mRNA is an essential determinant in the regulation of gene expression, and it can be modulated in response to developmental, environmental, and metabolic signals. This level of regulation is particularly important for proteins that are active for a brief period, such as growth factors, transcription factors, and proteins that control cell cycle progression. The mechanisms by which mRNAs are degraded and the sequence elements within the mRNAs that affect their stability are the subject of this review. We will summarize the current state of knowledge regarding cis-acting elements in mRNA and trans-acting factors that contribute to mRNA regulation decay. We will then consider the mechanisms by which specific signaling proteins seem to contribute to a dynamic organization of the mRNA degradation machinery in response to physiological stimuli.
Collapse
Affiliation(s)
- Hélène Tourrière
- Institut de génétique moléculaire, UMR5535 du CNRS, IFR 24, 1919, route de Mende, 34293 Montpellier cedex 5, France
| | | | | |
Collapse
|
13
|
van Dijk EL, Sussenbach JS, Holthuizen PE. Kinetics and regulation of site-specific endonucleolytic cleavage of human IGF-II mRNAs. Nucleic Acids Res 2001; 29:3477-86. [PMID: 11522816 PMCID: PMC55887 DOI: 10.1093/nar/29.17.3477] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human insulin-like growth factor II (IGF-II) mRNA can be cleaved at a specific site in its 4 kb long 3'-UTR. This yields a stable 3' cleavage product of 1.8 kb consisting of a 3'-UTR and a poly(A) tail and an unstable 5' cleavage product containing the IGF-II coding region. After cleavage, the 5' cleavage product is targeted to rapid degradation and consequently is no longer involved in IGF-II protein synthesis. Cleavage is therefore thought to provide an additional way to control IGF-II gene expression. In this paper the kinetics and the efficiency of cleavage of IGF-II mRNAs are examined. The cleavage efficiency of IGF-II mRNAs carrying four different leaders (L1-L4) is enhanced in the highly structured leaders L1 and L3. Additionally, under standard cell culture conditions cleavage is a slow process that only plays a limited role in destabilisation and translation of the IGF-II mRNAs. However, in human Hep3B cells and CaCo2 cells which express IGF-II endogenously, cleavage is upregulated 3-5-fold at high cell densities. Regulated endonucleolytic cleavage of IGF-II mRNAs is restricted to cells in which IGF-II expression is related to specific cell processes.
Collapse
Affiliation(s)
- E L van Dijk
- University Medical Center Utrecht, Department of Physiological Chemistry, Stratenum, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | |
Collapse
|
14
|
Tierney MJ, Medcalf RL. Plasminogen activator inhibitor type 2 contains mRNA instability elements within exon 4 of the coding region. Sequence homology to coding region instability determinants in other mRNAs. J Biol Chem 2001; 276:13675-84. [PMID: 11278713 DOI: 10.1074/jbc.m010627200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activator inhibitor type 2 (PAI-2) is a serine protease inhibitor that inhibits urokinase. Constitutive and regulated PAI-2 gene expression involves post-transcriptional events, and an AU-rich mRNA instability motif within the 3'-untranslated region of PAI-2 mRNA is required for this process (Maurer, F., Tierney, M., and Medcalf, R. L. (1999) Nucleic Acids Res. 27, 1664-1673). Here we show that instability determinants are present within various exons of the PAI-2 coding region, most notably within exon 4. Deletion of exon 4 from the full-length PAI-2 cDNA results in a doubling in the half-life of PAI-2 mRNA, whereas a 28-nucleotide region within exon 4 contains binding sites for cytoplasmic proteins. Inducible stabilization of PAI-2 mRNA in HT-1080 cells treated with phorbol ester and tumor necrosis factor does not alter the binding of proteins to the exon 4 instability determinant, but resulted in a transient increase in the binding of factors to the AU-rich RNA instability element. Hence, PAI-2 mRNA stability is influenced by elements located within both the coding region and the 3'-untranslated region and that cytoplasmic mRNA binding factors may influence steady state and inducible PAI-2 mRNA expression. Finally a 10-nucleotide region flanking the exon 4 protein-binding site is homologous to instability elements within five other transcripts, suggesting that a common coding region determinant may exist.
Collapse
MESH Headings
- 3' Untranslated Regions/metabolism
- 3T3 Cells
- Animals
- Base Sequence
- Binding Sites
- Blotting, Northern
- Blotting, Western
- Carcinogens
- Cell Line
- Cytoplasm/metabolism
- DNA, Antisense/metabolism
- DNA, Complementary/metabolism
- Electrophoresis, Polyacrylamide Gel
- Exons
- Gene Deletion
- Genes, Reporter
- Human Growth Hormone/genetics
- Human Growth Hormone/metabolism
- Humans
- Mice
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis
- Phorbol Esters
- Plasmids/metabolism
- Plasminogen Activator Inhibitor 2/chemistry
- Plasminogen Activator Inhibitor 2/genetics
- Promoter Regions, Genetic
- Protein Binding/drug effects
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-fos/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Messenger/metabolism
- Time Factors
- Transcription, Genetic
- Transfection
- Tumor Necrosis Factor-alpha/metabolism
- Ultraviolet Rays
Collapse
Affiliation(s)
- M J Tierney
- Department of Medicine, Monash University, Box Hill Hospital, Box Hill 3128, Victoria, Australia
| | | |
Collapse
|
15
|
van Dijk EL, Sussenbach JS, Holthuizen PE. Distinct RNA structural domains cooperate to maintain a specific cleavage site in the 3'-UTR of IGF-II mRNAs. J Mol Biol 2000; 300:449-67. [PMID: 10884343 DOI: 10.1006/jmbi.2000.3856] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The insulin-like growth factor II mRNAs are targets for site-specific endonucleolytic cleavage in the 3'-UTR, which results in a very stable 3' cleavage product of 1.8 kb, consisting of 3'-UTR sequences and a poly(A) tail. The 5' cleavage product contains the coding region and is rapidly degraded. Thus, cleavage is thought to provide an additional way to control IGF-II protein synthesis. We had established that cleavage requires two widely separated sequence elements (I and II) in the 3'-UTR that form a stable duplex of 83 nucleotides. The cleavage-site itself is located in an internal loop preceded by two stable stem-loop structures. Furthermore, in a study which was based on RNA folding algorithms, we have shown that there are specific sequence and structural requirements for the cleavage reaction. Here, the functions of the different structural domains in cleavage were assessed by deletion/mutational analyses, and biochemical structure probing assays were performed to characterize better the RNA structures formed and to verify the computer folding predictions. The data suggest that the stem-loop domain contributes to maintain a highly specific c leavage-site by preventing the formation of alternative structures in the cleavage-site domain. Involvement of the nucleotides in the cleavage-site loop itself in non-Watson-Crick interactions may be important for providing a specific recognition surface for an endoribonuclease activity.
Collapse
Affiliation(s)
- E L van Dijk
- University Medical Center Utrecht, Department Physiological Chemistry, Utrecht, The Netherlands
| | | | | |
Collapse
|
16
|
Ioannidis P, Courtis N, Havredaki M, Michailakis E, Tsiapalis CM, Trangas T. The polyadenylation inhibitor cordycepin (3'dA) causes a decline in c-MYC mRNA levels without affecting c-MYC protein levels. Oncogene 1999; 18:117-25. [PMID: 9926926 DOI: 10.1038/sj.onc.1202255] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Study of the distribution of the poly(A) tail length of c-myc mRNA in several cell lines revealed a distinct, prevailing population with short poly(A) tails, derived through sequential deadenylation. To elucidate the possible in vivo function of this distinct short tailed c-myc mRNA population, the polyadenylation inhibitor cordycepin was used. This resulted in a decline in steady state c-myc mRNA levels with the remaining messenger mostly oligoadenylated. However, c-MYC proteins did not follow the reduction of the c-myc mRNA. On the other hand, in cells exposed to physiological agents known to downregulate c-myc expression, the reduction of mRNA steady state levels, was reflected upon c-MYC protein levels. The dissociation between c-myc mRNA and protein levels caused by cordycepin was not due to the stabilization of the c-MYC proteins and was not an indiscriminate effect since in the presence of cordycepin, c-fos mRNA and protein levels concomitantly declined. Our data indicate that under these conditions, a long poly(A) tail is not instrumental for c-myc mRNA translation and furthermore, the discrepancy in the steady state of c-myc mRNA level: c-MYC protein ratio between control cells and cells treated with cordycepin indicates that c-myc mRNA is subjected to translational control.
Collapse
Affiliation(s)
- P Ioannidis
- Papanikolaou Research Center of Oncology, St Savvas Hospital, Athens, Greece
| | | | | | | | | | | |
Collapse
|
17
|
van Dijk EL, Sussenbach JS, Holthuizen PE. Identification of RNA sequences and structures involved in site-specific cleavage of IGF-II mRNAs. RNA (NEW YORK, N.Y.) 1998; 4:1623-1635. [PMID: 9848658 PMCID: PMC1369730 DOI: 10.1017/s1355838298981316] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Insulin-like growth factor-II (IGF-II) mRNAs are subject to site-specific endonucleolytic cleavage in the 3' untranslated region (UTR), rendering an unstable 5' cleavage product containing the coding region and a very stable 3' cleavage product of 1.8 kb consisting of the 3'-UTR sequence and the poly(A) tail. Previously, it was established that two widely separated elements in the 3'-UTR (elements I and II), that can form a duplex structure, are necessary and sufficient for cleavage. To further investigate the sequence and secondary structure requirements for cleavage, we have introduced a number of mutations around the cleavage site and assayed their effects on cleavage. Several recognition determinants involved in the endonucleolytic cleavage of IGF-II mRNAs were identified. Mutational analysis around the cleavage site revealed that cleavage is sequence specific and that the cleavage site must be in a single-stranded conformation to allow efficient cleavage. In addition, we have identified an accessory protein that specifically interacts with a stem-loop structure located 133 to 73 nt upstream of the cleavage site.
Collapse
Affiliation(s)
- E L van Dijk
- Laboratory for Physiological Chemistry, Utrecht University, The Netherlands.
| | | | | |
Collapse
|
18
|
Lee CH, Leeds P, Ross J. Purification and characterization of a polysome-associated endoribonuclease that degrades c-myc mRNA in vitro. J Biol Chem 1998; 273:25261-71. [PMID: 9737991 DOI: 10.1074/jbc.273.39.25261] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of mRNA half-lives is determined by multiple factors, including the activity of the messenger RNases (mRNases) responsible for destroying mRNA molecules. Previously, we used cell-free mRNA decay assays to identify a polysome-associated endonuclease that cleaves c-myc mRNA within the coding region. A similar activity has been solubilized and partially purified from a high salt extract of adult rat liver polysomes. Based on a correlation between protein and enzyme activity, the endonuclease is tentatively identified as a approximately 39-kDa protein. It cleaves the coding region stability determinant of c-myc mRNA with considerable specificity. Cleavages occur predominantly in an A-rich segment of the RNA. The endonuclease is resistant to RNase A inhibitors, sensitive to vanadyl ribonucleoside complex, and dependent on magnesium. In these and other respects, the soluble enzyme we have purified resembles the polysome-associated c-myc mRNase.
Collapse
Affiliation(s)
- C H Lee
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|