1
|
Galán B, Díaz E, Prieto MA, García JL. Functional analysis of the small component of the 4-hydroxyphenylacetate 3-monooxygenase of Escherichia coli W: a prototype of a new Flavin:NAD(P)H reductase subfamily. J Bacteriol 2000; 182:627-36. [PMID: 10633095 PMCID: PMC94324 DOI: 10.1128/jb.182.3.627-636.2000] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli W uses the aromatic compound 4-hydroxyphenylacetate (4-HPA) as a sole source of carbon and energy for growth. The monooxygenase which converts 4-HPA into 3,4-dihydroxyphenylacetate, the first intermediate of the pathway, consists of two components, HpaB (58.7 kDa) and HpaC (18.6 kDa), encoded by the hpaB and hpaC genes, respectively, that form a single transcription unit. Overproduction of the small HpaC component in E. coli K-12 cells has facilitated the purification of the protein, which was revealed to be a homodimer that catalyzes the reduction of free flavins by NADH in preference to NADPH. Subsequently, the reduced flavins diffuse to the large HpaB component or to other electron acceptors such as cytochrome c and ferric ion. Amino acid sequence comparisons revealed that the HpaC reductase could be considered the prototype of a new subfamily of flavin:NAD(P)H reductases. The construction of a fusion protein between the large HpaB oxygenase component and the choline-binding domain of the major autolysin of Streptococcus pneumoniae allowed us to develop a rapid method to efficiently purify this highly unstable enzyme as a chimeric CH-HpaB protein, which exhibited a 4-HPA hydroxylating activity only when it was supplemented with the HpaC reductase. These results suggest the 4-HPA 3-monooxygenase of E. coli W as a representative member of a novel two-component flavin-diffusible monooxygenase (TC-FDM) family. Relevant features on the evolution and structure-function relationships of these TC-FDM proteins are discussed.
Collapse
Affiliation(s)
- B Galán
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | |
Collapse
|
2
|
Kiss J, Olasz F. Formation and transposition of the covalently closed IS30 circle: the relation between tandem dimers and monomeric circles. Mol Microbiol 1999; 34:37-52. [PMID: 10540284 DOI: 10.1046/j.1365-2958.1999.01567.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study, we demonstrate that a circular IS30 element acts as an intermediate for simple insertion. Covalently closed IS and Tn circles constructed in vitro are suitable for integration into the host genome. Minicircle integration displays all the characteristics of transpositional fusion mediated by the (IS30 )2 dimer regarding target selection and target duplication. Evidence is provided for in vivo circularization of the element located either on plasmids or on the genome. It is shown that circle formation can occur through alternative pathways. One of them is excision of IS30 from a hot spot via joining the IRs. This reaction resembles the site-specific dimerization that leads to (IS30 )2 establishment. The other process is the dissolution of (IS30 )2 dimer, when the element is excised from an IR-IR joint. These pathways differ basically in the fate of the donor replicon: only dimer dissolution gives rise to resealed donor backbone. Analysis of minicircles and the rearranged donor replicons led us to propose a molecular model that can account for differences between the circle-generating processes. Our focus was to the dissolution of IR-IR joints located on the host genome, because these events promoted extensive genomic rearrangements and accompanied minicircle formation. The results present the possibility of host genome reorganization by IS30-like transposition.
Collapse
Affiliation(s)
- J Kiss
- Agricultural Biotechnology Center,Szent-Györgyi Albert u. 4, H-2101 Gödöllo", Hungary
| | | |
Collapse
|
3
|
Washio T, Sasayama J, Tomita M. Analysis of complete genomes suggests that many prokaryotes do not rely on hairpin formation in transcription termination. Nucleic Acids Res 1998; 26:5456-63. [PMID: 9826772 PMCID: PMC148011 DOI: 10.1093/nar/26.23.5456] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Free energy values of mRNA tertiary structures around stop codons were systematically calculated to surmise the hairpin-forming potential for all genes in each of the 16 complete prokaryote genomes. Instead of trying to detect each individual hairpin, we averaged the free energy values around the stop codons over the entire genome to predict how extensively the organism relies on hairpin formation in the process of transcription termination. The free energy values of Escherichia coli K-12 shows a sharp drop, as expected, at 30 bp downstream of the stop codon, presumably due to hairpin-forming sequences. Similar drops are observed for Haemophilus influenzae Rd, Bacillus subtilis and Chlamydia trachomatis, suggesting that these organisms also form hairpins at their transcription termination sites. On the other hand, 12 other prokaryotes- Mycoplasma genitalium, Mycoplasma pneumoniae, Synechocystis PCC6803, Helicobacter pylori, Borrelia burgdorferi, Methanococcus jannaschii, Archaeoglobus fulgidus, Methanobacterium thermoautotrophicum, Aquifex aeolicus, Pyrococcus horikoshii, Mycobacterium tuberculosis and Treponema pallidum -show no apparent decrease in free energy value at the corresponding regions. This result suggests that these prokaryotes, or at least some of them, may never form hairpins at their transcription termination sites.
Collapse
Affiliation(s)
- T Washio
- Laboratory for Bioinformatics, Graduate School of Media and Governance and Department of Environmental Information, Keio University, 5322 Endo, Fujisawa 252, Japan
| | | | | |
Collapse
|
4
|
Ferrández A, Miñambres B, García B, Olivera ER, Luengo JM, García JL, Díaz E. Catabolism of phenylacetic acid in Escherichia coli. Characterization of a new aerobic hybrid pathway. J Biol Chem 1998; 273:25974-86. [PMID: 9748275 DOI: 10.1074/jbc.273.40.25974] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The paa cluster of Escherichia coli W involved in the aerobic catabolism of phenylacetic acid (PA) has been cloned and sequenced. It was shown to map at min 31.0 of the chromosome at the right end of the mao region responsible for the transformation of 2-phenylethylamine into PA. The 14 paa genes are organized in three transcription units: paaZ and paaABCDEFGHIJK, encoding catabolic genes; and paaXY, containing the paaX regulatory gene. The paaK gene codes for a phenylacetyl-CoA ligase that catalyzes the activation of PA to phenylacetyl-CoA (PA-CoA). The paaABCDE gene products, which may constitute a multicomponent oxygenase, are involved in PA-CoA hydroxylation. The PaaZ protein appears to catalyze the third enzymatic step, with the paaFGHIJ gene products, which show significant similarity to fatty acid beta-oxidation enzymes, likely involved in further mineralization to Krebs cycle intermediates. Three promoters, Pz, Pa, and Px, driven the expression of genes paaZ, paaABCDEFGHIJK, and paaX, respectively, have been identified. The Pa promoter is negatively controlled by the paaX gene product. As PA-CoA is the true inducer, PaaX becomes the first regulator of an aromatic catabolic pathway that responds to a CoA derivative. The aerobic catabolism of PA in E. coli represents a novel hybrid pathway that could be a widespread way of PA catabolism in bacteria.
Collapse
Affiliation(s)
- A Ferrández
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
5
|
Gerike U, Hough DW, Russell NJ, Dyall-Smith ML, Danson MJ. Citrate synthase and 2-methylcitrate synthase: structural, functional and evolutionary relationships. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 4):929-935. [PMID: 9579066 DOI: 10.1099/00221287-144-4-929] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Following the complete sequencing of the Escherichia coli genome, it has been shown that the proposed second citrate synthase of this organism, recently described by the authors, is in fact a 2-methylcitrate synthase that possesses citrate synthase activity as a minor component. Whereas the hexameric citrate synthase is constitutively produced, the 2-methylcitrate synthase is induced during growth on propionate, and the catabolism of propionate to succinate and pyruvate via 2-methylcitrate is proposed. The citrate synthases of the psychrotolerant eubacterium DS2-3R, and of the thermophilic archaea Thermoplasma acidophilum and Pyrococcus furiosus, are approximately 40% identical in sequence to the Escherichia coli 2-methylcitrate synthase and also possess 2-methylcitrate synthase activity. The data are discussed with respect to the structure, function and evolution of citrate synthase and 2-methylcitrate synthase.
Collapse
Affiliation(s)
- Ursula Gerike
- Centre for Extremophile Research, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - David W Hough
- Centre for Extremophile Research, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Nicholas J Russell
- Department of Biological Sciences, Wye College, University of London, Wye, Kent TN25 5AH, UK
| | - Michael L Dyall-Smith
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Michael J Danson
- Centre for Extremophile Research, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
6
|
Abstract
Biological sequence databases are currently being re-engineered to make them more efficient and easier to use. This re-engineering is also providing an infrastructure to make it easier to interrogate and integrate data from different sources. The net result of this effort should be a great improvement in the power and availability of bioinformatics resources to the general biology community.
Collapse
Affiliation(s)
- P G Baker
- School of Biological Sciences, University of Manchester, UK.
| | | |
Collapse
|
7
|
Van Dyk TK, Ayers BL, Morgan RW, Larossa RA. Constricted flux through the branched-chain amino acid biosynthetic enzyme acetolactate synthase triggers elevated expression of genes regulated by rpoS and internal acidification. J Bacteriol 1998; 180:785-92. [PMID: 9473030 PMCID: PMC106955 DOI: 10.1128/jb.180.4.785-792.1998] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The first common enzyme of isoleucine and valine biosynthesis, acetolactate synthase (ALS), is specifically inhibited by the herbicide sulfometuron methyl (SM). To further understand the physiological consequences of flux alterations at this point in metabolism, Escherichia coli genes whose expression was induced by partial inhibition of ALS were sought. Plasmid-based fusions of random E. coli DNA fragments to Photorhabdus luminescens luxCDABE were screened for bioluminescent increases in actively growing liquid cultures slowed 25% by the addition of SM. From more than 8,000 transformants, 12 unique SM-inducible promoter-lux fusions were identified. The lux reporter genes were joined to seven uncharacterized open reading frames, f253a, f415, frvX, o513, o521, yciG, and yohF, and five known genes, inaA, IdcC, osmY, poxB, and sohA. Inactivation of the rpoS-encoded sigma factor, sigmaS, reduced basal expression levels of six of these fusions 10- to 200-fold. These six genes defined four new members of the sigmaS regulon, f253a, IdcC, yciG, and yohF, and included two known members, osmY and poxB. Furthermore, the weak acid salicylate, which causes cytoplasmic acidification, also induced increased bioluminescence from seven SM-inducible promoter-lux fusion-containing strains, namely, those with fusions of the sigmaS-controlled genes and inaA. The pattern of gene expression changes suggested that restricted ALS activity may result in intracellular acidification and induction of the sigmaS-dependent stress response.
Collapse
Affiliation(s)
- T K Van Dyk
- Central Research and Development Department, DuPont Co., Wilmington, Delaware 19880-0173, USA.
| | | | | | | |
Collapse
|
8
|
Kröger M, Wahl R. Compilation of DNA sequences of Escherichia coli K12: description of the interactive databases ECD and ECDC. Nucleic Acids Res 1998; 26:46-9. [PMID: 9399797 PMCID: PMC147217 DOI: 10.1093/nar/26.1.46] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have compiled the DNA sequence data for Escherichia coli K12 available from the GenBank and EMBL data libraries and independently from the literature. We provide the most definitive version of the ECD Escherichia coli database now exclusively via the World Wide Web System (http://susi.bio.uni-giessen.de/ecdc.html ). Our database encloses the completed genome sequence recently published by two competing groups and an assembled set of all elder sequences. The organisation of the database allows precise physical location of each individual gene or regulatory region, even taking into consideration discrepancies in nomenclature. The WWW program allows to the user to branch into the original EMBL and SWISS-PROT datafiles. A number of links to other WWW servers dealing with E. coli is provided. A FASTA and BLAST search may be performed online. Besides the WWW format a flat file version may be obtained via ftp. A number of discrepancies between the two systematic sequence determinations and/or the literature have not yet been resolved. However, our database may serve as a reference source for resolution and/or the assignment of strain difference.
Collapse
Affiliation(s)
- M Kröger
- Institut für Mikrobiologie und Molekularbiologie, Fachbereich Biologie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 107, D-35392 Giessen, Germany.
| | | |
Collapse
|
9
|
Calva E, Ordoñez LG, Fernandez-Mora M, Santana FJ, Bobadilla M, Puente JL. Distinctive IS200 insertion between gyrA and rcsC genes in Salmonella typhi. J Clin Microbiol 1997; 35:3048-53. [PMID: 9399492 PMCID: PMC230120 DOI: 10.1128/jcm.35.12.3048-3053.1997] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
While probing the vicinity of ompC, a copy of the IS200 insertion element was found between the gyrA and rcsC genes of Salmonella typhi, the causal agent of typhoid fever. This distinctive feature was conserved throughout 63 S. typhi isolates of different geographical origins and was absent from 46 other Salmonella serotypes, including those most associated with human infections, as well as from 19 other enteric bacteria. Furthermore, the location of this IS200 copy corresponds to a constant band, present throughout the 14 PstI S. typhi IS200 fingerprints, encompassing several Vi phage types. Interestingly, an apparently unrelated serotype not frequently associated with human disease, Salmonella weltevreden, contained an IS200 copy at the same position, although it was accompanied by an additional segment of cryptic DNA. On the basis of these findings, PCR assays were designed for molecular typing of S. typhi, and these are potentially useful in studying the epidemiology of typhoid fever.
Collapse
Affiliation(s)
- E Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos.
| | | | | | | | | | | |
Collapse
|
10
|
|
11
|
|