1
|
Réau M, Lagarde N, Zagury JF, Montes M. Nuclear Receptors Database Including Negative Data (NR-DBIND): A Database Dedicated to Nuclear Receptors Binding Data Including Negative Data and Pharmacological Profile. J Med Chem 2018; 62:2894-2904. [PMID: 30354114 DOI: 10.1021/acs.jmedchem.8b01105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nuclear receptors (NRs) are transcription factors that regulate gene expression in various physiological processes through their interactions with small hydrophobic molecules. They constitute an important class of targets for drugs and endocrine disruptors and are widely studied for both health and environment concerns. Since the integration of negative data can be critical for accurate modeling of ligand activity profiles, we manually collected and annotated NRs interaction data (positive and negative) through a sharp review of the corresponding literature. 15 116 positive and negative interactions data are provided for 28 NRs together with 593 PDB structures in the freely available Nuclear Receptors Database Including Negative Data ( http://nr-dbind.drugdesign.fr ). The NR-DBIND contains the most extensive information about interaction data on NRs, which should bring valuable information to chemists, biologists, pharmacologists and toxicologists.
Collapse
Affiliation(s)
- Manon Réau
- Laboratoire GBA, EA4627 , Conservatoire National des Arts et Métiers , 2 Rue Conté , 75003 Paris , France
| | - Nathalie Lagarde
- Laboratoire GBA, EA4627 , Conservatoire National des Arts et Métiers , 2 Rue Conté , 75003 Paris , France.,Université Paris Diderot, Sorbonne Paris Cité, Molécules Thérapeutiques in Silico, INSERM UMR-S 973, 75205 Paris , France
| | - Jean-François Zagury
- Laboratoire GBA, EA4627 , Conservatoire National des Arts et Métiers , 2 Rue Conté , 75003 Paris , France
| | - Matthieu Montes
- Laboratoire GBA, EA4627 , Conservatoire National des Arts et Métiers , 2 Rue Conté , 75003 Paris , France
| |
Collapse
|
2
|
Becnel LB, Darlington YF, Ochsner SA, Easton-Marks JR, Watkins CM, McOwiti A, Kankanamge WH, Wise MW, DeHart M, Margolis RN, McKenna NJ. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways. PLoS One 2015; 10:e0135615. [PMID: 26325041 PMCID: PMC4556694 DOI: 10.1371/journal.pone.0135615] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/24/2015] [Indexed: 12/13/2022] Open
Abstract
Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse ‘omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy “Web 2.0” technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA’s Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.
Collapse
Affiliation(s)
- Lauren B. Becnel
- Dan L. Duncan Comprehensive Cancer Center Biomedical Informatics Group, One Baylor Plaza, Houston, Texas, United States of America
- Nuclear Receptor Signaling Atlas (NURSA) Informatics Hub
| | - Yolanda F. Darlington
- Dan L. Duncan Comprehensive Cancer Center Biomedical Informatics Group, One Baylor Plaza, Houston, Texas, United States of America
- Nuclear Receptor Signaling Atlas (NURSA) Informatics Hub
| | - Scott A. Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States of America
- Nuclear Receptor Signaling Atlas (NURSA) Informatics Hub
| | - Jeremy R. Easton-Marks
- Dan L. Duncan Comprehensive Cancer Center Biomedical Informatics Group, One Baylor Plaza, Houston, Texas, United States of America
- Nuclear Receptor Signaling Atlas (NURSA) Informatics Hub
| | - Christopher M. Watkins
- Dan L. Duncan Comprehensive Cancer Center Biomedical Informatics Group, One Baylor Plaza, Houston, Texas, United States of America
- Nuclear Receptor Signaling Atlas (NURSA) Informatics Hub
| | - Apollo McOwiti
- Dan L. Duncan Comprehensive Cancer Center Biomedical Informatics Group, One Baylor Plaza, Houston, Texas, United States of America
- Nuclear Receptor Signaling Atlas (NURSA) Informatics Hub
| | - Wasula H. Kankanamge
- Dan L. Duncan Comprehensive Cancer Center Biomedical Informatics Group, One Baylor Plaza, Houston, Texas, United States of America
- Nuclear Receptor Signaling Atlas (NURSA) Informatics Hub
| | - Michael W. Wise
- National Institute of Diabetes, Digestive and Kidney Diseases, Division of Diabetes and Metabolic Diseases, Bethesda, Maryland, United States of America
- Nuclear Receptor Signaling Atlas (NURSA) Informatics Hub
| | - Michael DeHart
- Dan L. Duncan Comprehensive Cancer Center Biomedical Informatics Group, One Baylor Plaza, Houston, Texas, United States of America
- Nuclear Receptor Signaling Atlas (NURSA) Informatics Hub
| | - Ronald N. Margolis
- National Institute of Diabetes, Digestive and Kidney Diseases, Division of Diabetes and Metabolic Diseases, Bethesda, Maryland, United States of America
| | - Neil J. McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States of America
- Nuclear Receptor Signaling Atlas (NURSA) Informatics Hub
- * E-mail:
| |
Collapse
|
3
|
Navarro D, Luzardo OP, Fernández L, Chesa N, Díaz-Chico BN. Transition to androgen-independence in prostate cancer. J Steroid Biochem Mol Biol 2002; 81:191-201. [PMID: 12163131 DOI: 10.1016/s0960-0760(02)00064-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Prostate carcinoma is the most frequently diagnosed malignancy and the second leading cause of death as a result of cancer in men in the western countries. Withdrawal of androgens or the peripheral blockage of androgen action remain the critical therapeutic options for the treatment of advanced prostate cancer. However, after initial regression, most of the prostate cancers become androgen-independent and progress further, with eventual fatal outcome. Understanding the mechanisms of transition to androgen independence and tumor progression in prostate cancer is critical to finding new ways to treat aged patients that are ineligible for conventional chemotherapy. A large number of different molecular mechanisms might be responsible for the transition to androgen-independence. Many of these involve the androgen receptor (AR) and its signalling pathways, but they might also include genetic changes that affect several genes, which results in the activation of oncogenes or the inactivation of tumor suppressor genes. Here, we discuss the most recent and relevant findings on androgen resistance in prostate cancer in order provide a comprehensive interpretation of the clinical behaviour of tumors at molecular levels.
Collapse
Affiliation(s)
- Domingo Navarro
- Department of Biochemistry, Instituto Canario de Investigación del Cáncer (ICIC), P.O. Box 550, 35080 Las Palmas de Gran Canaria, Canary Islands, Spain
| | | | | | | | | |
Collapse
|
4
|
Curran JE, Lea RA, Rutherford S, Weinstein SR, Griffiths LR. Association of estrogen receptor and glucocorticoid receptor gene polymorphisms with sporadic breast cancer. Int J Cancer 2001; 95:271-5. [PMID: 11400122 DOI: 10.1002/1097-0215(20010720)95:4<271::aid-ijc1046>3.0.co;2-d] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have utilized a cross-sectional association approach to investigate sporadic breast cancer. Polymorphisms in 2 candidate genes, ESRalpha and GRL, were examined in an unrelated breast cancer-affected and age-matched control population. Several polymorphic regions within the ESRalpha gene have been identified, and some alleles of these polymorphisms have been found to occur at increased levels in breast-cancer patients. Additionally, variations in GRL have the potential to disrupt cell transcription and may be associated with cancer formation. We analyzed 3 polymorphisms, from codons 10 (TCT to TCC), 325 (CCC to CCG) and 594 (ACA to ACG) of ESRalpha, and a highly polymorphic dinucleotide repeat, D5S207, located within 200 kb of the GRL. When allelic frequencies of the codon 594 (exon 8) ESR polymorphism were compared between affected and unaffected populations, a significant difference was observed (p = 0.005). Results from the D5S207 dinucleotide repeat located near GRL also indicated a significant difference between the tested case and control populations (p = 0.001). Allelic frequencies of the codon 10 and codon 325 ESR polymorphisms were not significantly different between populations (p = 0.152 and 0.181, respectively). Our results indicate that specific alleles of the ESR gene (alpha subtype) and a marker for the GRL gene locus are associated with sporadic breast-cancer development in the tested Caucasian population and justify further investigation of the role of these and other nuclear steroid receptors in the etiology of breast cancer.
Collapse
Affiliation(s)
- J E Curran
- Genomics Research Centre, School of Health Science, Griffith University Gold Coast, Southport, Queensland, Australia
| | | | | | | | | |
Collapse
|
5
|
Abstract
Thyroid hormone (T(3)) activates nuclear receptor transcription factors, encoded by the TRalpha (NR1A1) and TRbeta (NR1A2) genes, to regulate target gene expression. Several TR isoforms exist, and studies of null mice have identified some unique functions for individual TR variants, although considerable redundancy occurs, raising questions about the specificity of T(3) action. Thus, it is not known how diverse T(3) actions are regulated in target tissues that express multiple receptor variants. I have identified two novel TRbeta isoforms that are expressed widely and result from alternative mRNA splicing. TRbeta3 is a 44.6-kDa protein that contains an unique 23-amino-acid N terminus and acts as a functional receptor. TRDeltabeta3 is a 32.8-kDa protein that lacks a DNA binding domain but retains ligand binding activity and is a potent dominant-negative antagonist. The relative concentrations of beta3 and Deltabeta3 mRNAs vary between tissues and with changes in thyroid status, indicating that alternative splicing is tissue specific and T(3) regulated. These data provide novel insights into the mechanisms of T(3) action and define a new level of specificity that may regulate thyroid status in tissue.
Collapse
Affiliation(s)
- G R Williams
- ICSM Molecular Endocrinology Group, Division of Medicine and MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London W12 ONN, United Kingdom.
| |
Collapse
|
6
|
Kosztin D, Izrailev S, Schulten K. Unbinding of retinoic acid from its receptor studied by steered molecular dynamics. Biophys J 1999; 76:188-97. [PMID: 9876133 PMCID: PMC1302510 DOI: 10.1016/s0006-3495(99)77188-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Retinoic acid receptor (RAR) is a ligand-dependent transcription factor that regulates the expression of genes involved in cell growth, differentiation, and development. Binding of the retinoic acid hormone to RAR is accompanied by conformational changes in the protein which induce transactivation or transrepression of the target genes. In this paper we present a study of the hormone binding/unbinding process in order to clarify the role of some of the amino acid contacts and identify possible pathways of the all-trans retinoic acid binding/unbinding to/from human retinoic acid receptor (hRAR)-gamma. Three possible pathways were explored using steered molecular dynamics simulations. Unbinding was induced on a time scale of 1 ns by applying external forces to the hormone. The simulations suggest that the hormone may employ one pathway for binding and an alternative "back door" pathway for unbinding.
Collapse
Affiliation(s)
- D Kosztin
- Departments of Chemistry and Physics, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
| | | | | |
Collapse
|
7
|
Modarress KJ, Opoku J, Xu M, Sarlis NJ, Simons SS. Steroid-induced conformational changes at ends of the hormone-binding domain in the rat glucocorticoid receptor are independent of agonist versus antagonist activity. J Biol Chem 1997; 272:23986-94. [PMID: 9295350 DOI: 10.1074/jbc.272.38.23986] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The underlying molecular mechanism for the expression of agonist versus antagonist activity for a given receptor-steroid complex is still not known. One attractive hypothesis, based on data from progesterone receptors, is that agonist versus antagonist binding induces unique conformations at the C terminus of receptors, which can be detected by the different fragments produced by partial proteolysis. We now report that the determinants of glucocorticoid receptor (GR)-antagonist complex activity are more complex. Steroid binding did cause a conformational change in the GR that was detected by partial trypsin digestion, as described previously (Simons, S. S., Jr., Sistare, F. D., and Chakraborti, P. K. (1989) J. Biol. Chem. 264, 14493-14497). However, there was no uniformity in the digestion patterns of unactivated or activated receptors bound by a series of six structurally different antagonists including the affinity labeling antiglucocorticoid dexamethasone 21-mesylate. A total of four resistant bands were observed on SDS-polyacrylamide gels in the range of 30-27 kDa. Using a series of point mutations and epitope-specific antibodies, it was determined that the 30-kDa species represented the entire C-terminal sequence of amino acids 518-795, whereas the other bands arose from additional N-terminal and/or C-terminal cleavages. Bioassays with GRs containing various point and deletion mutations failed to reveal any C-terminal alterations that could convert antagonists into biologically active agonists. Thus, the presence or absence of C-terminal amino acids of the GR did not uniquely determine either the appearance of smaller trypsin-resistant fragments or the nature of the biological response of receptor-bound antisteroids. When compared with the current model of the ligand-binding domain, which is based on the x-ray structures of the comparable region of thyroid and retinoic acid receptors, the present results suggest that sequences outside of the model structure are relevant for the binding and biological activity of GRs.
Collapse
Affiliation(s)
- K J Modarress
- Steroid Hormones Section, NIDDK/Laboratory of Molecular and Cellular Biology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|