1
|
Zheng H, Clausse V, Amarasekara H, Mazur SJ, Botos I, Appella DH. Variation of Tetrahydrofurans in Thyclotides Enhances Oligonucleotide Binding and Cellular Uptake of Peptide Nucleic Acids. JACS AU 2023; 3:1952-1964. [PMID: 37502163 PMCID: PMC10369417 DOI: 10.1021/jacsau.3c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023]
Abstract
Selective incorporation of conformational constraints into thyclotides can be used to modulate their binding to complementary oligonucleotides, increase polarity, and optimize uptake into HCT116 cells without assistance from moieties known to promote cell uptake. The X-ray structure and biophysical studies of a thyclotide-DNA duplex reveal that incorporation of tetrahydrofurans into an aegPNA backbone promotes a helical conformation that enhances binding to complementary DNA and RNA. Selective incorporation of tetrahydrofurans into the aegPNA backbone allows polarity to be increased incrementally so that uptake into HCT116 cells can be optimized. The enhanced binding, polarity, and cellular uptake properties of thyclotides were used to demonstrate effective inhibition of microRNA-21 in HCT116 cells.
Collapse
Affiliation(s)
- Hongchao Zheng
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK), National Institutes of Health, 8 Center Drive, Room 404, Bethesda, Maryland 20892, United States
| | - Victor Clausse
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK), National Institutes of Health, 8 Center Drive, Room 404, Bethesda, Maryland 20892, United States
| | - Harsha Amarasekara
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK), National Institutes of Health, 8 Center Drive, Room 404, Bethesda, Maryland 20892, United States
| | - Sharlyn J. Mazur
- Laboratory
of Cell Biology, National Cancer Institute,
National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, United States
| | - Istvan Botos
- Laboratory
of Molecular Biology, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Department of Health and Human Services, Bethesda, Maryland 20892, United States
| | - Daniel H. Appella
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK), National Institutes of Health, 8 Center Drive, Room 404, Bethesda, Maryland 20892, United States
| |
Collapse
|
2
|
Lu X, Yao C, Sun L, Li Z. Plasmon-enhanced biosensors for microRNA analysis and cancer diagnosis. Biosens Bioelectron 2022; 203:114041. [DOI: 10.1016/j.bios.2022.114041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022]
|
3
|
Abboud SA, Amoura M, Madinier J, Renoux B, Papot S, Piller V, Aucagne V. Enzyme‐Cleavable Linkers for Protein Chemical Synthesis through Solid‐Phase Ligations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Skander A. Abboud
- Centre de Biophysique Moléculaire CNRS UPR 4301 Rue Charles Sadron 45071 Orléans cedex 2 France
| | - Mehdi Amoura
- Centre de Biophysique Moléculaire CNRS UPR 4301 Rue Charles Sadron 45071 Orléans cedex 2 France
| | - Jean‐Baptiste Madinier
- Centre de Biophysique Moléculaire CNRS UPR 4301 Rue Charles Sadron 45071 Orléans cedex 2 France
| | - Brigitte Renoux
- Institut de Chimie des Milieux et des Matériaux de Poitiers UMR-CNRS 7285 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Sébastien Papot
- Institut de Chimie des Milieux et des Matériaux de Poitiers UMR-CNRS 7285 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Véronique Piller
- Centre de Biophysique Moléculaire CNRS UPR 4301 Rue Charles Sadron 45071 Orléans cedex 2 France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire CNRS UPR 4301 Rue Charles Sadron 45071 Orléans cedex 2 France
| |
Collapse
|
4
|
Abboud SA, Amoura M, Madinier JB, Renoux B, Papot S, Piller V, Aucagne V. Enzyme-Cleavable Linkers for Protein Chemical Synthesis through Solid-Phase Ligations. Angew Chem Int Ed Engl 2021; 60:18612-18618. [PMID: 34097786 DOI: 10.1002/anie.202103768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 12/26/2022]
Abstract
The total synthesis of long proteins requires the assembly of multiple fragments through successive ligations. The need for intermediate purification steps is a strong limitation, particularly in terms of overall yield. One solution to this problem would be solid-supported chemical ligation (SPCL), for which a first peptide segment must be immobilized on a SPCL-compatible solid support through a linker that can be cleaved under very mild conditions to release the assembled protein. The cleavage of SPCL linkers has previously required chemical conditions sometimes incompatible with sensitive protein targets. Herein, we describe an alternative enzymatic approach to trigger cleavage under extremely mild and selective conditions. Optimization of the linker structure and use of a small enzyme able to diffuse into the solid support were key to the success of the strategy. We demonstrated its utility by the assembly of three peptide segments on the basis of native chemical ligation to afford a 15 kDa polypeptide.
Collapse
Affiliation(s)
- Skander A Abboud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France
| | - Mehdi Amoura
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France
| | - Jean-Baptiste Madinier
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France
| | - Brigitte Renoux
- Institut de Chimie des Milieux et des Matériaux de Poitiers, UMR-CNRS 7285, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France
| | - Sébastien Papot
- Institut de Chimie des Milieux et des Matériaux de Poitiers, UMR-CNRS 7285, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France
| | - Véronique Piller
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France
| |
Collapse
|
5
|
Hu L, Krylova SM, Liu SK, Yousef GM, Krylov SN. Necessity and Challenges of Sample Preconcentration in Analysis of Multiple MicroRNAs by Capillary Electrophoresis. Anal Chem 2020; 92:14251-14258. [PMID: 33006882 DOI: 10.1021/acs.analchem.0c03605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thousands of putative microRNA (miRNA)-based cancer biomarkers have been reported, but none has been validated for approval by the Food and Drug Administration. One of the reasons for this alarming discrepancy is the lack of a method that is sufficiently robust for carrying out validation studies, which may require analysis of samples from hundreds of patients across multiple institutions and pooling the results together. The capillary electrophoresis (CE)-based hybridization assay proved to be more robust than reversed transcription polymerase chain reaction (the current standard), but its limit of quantification (LOQ) exceeds 10 pM while miRNA concentrations in cell lysates are below 1 pM. Thus, CE-based separation must be preceded by on-column sample preconcentration. Here, we explain the challenges of sample preconcentration for CE-based miRNA analyses and introduce a preconcentration method that can suit CE-based miRNA analysis utilizing peptide nucleic acid (PNA) hybridization probes. The method combines field-amplified sample stacking (FASS) with isotachophoresis (ITP). We proved that FASS-ITP could retain and concentrate both near-neutral PNA with highly negatively charged PNA-miRNA hybrids. We demonstrated that preconcentration by FASS-ITP could be combined with the CE-based separation of the unreacted PNA probes from the PNA-miRNA hybrids and facilitate improvement in LOQ by a factor of 140, down to 0.1 pM. Finally, we applied FASS-ITP-CE for the simultaneous detection of two miRNAs in crude cell lysates and proved that the method was robust when used in complex biological matrices. The 140-fold improvement in LOQ and the robustness to biological matrices will significantly expand the applicability of CE-based miRNA analysis, bringing it closer to becoming a practical tool for validation of miRNA biomarkers.
Collapse
Affiliation(s)
- Liang Hu
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Svetlana M Krylova
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Stanley K Liu
- Department of Radiation Oncology, Sunnybrook-Odette Cancer Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - George M Yousef
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - Sergey N Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
6
|
Abstract
Peptide libraries are a highly useful tool for drug development. While most preparations of peptide libraries are laborious during either the synthesis or its screening, the SPOT synthesis offers the possibility of directly synthesizing large numbers of peptides on a planar surface. As a positionally addressable, multiple solid-phase synthesis technique, the synthesis allows a very convenient handling during the screening of that peptide library in a form of an array. This publication will provide protocols for the basic procedures of the SPOT synthesis and references to some important literature regarding that technique and its application.
Collapse
|
7
|
Fairbanks BD, Culver HR, Mavila S, Bowman CN. Towards High-Efficiency Synthesis of Xenonucleic Acids. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2019.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Xu X, Xing S, Xu M, Fu P, Gao T, Zhang X, Zhao Y, Zhao C. Highly sensitive and specific screening of EGFR mutation using a PNA microarray-based fluorometric assay based on rolling circle amplification and graphene oxide. RSC Adv 2019; 9:38298-38308. [PMID: 35540182 PMCID: PMC9075832 DOI: 10.1039/c9ra06758b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/16/2019] [Indexed: 01/23/2023] Open
Abstract
Screening epidermal growth factor receptor (EGFR) mutations, especially deletions, is essential for diagnosis of non-small cell lung cancer (NSCLC) and also critical to inform treatment decisions for NSCLC patients. Here, we demonstrated a facile peptide nucleic acid (PNA) microarray-based fluorometric method for sensitive and specific detection of EGFR mutation, using rolling circle amplification (RCA), graphene oxide (GO), and a fluorescently-labeled detection probe (F-DP). First, the EGFR gene sequence was efficiently captured by the label-free PNA probe which was attached on the surface of a 96-well plate. And then, the EGFR mutation sequence was specifically amplified by RCA using the circular DNA, which was formed by the ligation of the padlock probe when hybridizing with the EGFR mutation, as a template. The single-stranded RCA product (RCAP) was then sensitively detected with the F-DP and GO system. This method has a detection limit of 0.3 pM for EGFR mutation and a high discrimination capability to target EGFR mutation against EGFR wildtype. The use of a PNA microarray and a fluorescence quenching platform make this system quite suitable for high-throughput analysis of EGFR mutations in resource-limited settings without the need of costly and cumbersome equipment. Furthermore, this detection system provides a novel way for the diagnosis of other diseases that are caused by gene deletion mutations.
Collapse
Affiliation(s)
- Xiaojun Xu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 P. R. China
- Institute of Pharmaceutical Chemistry, Zhejiang Pharmaceutical College Ningbo 315100 P. R. China
| | - Shu Xing
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 P. R. China
| | - Mengjia Xu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Pan Fu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Tingting Gao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 P. R. China
| | - Xiaokang Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 P. R. China
| | - Yang Zhao
- College of Science and Technology, Ningbo University Ningbo 315212 P. R. China
| | - Chao Zhao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 P. R. China
| |
Collapse
|
9
|
Hu L, Anand M, Krylova SM, Yang BB, Liu SK, Yousef GM, Krylov SN. Direct Quantitative Analysis of Multiple microRNAs (DQAMmiR) with Peptide Nucleic Acid Hybridization Probes. Anal Chem 2018; 90:14610-14615. [PMID: 30451492 DOI: 10.1021/acs.analchem.8b04793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Direct quantitative analysis of multiple miRNAs (DQAMmiR) is a hybridization-based assay, in which the excess of the DNA hybridization probes is separated from the miRNA-probe hybrids, and the hybrids are separated from each other in gel-free capillary electrophoresis (CE) using two types of mobility shifters: single-strand DNA binding protein (SSB) added to the CE running buffer and peptide drag tags conjugated with the probes. Here we introduce the second-generation DQAMmiR, which utilizes peptide nucleic acid (PNA) rather than DNA hybridization probes and requires no SSB in the CE running buffer. PNA probes are electrically neutral, while PNA-miRNA hybrids are negatively charged, and this difference in charge can be a basis for separation of the hybrids from the probes. In this proof-of-principle work, we first experimentally confirmed that the PNA-RNA hybrid was separable from the excess of the PNA probe without SSB in the running buffer, resulting in a near 10 min time window, which would allow, theoretically, separation of up to 30 hybrids. Then, we adapted to PNA-RNA hybrids our previously developed theoretical model for predicting hybrid mobilities. The calculation performed with the modified theoretical model indicated that PNA-RNA hybrids of slightly different lengths could be separated from each other without drag tags. Accordingly, we designed a simple experimental model capable of confirming: (i) separation of tag-free hybrids of different lengths and (ii) separation of same-length hybrids due to a drag tag on the PNA probe. The experimental model included three miRNAs: 20-nt miR-147a, 20-nt miR-378g, and 22-nt miR-21. The three complementary PNA probes had lengths matching those of the corresponding target miRNAs. The probe for miR-147a had a short five-amino-acid drag tag; the other two had no drag tags. We were able to achieve baseline separation of the three hybrids from each other. The LOQ of 14 pM along with the high accuracy (recovery >90%) and precision (RSD ≈ 10%) of the assay at picomolar target concentrations suggest that PNA-facilitated DQAMmiR could potentially support practical miRNA analysis of clinical samples.
Collapse
Affiliation(s)
- Liang Hu
- Department of Chemistry and Centre for Research on Biomolecular Interactions , York University , Toronto , Ontario M3J 1P3 , Canada
| | - Mansi Anand
- Department of Chemistry and Centre for Research on Biomolecular Interactions , York University , Toronto , Ontario M3J 1P3 , Canada
| | - Svetlana M Krylova
- Department of Chemistry and Centre for Research on Biomolecular Interactions , York University , Toronto , Ontario M3J 1P3 , Canada
| | - Burton B Yang
- Sunnybrook Research Institute and Department of Laboratory Medicine and Pathobiology, Faculty of Medicine , University of Toronto , Toronto , Ontario M5S 1A8 , Canada
| | - Stanley K Liu
- Department of Radiation Oncology , Sunnybrook-Odette Cancer Centre , 2075 Bayview Avenue , Toronto , Ontario M4N 3M5 , Canada
| | - George M Yousef
- Keenan Research Centre , St. Michael's Hospital , 30 Bond Street , Toronto , Ontario M5B 1W8 , Canada
| | - Sergey N Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions , York University , Toronto , Ontario M3J 1P3 , Canada
| |
Collapse
|
10
|
Zheng H, Saha M, Appella DH. Synthesis of Fmoc-Protected ( S, S)- trans-Cyclopentane Diamine Monomers Enables the Preparation and Study of Conformationally Restricted Peptide Nucleic Acids. Org Lett 2018; 20:7637-7640. [PMID: 30460846 DOI: 10.1021/acs.orglett.8b03374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An efficient synthesis of Fmoc-protected ( S, S)- trans-cyclopentane PNA ( tcypPNA) monomers starting from mono-Boc-protected ( S, S)-1,2-cyclopentanediamine is reported. A general synthetic strategy was developed so that tcypPNA monomers with each nucleobase can be made in sufficient quantity and purity for use in solid-phase peptide synthesis (SPPS). The newly synthesized monomers were then successfully incorporated into 10-residue PNA oligomers using standard Fmoc chemistry for SPPS. The different tcypPNAs allow different positions in the sequence to be conformationally constrained with ( S, S)- trans-cyclopentane to determine the effects on binding to complementary DNA.
Collapse
Affiliation(s)
- Hongchao Zheng
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) , National Institutes of Health , 8 Center Drive, Room 404 , Bethesda , Maryland 20892 , United States
| | - Mrinmoy Saha
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) , National Institutes of Health , 8 Center Drive, Room 404 , Bethesda , Maryland 20892 , United States
| | - Daniel H Appella
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) , National Institutes of Health , 8 Center Drive, Room 404 , Bethesda , Maryland 20892 , United States
| |
Collapse
|
11
|
Cimaglia F, Tristezza M, Saccomanno A, Rampino P, Perrotta C, Capozzi V, Spano G, Chiesa M, Mita G, Grieco F. An innovative oligonucleotide microarray to detect spoilage microorganisms in wine. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Chim W, Sedighi A, Brown CL, Pantophlet R, Li PC. Effect of buffer composition on PNA–RNA hybridization studied in the microfluidic microarray chip. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we report that peptide nucleic acid sequences (PNAs) have been used as the probe species for detection of RNA and that a microfluidic microarray (MMA) chip is used as the platform for detection of hybridizations between immobilized PNA probes and RNA targets. The RNA targets used are derived from influenza A sequences. This paper discusses the optimization of two probe technologies used for RNA detection and investigates how the composition of the probe buffer and the content of the hybridization solution can influence the overall results. Our data show that the PNA probe is a better choice than the DNA probe when there is low salt in the probe buffer composition. Furthermore, we show that the absence of salt (NaCl) in the hybridization buffer does not hinder the detection of RNA sequences. The results provide evidence that PNA probes are superior to DNA probes in term of sensitivity and adaptability, as PNA immobilization and PNA–RNA hybridization are less affected by salt content in the reaction buffers unlike DNA probes.
Collapse
Affiliation(s)
- Wilson Chim
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Abootaleb Sedighi
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Christopher L. Brown
- School of Natural Sciences and Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, Queensland, Australia
| | - Ralph Pantophlet
- Faculty of Health Sciences and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Paul C.H. Li
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
13
|
Manukyan AK. Structural characteristics of cyclopentane-modified peptide nucleic acids from molecular dynamics simulations. Struct Chem 2017. [DOI: 10.1007/s11224-017-0970-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Bartold K, Pietrzyk-Le A, Huynh TP, Iskierko Z, Sosnowska M, Noworyta K, Lisowski W, Sannicolò F, Cauteruccio S, Licandro E, D'Souza F, Kutner W. Programmed Transfer of Sequence Information into a Molecularly Imprinted Polymer for Hexakis(2,2'-bithien-5-yl) DNA Analogue Formation toward Single-Nucleotide-Polymorphism Detection. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3948-3958. [PMID: 28071057 DOI: 10.1021/acsami.6b14340] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A new strategy of simple, inexpensive, rapid, and label-free single-nucleotide-polymorphism (SNP) detection using robust chemosensors with piezomicrogravimetric, surface plasmon resonance, or capacitive impedimetry (CI) signal transduction is reported. Using these chemosensors, selective detection of a genetically relevant oligonucleotide under FIA conditions within 2 min is accomplished. An invulnerable-to-nonspecific interaction molecularly imprinted polymer (MIP) with electrochemically synthesized probes of hexameric 2,2'-bithien-5-yl DNA analogues discriminating single purine-nucleobase mismatch at room temperature was used. With density functional theory modeling, the synthetic procedures developed, and isothermal titration calorimetry quantification, adenine (A)- or thymine (T)-substituted 2,2'-bithien-5-yl functional monomers capable of Watson-Crick nucleobase pairing with the TATAAA oligodeoxyribonucleotide template or its peptide nucleic acid (PNA) analogue were designed. Characterized by spectroscopic techniques, molecular cavities exposed the ordered nucleobases on the 2,2'-bithien-5-yl polymeric backbone of the TTTATA hexamer probe designed to hybridize the complementary TATAAA template. In that way, an artificial TATAAA-promoter sequence was formed in the MIP. The purine nucleobases of this sequence are known to be recognized by RNA polymerase to initiate the transcription in eukaryotes. The hexamer strongly hybridized TATAAA with the complex stability constant KsTTTATA-TATAAA = ka/kd ≈ 106 M-1, as high as that characteristic for longer-chain DNA-PNA hybrids. The CI chemosensor revealed a 5 nM limit of detection, quite appreciable as for the hexadeoxyribonucleotide. Molecular imprinting increased the chemosensor sensitivity to the TATAAA analyte by over 4 times compared to that of the nonimprinted polymer. The herein-devised detection platform enabled the generation of a library of hexamer probes for typing the majority of SNP probes as well as studying a molecular mechanism of the complex transcription machinery, physics of single polymer molecules, and stable genetic nanomaterials.
Collapse
Affiliation(s)
- Katarzyna Bartold
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Agnieszka Pietrzyk-Le
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Tan-Phat Huynh
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
- Department of Chemistry, University of North Texas , 1155 Union Circle, No. 305070, Denton, Texas 76203-5017, United States
| | - Zofia Iskierko
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marta Sosnowska
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
- Department of Chemistry, University of North Texas , 1155 Union Circle, No. 305070, Denton, Texas 76203-5017, United States
| | - Krzysztof Noworyta
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wojciech Lisowski
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Francesco Sannicolò
- Department of Chemistry, University of Milan , Via Golgi 19, I-20133 Milan, Italy
| | - Silvia Cauteruccio
- Department of Chemistry, University of Milan , Via Golgi 19, I-20133 Milan, Italy
| | - Emanuela Licandro
- Department of Chemistry, University of Milan , Via Golgi 19, I-20133 Milan, Italy
| | - Francis D'Souza
- Department of Chemistry, University of North Texas , 1155 Union Circle, No. 305070, Denton, Texas 76203-5017, United States
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University , Woycickiego 1/3, 01-938 Warsaw, Poland
| |
Collapse
|
15
|
Gilad Y, Firer M, Gellerman G. Recent Innovations in Peptide Based Targeted Drug Delivery to Cancer Cells. Biomedicines 2016; 4:E11. [PMID: 28536378 PMCID: PMC5344250 DOI: 10.3390/biomedicines4020011] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 12/21/2022] Open
Abstract
Targeted delivery of chemotherapeutics and diagnostic agents conjugated to carrier ligands has made significant progress in recent years, both in regards to the structural design of the conjugates and their biological effectiveness. The goal of targeting specific cell surface receptors through structural compatibility has encouraged the use of peptides as highly specific carriers as short peptides are usually non-antigenic, are structurally simple and synthetically diverse. Recent years have seen many developments in the field of peptide based drug conjugates (PDCs), particularly for cancer therapy, as their use aims to bypass off-target side-effects, reducing the morbidity common to conventional chemotherapy. However, no PDCs have as yet obtained regulatory approval. In this review, we describe the evolution of the peptide-based strategy for targeted delivery of chemotherapeutics and discuss recent innovations in the arena that should lead in the near future to their clinical application.
Collapse
Affiliation(s)
- Yosi Gilad
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel.
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 40700, Israel.
| | - Michael Firer
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 40700, Israel.
| | - Gary Gellerman
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel.
| |
Collapse
|
16
|
Affiliation(s)
- Richard M. Graybill
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Ryan C. Bailey
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| |
Collapse
|
17
|
Zhang Y, Li H, Huang Y, Yin T, Sun L, Li G. Sensitive detection of a serum biomarker based on peptide nucleic acid-coupled dual cycling reactions. Anal Chim Acta 2015; 882:27-31. [PMID: 26043088 DOI: 10.1016/j.aca.2015.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 11/24/2022]
Abstract
Serum level of disease markers may provide important guidance for diagnosis and prognosis. In this work, a sensitive and specific method suitable for direct serum detection of biomarkers is developed based on peptide nucleic acid (PNA)-coupled DNA cycling reactions with dual amplification. In this method, PNA released from a target-triggered homogeneous DNA cycling is employed to initiate an interface DNA cycling, and both of the cycling reactions are based on polymerase-assisted strand displacement reaction. Consequently, two PNA-coupled DNA cycling steps can take place simultaneously in one-pot, leading to greatly enhanced limit of detection and simplified operation. This method has also been successfully applied for evaluating serum insulin in pregnant women as an indicator of gestational diabetes mellitus. So the application of this method in real bio-samples may allow it to hold considerable potential in clinical practice. In addition, since there is no requirement for specific sequence of aptamer, the strategy proposed can be extended for the detection of many other protein markers and peptide-hormones in the future.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210036, PR China
| | - Hao Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, Nanjing University, Nanjing 210093, PR China
| | - Yue Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, Nanjing University, Nanjing 210093, PR China
| | - Tingting Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210036, PR China
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210036, PR China.
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, Nanjing University, Nanjing 210093, PR China; Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
18
|
Li R, Li S, Dong M, Zhang L, Qiao Y, Jiang Y, Qi W, Wang H. A highly specific and sensitive electroanalytical strategy for microRNAs based on amplified silver deposition by the synergic TiO2 photocatalysis and guanine photoreduction using charge-neutral probes. Chem Commun (Camb) 2015; 51:16131-4. [DOI: 10.1039/c5cc07277h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
TiO2 photocatalysis and guanine photoreduction were synergically combined for amplifying silver deposition toward sensitive electroanalysis of microRNAs using charge-neutral probes.
Collapse
Affiliation(s)
- Rui Li
- Shandong Province Key Laboratory of Life-Organic Analysis
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City
- P. R. China
| | - Shuying Li
- Shandong Province Key Laboratory of Life-Organic Analysis
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City
- P. R. China
| | - Minmin Dong
- Shandong Province Key Laboratory of Life-Organic Analysis
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City
- P. R. China
| | - Liyan Zhang
- Shandong Province Key Laboratory of Life-Organic Analysis
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City
- P. R. China
| | - Yuchun Qiao
- Shandong Province Key Laboratory of Life-Organic Analysis
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City
- P. R. China
| | - Yao Jiang
- Shandong Province Key Laboratory of Life-Organic Analysis
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City
- P. R. China
| | - Wei Qi
- Shandong Province Key Laboratory of Life-Organic Analysis
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City
- P. R. China
| | - Hua Wang
- Shandong Province Key Laboratory of Life-Organic Analysis
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City
- P. R. China
| |
Collapse
|
19
|
Shi H, Yang F, Li W, Zhao W, Nie K, Dong B, Liu Z. A review: fabrications, detections and applications of peptide nucleic acids (PNAs) microarray. Biosens Bioelectron 2014; 66:481-9. [PMID: 25499661 DOI: 10.1016/j.bios.2014.12.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/25/2014] [Accepted: 12/02/2014] [Indexed: 01/24/2023]
Abstract
Peptide nucleic acid (PNA) is a mimic of DNA that shows a high chemical stability and can survive the enzymatic degradation of nucleases and proteases. The superior binding properties of PNA enable the formation of PNA/DNA or PNA/RNA duplex with excellent thermal stability and unique ionic strength effect. The introduction of microarray makes it possible to achieve accurate, high throughput parallel analysis of DNA or RNA with a highly integrated and low reagents consuming device. This powerful tool expands the applications of PNA in genotyping based on single nucleotide polymorphism (SNP) detection, the monitoring of disease-related miRNA expression and pathogen detection. This review paper discusses the fabrications of PNA microarrays through in situ synthesis strategy or spotting method by automatic devices, the various detection methods for the microarray-based hybridization and the current applications of PNA microarrays.
Collapse
Affiliation(s)
- Huanhuan Shi
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Feipeng Yang
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Wenjia Li
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Weiwei Zhao
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Kaixuan Nie
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Bo Dong
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Zhengchun Liu
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China.
| |
Collapse
|
20
|
Gambari R. Peptide nucleic acids: a review on recent patents and technology transfer. Expert Opin Ther Pat 2014; 24:267-94. [PMID: 24405414 DOI: 10.1517/13543776.2014.863874] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION DNA/RNA-based drugs are considered of major interest in molecular diagnosis and nonviral gene therapy. In this field, peptide nucleic acids (PNAs, DNA analogs in which the sugar-phosphate backbone is replaced by N-(2-aminoethyl)glycine units or similar building blocks) have been demonstrated to be excellent candidates as diagnostic reagents and biodrugs. AREAS COVERED Recent (2002 - 2013) patents based on studies on development of PNA analogs, delivery systems for PNAs, applications of PNAs in molecular diagnosis, and use of PNA for innovative therapeutic protocols. EXPERT OPINION PNAs are unique reagents in molecular diagnosis and have been proven to be very active and specific for alteration of gene expression, despite the fact that solubility and uptake by target cells can be limiting factors. Accordingly, patents on PNAs have taken in great consideration delivery strategies. PNAs have been proven stable and effective in vivo, despite the fact that possible long-term toxicity should be considered. For possible clinical applications, the use of PNA molecules in combination with drugs already employed in therapy has been suggested. Considering the patents available and the results on in vivo testing on animal models, we expect in the near future relevant PNA-based clinical trials.
Collapse
Affiliation(s)
- Roberto Gambari
- University of Ferrara, Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section , Via Fossato di Mortara n.74, 44100 Ferrara , Italy +39 532 974443 ; +39 532 974500 ;
| |
Collapse
|
21
|
Ou Q, He J, Liu C, Shi L, Zhao C, Xu Y, Gu D. Preparation and evaluation of a peptide nucleic acid gene chip system associated with surface plasmon resonance. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0844-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Totsingan F, Bell AJ. Interaction of HMG proteins and H1 with hybrid PNA-DNA junctions. Protein Sci 2013; 22:1552-62. [PMID: 23963921 DOI: 10.1002/pro.2342] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/15/2013] [Accepted: 08/15/2013] [Indexed: 12/21/2022]
Abstract
The objective of this study was to evaluate the effects of inserting peptide nucleic acid (PNA) sequences into the protein-binding surface of an immobilized four-way junction (4WJ). Here we compare the classic immobile DNA junction, J1, with two PNA containing hybrid junctions (4WJ-PNA1 and 4WJ-PNA3 ). The protein interactions of each 4WJ were evaluated using recombinant high mobility group proteins from rat (HMGB1b and HMGB1b/R26A) and human histone H1. In vitro studies show that both HMG and H1 proteins display high binding affinity toward 4WJ's. A 4WJ can access different conformations depending on ionic environment, most simply interpreted by a two-state equilibrium between: (i) an open-x state favored by absence of Mg(2+), low salt, and protein binding, and (ii) a compact stacked-x state favored by Mg(2+). 4WJ-PNA3, like J1, shifts readily from an open to stacked conformation in the presence of Mg(+2), while 4WJ-PNA1 does not. Circular dichroism spectra indicate that HMGB1b recognizes each of the hybrid junctions. H1, however, displays a strong preference for J1 relative to the hybrids. More extensive binding analysis revealed that HMGB1b binds J1 and 4WJ-PNA3 with nearly identical affinity (K(D)s) and 4WJ-PNA1 with two-fold lower affinity. Thus both the sequence/location of the PNA sequence and the protein determine the structural and protein recognition properties of 4WJs.
Collapse
|
23
|
Joshi VG, Chindera K, Singh AK, Sahoo AP, Dighe VD, Thakuria D, Tiwari AK, Kumar S. Rapid label-free visual assay for the detection and quantification of viral RNA using peptide nucleic acid (PNA) and gold nanoparticles (AuNPs). Anal Chim Acta 2013; 795:1-7. [PMID: 23998531 DOI: 10.1016/j.aca.2013.06.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/18/2013] [Accepted: 06/24/2013] [Indexed: 12/29/2022]
Abstract
A rapid label-free visual assay for the detection of viral RNA using peptide nucleic acid (PNA) probes and gold nanoparticles (AuNPs) is presented in this study. Diagnosis is a crucial step for the molecular surveillance of diseases, and a rapid visual test with high specificity could play a vital role in the management of viral diseases. In this assay, the specific agglomerative behavior of PNA with gold nanoparticles was manipulated by its complementation with viral RNA. The assay was able to detect 5-10 ng of viral RNA from various biological samples, such as allantoic fluids, cell culture fluids and vaccines, in 100 μl of test solution. The developed assay was more sensitive than a hemagglutination (HA) test, a routine platform test for the detection of Newcastle disease virus (NDV), and the developed assay was able to visually detect NDV with as little as 0.25 HA units of virus. In terms of the specificity, the test could discriminate single nucleotide differences in the target RNA and hence could provide visual viral genotyping/pathotyping. This observation was confirmed by pathotyping different known isolates of NDV. Further, the PNA-induced colorimetric changes in the presence of the target RNA at different RNA to PNA ratios yielded a standard curve with a linear coefficient of R(2)=0.990, which was comparable to the value of R(2)=0.995 from real-time PCR experiments with the same viral RNA. Therefore, the viral RNA in a given samples could be quantified using a simple visual spectrophotometer available in any clinical laboratory. This assay may find application in diagnostic assays for other RNA viruses, which are well known to undergo mutations, thus presenting challenges for their molecular surveillance, genotyping and quantification.
Collapse
Affiliation(s)
- Vinay G Joshi
- CIF-Bioengineering, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar 243122, India
| | | | | | | | | | | | | | | |
Collapse
|
24
|
De A, Souchelnytskyi S, van den Berg A, Carlen ET. Peptide nucleic acid (PNA)-DNA duplexes: comparison of hybridization affinity between vertically and horizontally tethered PNA probes. ACS APPLIED MATERIALS & INTERFACES 2013; 5:4607-4612. [PMID: 23668364 DOI: 10.1021/am4011429] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We compare the PNA-DNA duplex hybridization characteristics of vertically tethered and new horizontally tethered PNA probes on solid surfaces. The horizontal 15-mer PNA probe has been synthesized with linker molecules attached at three locations (γ-points) positioned along the PNA backbone that provides covalent attachment of the probe with the backbone aligned parallel to the surface, which is important for DNA hybridization assays that use electric field effect sensors for detection. A radioactive labeled assay and real-time surface plasmon resonance (SPR) biosensor are used to assess the probe surface density, nonspecific binding, and DNA hybridization affinity, respectively, of the new PNA probe configuration. The estimated equilibrium dissociation constants of the horizontally tethered duplex and the vertically tethered duplex are of the same order of magnitude (KD ≈ 5 nM), which indicates a sufficient hybridization affinity for many electronic biosensors that benefit from the horizontal alignment, which minimizes the effects of counterion screening.
Collapse
|
25
|
Goda T, Singi AB, Maeda Y, Matsumoto A, Torimura M, Aoki H, Miyahara Y. Label-free potentiometry for detecting DNA hybridization using peptide nucleic acid and DNA probes. SENSORS (BASEL, SWITZERLAND) 2013; 13:2267-78. [PMID: 23435052 PMCID: PMC3649381 DOI: 10.3390/s130202267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/15/2013] [Accepted: 02/04/2013] [Indexed: 02/02/2023]
Abstract
Peptide nucleic acid (PNA) has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM)-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry.
Collapse
Affiliation(s)
- Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; E-Mails: (T.G.); (A.B.S.); (Y.M.); (A.M.)
| | - Ankit Balram Singi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; E-Mails: (T.G.); (A.B.S.); (Y.M.); (A.M.)
| | - Yasuhiro Maeda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; E-Mails: (T.G.); (A.B.S.); (Y.M.); (A.M.)
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; E-Mails: (T.G.); (A.B.S.); (Y.M.); (A.M.)
| | - Masaki Torimura
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan; E-Mail:
| | - Hiroshi Aoki
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan; E-Mail:
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; E-Mails: (T.G.); (A.B.S.); (Y.M.); (A.M.)
| |
Collapse
|
26
|
|
27
|
Qiao W, Kalachikov S, Liu Y, Levicky R. Charge-neutral morpholino microarrays for nucleic acid analysis. Anal Biochem 2012; 434:207-14. [PMID: 23246344 DOI: 10.1016/j.ab.2012.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 11/21/2012] [Accepted: 12/03/2012] [Indexed: 12/14/2022]
Abstract
A principal challenge in microarray experiments is to facilitate hybridization between probe strands on the array with complementary target strands from solution while suppressing any competing interactions that the probes and targets may experience. Synthetic DNA analogs, whose hybridization to targets can exhibit qualitatively different dependence on experimental conditions than for nucleic acid probes, open up an attractive alternative for improving selectivity of array hybridization. Morpholinos (MOs), a class of uncharged DNA analogs, are investigated as microarray probes instead of DNA. MO microarrays were fabricated by contact printing of amino-modified probes onto aldehyde slides. In addition to covalent immobilization, MOs were found to efficiently immobilize through physical adsorption; such physically adsorbed probes could be removed by post-printing washes with surfactant solutions. Hybridization of double-stranded DNA targets to MO microarrays revealed a hybridization maximum at intermediate ionic strengths. The decline in hybridization at lower ionic strengths was attributed to an electrostatic barrier accumulated from hybridized DNA targets, whereas at higher ionic strengths it was attributed to stabilization of target secondary structure in solution. These trends, which illustrate ionic strength tuning of forming on-array relative to solution secondary structure, were supported by a stability analysis of MO/DNA and DNA/DNA duplexes in solution.
Collapse
Affiliation(s)
- Wanqiong Qiao
- Department of Chemical and Biomolecular Engineering, Polytechnic Institute of New York University, Brooklyn, NY 11201, USA
| | | | | | | |
Collapse
|
28
|
Applications of peptide nucleic acids (PNAs) and locked nucleic acids (LNAs) in biosensor development. Anal Bioanal Chem 2012; 402:3071-89. [PMID: 22297860 DOI: 10.1007/s00216-012-5742-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/12/2012] [Indexed: 01/06/2023]
Abstract
Nucleic acid biosensors have a growing number of applications in genetics and biomedicine. This contribution is a critical review of the current state of the art concerning the use of nucleic acid analogues, in particular peptide nucleic acids (PNA) and locked nucleic acids (LNA), for the development of high-performance affinity biosensors. Both PNA and LNA have outstanding affinity for natural nucleic acids, and the destabilizing effect of base mismatches in PNA- or LNA-containing heterodimers is much higher than in double-stranded DNA or RNA. Therefore, PNA- and LNA-based biosensors have unprecedented sensitivity and specificity, with special applicability in DNA genotyping. Herein, the most relevant PNA- and LNA-based biosensors are presented, and their advantages and their current limitations are discussed. Some of the reviewed technology, while promising, still needs to bridge the gap between experimental status and the harder reality of biotechnological or biomedical applications.
Collapse
|
29
|
Hong DW, Park HJ, Chi YS, Lee Y, Lee JO, Kang HJ, Park DK, Chung SJ, Yun WS, Choi ISS. Development of PNA-Array Platforms for Detection of Genetic Polymorphism of Cytochrome P450 2C19. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.8.2895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Peptide nucleic acid-based (PNA) array for the antigenic discrimination of canine parvovirus. Res Vet Sci 2011; 93:515-9. [PMID: 21764414 DOI: 10.1016/j.rvsc.2011.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/02/2011] [Accepted: 06/08/2011] [Indexed: 11/20/2022]
Abstract
A novel peptide nucleic acid (PNA)-based array was developed for use in ante-mortem antigenic typing discrimination in dogs with canine parvovirus (CPV). Cyclic benzothiazole-2-sulfonyl PNA monomers were synthesized that recognized GTA (CPV-2) and TAT (CPV-2a, -2b and -2c) at the nt 913-915 positions, and AAT (CPV-2 and CPV-2a), GAT (CPV-2b), and GAA (CPV-2c) at the nt 1276-1278 positions of the VP2 gene. The detection limits for aa 305 and aa 426 of the VP2 proteins belonging to the four CPV antigenic types were determined optically to be 40-2000 DNA copies, and the optimal cut-off fluorescence signaling value was fixed at 5000. The PNA array described here was developed from 135 field dog fecal specimens and had 89.8% (62/69) sensitivity and 90.4% (66/73) specificity compared with a real-time PCR using the TaqMan assay, a gold standard method. This CPV PNA array could be used together with MGB probe assays as an attractive novel tool for ante-mortem antigenic typing discrimination.
Collapse
|
31
|
Abstract
Microarrays or DNA chips have been hailed as the ultimate experimental tool for research, drug discovery and diagnostics. They have the potential to perform a multitude of molecular tests simultaneously and to produce a wealth of information from a single clinical sample. Applications include genotyping, expression analysis and sequencing (1-4). The aim of this review is to provide a brief summary of current microarray technology and highlight the many ways in which it is being developed for use in clinical microbiology laboratories.
Collapse
|
32
|
Exploiting the interactions of PNA-DNA films with Ni2+ ions: detection of nucleobase mismatches and electrochemical genotyping of the single-nucleotide mismatch in apoE 4 related to Alzheimer's disease. Biosens Bioelectron 2011; 27:187-91. [PMID: 21752624 DOI: 10.1016/j.bios.2011.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/20/2011] [Accepted: 06/10/2011] [Indexed: 11/23/2022]
Abstract
The presence of Ni(2+) enables us to distinguish the presence of single-nucleotide mismatches in PNA (peptide nucleic acids)-DNA films on gold electrodes by electrochemical impedance spectroscopy (EIS). With the help of a modified Randles' equivalent circuit, differences in the charge transfer resistance (ΔR(CT)) before and after the addition of Ni(2+) are a diagnostic measure for the presence of single-nucleotide mismatch. The approach works under real-life conditions with concentrations of the DNA target strand down to 10 fM, and a PNA capture probe is used to genotype the single-nucleotide mismatch in apoE 4 related to Alzheimer's disease (AD).
Collapse
|
33
|
Devadhasan JP, Kim S, An J. Fish-on-a-chip: a sensitive detection microfluidic system for Alzheimer's disease. J Biomed Sci 2011; 18:33. [PMID: 21619660 PMCID: PMC3125339 DOI: 10.1186/1423-0127-18-33] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/28/2011] [Indexed: 01/09/2023] Open
Abstract
Microfluidics has become an important tool in diagnosing many diseases, including neurological and genetic disorders. Alzheimer's disease (AD) is a neurodegenerative disease that irreversibly and progressively destroys memory, language ability, and thinking skills. Commonly, detection of AD is expensive and complex. Fluorescence in situ hybridization (FISH)-based microfluidic chip platform is capable of diagnosing AD at an early stage and they are effective tools for the diagnosis with low cost, high speed, and high sensitivity. In this review, we tried to provide basic information on the diagnosis of AD via FISH-based microfluidics. Different sample preparations using a microfluidic chip for diagnosis of AD are highlighted. Moreover, rapid innovations in nanotechnology for diagnosis are explained. This review will provide information on dynamic quantification methods for the diagnosis and treatment of AD. The knowledge provided in this review will help develop new integration diagnostic techniques based on FISH and microfluidics.
Collapse
Affiliation(s)
- Jasmine P Devadhasan
- College of Bionanotechnology, Kyungwon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do 461-701, Republic of Korea
| | | | | |
Collapse
|
34
|
Zu Y, Ting AL, Yi G, Gao Z. Sequence-selective recognition of nucleic acids under extremely low salt conditions using nanoparticle probes. Anal Chem 2011; 83:4090-4. [PMID: 21517107 DOI: 10.1021/ac2001516] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extensive secondary structures in nucleic acid targets seriously impede the binding of complementary oligonucleotide probes. We report here a method to conduct the detection under extremely low salt conditions where the secondary structures are less stable and more accessible. A new type of nanoparticle probes prepared by functionalizing gold nanoparticles with nonionic morpholino oligos is employed. Because of the salt-independent hybridization of the probes with nucleic acid targets, nanoparticle assemblies can be formed in 2 mM Tris buffer solutions containing 0-5 mM NaCl, leading to the colorimetric target recognition. The sharp melting transitions of the target-probe hybrids allow discrimination of single-base imperfection, including substitution, deletion, and insertion. The method works effectively in detecting sequences that are likely to form secondary structure. In addition, the study provides direct evidence of the relationship between the aggregate structure and the melting behavior of the DNA-linked nanoparticles.
Collapse
Affiliation(s)
- Yanbing Zu
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669.
| | | | | | | |
Collapse
|
35
|
Efimov VA, Aralov AV, Chakhmakhcheva OG. [DNA mimics on the base of pyrrolidine and hydroxyproline]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 36:725-46. [PMID: 21317938 DOI: 10.1134/s1068162010060014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to improve physicochemical and biological properties of natural oligonucleotides in particular increasing their affinity for nucleic acids, the selectivity of action and biological sustainability, several types of DNA mimics were designed. The survey collected data on the synthesis and properties of the DNA mimics - peptide-nucleic acids analogues, which are derivatives of pyrrolidine and hydroxyproline. We examine some physicochemical and biological properties of negatively charged mimics of this type, containing phosphonate residues, and possessing a high affinity for DNA and RNA, selective binding with nucleic acids and stability in various biological systems. Examples of the use of these mimics as tools for molecular biological research, particularly in functional genomics are given. The prospects for their use in diagnostics and medicine are discussed.
Collapse
|
36
|
Tedeschi T, Calabretta A, Bencivenni M, Manicardi A, Corrado G, Caramante M, Corradini R, Rao R, Sforza S, Marchelli R. A PNA microarray for tomato genotyping. MOLECULAR BIOSYSTEMS 2011; 7:1902-7. [PMID: 21465054 DOI: 10.1039/c1mb05048f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The design and development of a PNA microarray designed for the simultaneous identification of several SNPs characteristic of seven different tomato varieties is described. Highly selective arginine-based monomer containing PNAs (Arg-PNAs) have been used in order to obtain very selective probes. Seven modified PNA probes were synthesised and their binding properties in solution were studied. PNA-microarrays based on these probes were prepared and applied to SNP discrimination in model experiments using oligonucleotide mixtures simulating the different sequences of the seven tomato varieties. The strength and the limitations of such a system for SNP recognition are thoroughly discussed.
Collapse
Affiliation(s)
- Tullia Tedeschi
- Dipartimento di Chimica Organica e Industriale, University of Parma, Parco Area delle Scienze 17a, I-43124, Parma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hosokawa K, Sato T, Sato Y, Maeda M. DNA detection on a power-free microchip with laminar flow-assisted dendritic amplification. ANAL SCI 2011; 26:1053-7. [PMID: 20953047 DOI: 10.2116/analsci.26.1053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this paper, we describe DNA detection experiments using our two original technologies, power-free microchip and laminar flow-assisted dendritic amplification (LFDA), which were previously applied to immunoassays. A microchip was fabricated by combining a poly(dimethylsiloxane) (PDMS) part having microchannel patterns and a glass plate modified with probe DNA. We carried out two kinds of experiments: the detection of 21-base biotinylated target DNA and the detection of single-nucleotide polymorphism (SNP) in 56-base unlabeled target DNA by sandwich hybridization with biotinylated probe DNA. For both of the experiments, the necessary solutions were injected into microchannels not by an external power source, but by air dissolution into the PDMS part. After a hybridization reaction, the LFDA was started by injecting FITC-labeled streptavidin and biotinylated anti-streptavidin antibody onto the reaction site. With a detection time of 20 min, the limit of detection (LOD) for the biotinylated target was 2.2 pM, and the LOD for the SNP was 10-30 pM, depending on the SNP type.
Collapse
Affiliation(s)
- Kazuo Hosokawa
- Bioengineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
38
|
Zu Y, Ting AL, Gao Z. Visualizing low-level point mutations: enzyme-like selectivity offered by nanoparticle probes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:306-310. [PMID: 21294256 DOI: 10.1002/smll.201001774] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Indexed: 05/30/2023]
Affiliation(s)
- Yanbing Zu
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669.
| | | | | |
Collapse
|
39
|
Winkler DFH, Andresen H, Hilpert K. SPOT synthesis as a tool to study protein-protein interactions. Methods Mol Biol 2011; 723:105-27. [PMID: 21370062 DOI: 10.1007/978-1-61779-043-0_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Peptide arrays are a widely used tool in proteomic research for investigations of drug development and molecular interactions including protein-protein or protein-peptide interactions. Most peptide synthesis techniques are able to simultaneously synthesize only up to a few hundred single peptides. Using the SPOT™ technique, it is possible to synthesize and screen in parallel up to 8,000 peptides or peptide mixtures. In addition, such peptides can be released from the membrane and transferred onto peptide microarrays. Here we present protocols for the peptides synthesis on cellulose including the preparation of different cellulose membranes and easy-to-use detection methods on these peptide macroarrays. In addition, a protocol to produce and screen peptide microarray using the SPOT technology is provided.
Collapse
Affiliation(s)
- Dirk F H Winkler
- Peptide Facility, Kinexus Bioinformatics Corporation, Vancouver, BC, Canada
| | | | | |
Collapse
|
40
|
Wang M, Holmes-Davis R, Rafinski Z, Jedrzejewska B, Choi KY, Zwick M, Bupp C, Izmailov A, Paczkowski J, Warner B, Koshinsky H. Accelerated photobleaching of a cyanine dye in the presence of a ternary target DNA, PNA probe, dye catalytic complex: a molecular diagnostic. Anal Chem 2010; 81:2043-52. [PMID: 19231844 DOI: 10.1021/ac702519k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In many settings, molecular testing is needed but unavailable due to complexity and cost. Simple, rapid, and specific DNA detection technologies would provide important alternatives to existing detection methods. Here we report a novel, rapid nucleic acid detection method based on the accelerated photobleaching of the light-sensitive cyanine dye, 3,3'-diethylthiacarbocyanine iodide (DiSC(2)(3) I(-)), in the presence of a target genomic DNA and a complementary peptide nucleic acid (PNA) probe. On the basis of the UV-vis, circular dichroism, and fluorescence spectra of DiSC(2)(3) with PNA-DNA oligomer duplexes and on characterization of a product of photolysis of DiSC(2)(3) I(-), a possible reaction mechanism is proposed. We propose that (1) a novel complex forms between dye, PNA, and DNA, (2) this complex functions as a photosensitizer producing (1)O(2), and (3) the (1)O(2) produced promotes photobleaching of dye molecules in the mixture. Similar cyanine dyes (DiSC(3)(3), DiSC(4)(3), DiSC(5)(3), and DiSC(py)(3)) interact with preformed PNA-DNA oligomer duplexes but do not demonstrate an equivalent accelerated photobleaching effect in the presence of PNA and target genomic DNA. The feasibility of developing molecular diagnostic assays based on the accelerated photobleaching (the smartDNA assay) that results from the novel complex formed between DiSC(2)(3) and PNA-DNA is under way.
Collapse
Affiliation(s)
- M Wang
- Investigen Inc., Hercules, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jans H, Stakenborg T, Jans K, Van de Broek B, Peeters S, Bonroy K, Lagae L, Borghs G, Maes G. Increased stability of mercapto alkane functionalized Au nanoparticles towards DNA sensing. NANOTECHNOLOGY 2010; 21:285608. [PMID: 20585165 DOI: 10.1088/0957-4484/21/28/285608] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The use of gold nanoparticles (GNPs) in bioassays is often hampered by their colloidal stability. In this study, gold nanoparticles coated with different mercapto alkanes were investigated towards their stability. Hereto, the effects of the alkane chain length (5-11 methylene groups), the type of functional end-group (-OH or -COOH) and the amount of incorporated poly-ethylene oxide units (none, 3 or 6) on the GNP stabilization was evaluated. Based on these results, an optimal mercapto alkane (HS(CH(2))(11)PEO(6)COOH) was selected to increase the colloidal stability up to 2 M NaCl. Furthermore, it was proved that this mercapto alkane is ideally suited to enhance the stability of DNA functionalized GNPs in high electrolytic hybridization buffers. The effectiveness of these DNA functionalized GNPs was demonstrated in a sandwich assay using a surface plasmon resonance biosensor. The superior stability of these nanoparticles during hybridization may lead to enhanced biosensor technologies.
Collapse
Affiliation(s)
- H Jans
- IMEC, Functional Nanosystems, Kapeldreef 75, B-3001 Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Li C, Li X, Liu X, Kraatz HB. Exploiting the interaction of metal ions and peptide nucleic acids-DNA duplexes for the detection of a single nucleotide mismatch by electrochemical impedance spectroscopy. Anal Chem 2010; 82:1166-9. [PMID: 20055458 DOI: 10.1021/ac902813y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction of the metal ions Mg(2+), Zn(2+), Ni(2+), and Co(2+) with DNA-peptide nucleic acid (PNA) films on a gold surface is studied by electrochemical impedance spectroscopy in the presence of [Fe(CN)(6)](3-/4-) as the redox probe. Impedance data were analyzed with the help of a modified Randles' equivalent circuit. Changes in the charge-transfer resistance, R(CT), decreases in the order of Ni(2+) > Co(2+) > Zn(2+) > Mg(2+). We interpret these results in terms of stronger interactions for Ni(2+) with the DNA-PNA film compared to the other metal ions, potentially involving interactions with the nucleobases, presumably with the N7 of purines or the N3 of pyrimidines. On the basis of these observations, Ni(2+) was chosen to probe the detection of a C-T mismatch in 15-mer PNA-DNA films. Using Ni(2+), it is possible to detect a single C-T mismatch. The resulting DeltaR(CT) is larger for the PNA-DNA hybrid compared to that for the identical 15-mer DNA-DNA hybrid.
Collapse
Affiliation(s)
- Congjuan Li
- Department of Chemistry, School of Environment, Beijing Normal University, Beijing, 100875, China
| | | | | | | |
Collapse
|
43
|
Abstract
Developing new lead structures for drugs against multiresistant bacteria is an urgent need for modern medicine. Antimicrobial peptides are a class of drugs that can be used to discover such structures. In order to support development of this research, a fast, easy, and inexpensive method to synthesize peptides is necessary. The SPOT synthesis has the potential to produce the required peptide arrays, synthesizing up to 8,000 peptides, peptide mixtures, or other organic compounds on cellulose or other planar surfaces in a positionally addressable and multiple manner. Protocols for the preparation of cellulose membranes and the SPOT synthesis as well as cleavage of peptides from the support are described.
Collapse
Affiliation(s)
- Dirk F H Winkler
- Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
44
|
Zheng G, Chen X, Mirkin CA. Complementary electrical and spectroscopic detection assays with on-wire-lithography-based nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:2537-40. [PMID: 19697306 PMCID: PMC3918425 DOI: 10.1002/smll.200901000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
45
|
Calabretta A, Tedeschi T, Di Cola G, Corradini R, Sforza S, Marchelli R. Arginine-based PNA microarrays for APOE genotyping. MOLECULAR BIOSYSTEMS 2009; 5:1323-30. [PMID: 19823748 DOI: 10.1039/b909912n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four modified PNAs containing one chiral monomer bearing two arginine-derived side chains, with the correct configuration for specific and stable DNA binding, were synthesized, complementary to two DNA tracts in the APOE gene containing SNPs related to the insurgence of Alzheimer's disease. PNA binding performances were first tested in solution against complementary and mismatched oligonucleotides by measuring melting temperatures, and showed high specificity in SNP recognition. In order to set up a new diagnostic platform for APOE genotyping, PNA microarrays were then developed with the synthesized modified PNAs. PNA probe deposition protocols on microarrays were optimized in order to minimize cross-contamination due to carry over. The microarrays obtained by arginine-based PNA deposition were incubated with complementary and mismatched oligonucleotides, showing excellent mismatch recognition on the microarray platform. The specificity of the microarrays was finally tested with oligonucleotide mixtures simulating the real genotype profiles. Six different hybridisation patterns related to six different genotypes in the APOE gene were found to be clearly distinct in microarray experiments, demonstrating the potential of this approach for highly specific genetic analysis.
Collapse
Affiliation(s)
- Alessandro Calabretta
- Department of Organic and Industrial Chemistry, University of Parma, Viale G.P. Usberti 17a, I-43100, Parma, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Tercero N, Wang K, Gong P, Levicky R. Morpholino monolayers: preparation and label-free DNA analysis by surface hybridization. J Am Chem Soc 2009; 131:4953-61. [PMID: 19296583 PMCID: PMC2730437 DOI: 10.1021/ja810051q] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surface hybridization, a reaction in which nucleic acid molecules in solution react with nucleic acid partners immobilized on a surface, is widely practiced in life science research. In these applications the immobilized partner, or "probe", is typically single-stranded DNA. Because DNA is strongly charged, high salt conditions are required to enable binding between analyte nucleic acids ("targets") in solution and the DNA probes. High salt, however, compromises prospects for label-free monitoring or control of the hybridization reaction through surface electric fields; it also stabilizes secondary structure in target species that can interfere with probe-target recognition. In this work, initial steps toward addressing these challenges are taken by introducing morpholinos, a class of uncharged DNA analogues, for surface-hybridization applications. Monolayers of morpholino probes on gold supports can be fabricated with methods similar to those employed with DNA and are shown to hybridize efficiently and sequence-specifically with target strands. Hybridization-induced changes in the interfacial charge organization are analyzed with electrochemical methods and compared for morpholino and DNA probe monolayers. Molecular mechanisms connecting surface hybridization state to the interfacial capacitance are identified and interpreted through comparison to numerical Poisson-Boltzmann calculations. Interestingly, positive as well as negative capacitive responses (contrast inversion) to hybridization are possible, depending on surface populations of mobile ions as controlled by the applied potential. Quantitative comparison of surface capacitance with target coverage (targets/area) reveals a nearly linear relationship and demonstrates sensitivities (limits of quantification) in the picogram per square millimeter range.
Collapse
Affiliation(s)
- Napoleon Tercero
- Dept. of Chemical & Biological Engineering, Polytechnic Institute of New York University, Brooklyn, NY 11201
- Dept. of Chemical Engineering, Columbia University, New York, NY 10027
| | - Kang Wang
- Dept. of Chemical & Biological Engineering, Polytechnic Institute of New York University, Brooklyn, NY 11201
| | - Ping Gong
- Dept. of Chemical Engineering, Columbia University, New York, NY 10027
| | - Rastislav Levicky
- Dept. of Chemical & Biological Engineering, Polytechnic Institute of New York University, Brooklyn, NY 11201
| |
Collapse
|
47
|
Roth L, Zagon J, Ehlers A, Kroh LW, Broll H. A novel approach for the detection of DNA using immobilized peptide nucleic acid (PNA) probes and signal enhancement by real-time immuno-polymerase chain reaction (RT-iPCR). Anal Bioanal Chem 2009; 394:529-37. [DOI: 10.1007/s00216-009-2724-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 02/12/2009] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
|
48
|
Li SSC, Wu C. Using peptide array to identify binding motifs and interaction networks for modular domains. Methods Mol Biol 2009; 570:67-76. [PMID: 19649589 DOI: 10.1007/978-1-60327-394-7_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Specific protein-protein interactions underlie all essential biological processes and form the basis of cellular signal transduction. The recognition of a short, linear peptide sequence in one protein by a modular domain in another represents a common theme of macromolecular recognition in cells, and the importance of this mode of protein-protein interaction is highlighted by the large number of peptide-binding domains encoded by the human genome. This phenomenon also provides a unique opportunity to identify protein-protein binding events using peptide arrays and complementary biochemical assays. Accordingly, high-density peptide array has emerged as a useful tool by which to map domain-mediated protein-protein interaction networks at the proteome level. Using the Src-homology 2 (SH2) and 3 (SH3) domains as examples, we describe the application of oriented peptide array libraries in uncovering specific motifs recognized by an SH2 domain and the use of high-density peptide arrays in identifying interaction networks mediated by the SH3 domain. Methods reviewed here could also be applied to other modular domains, including catalytic domains, that recognize linear peptide sequences.
Collapse
Affiliation(s)
- Shawn S-C Li
- Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | | |
Collapse
|
49
|
Abstract
Peptide synthesis on cellulose using the SPOT technology follows the standard Fmoc-chemistry and can be performed manually or automated. This method allows the synthesis of low-cost peptide arrays containing around 900 large spots of addressable peptides on a cellulose sheet of 19 cm x 29 cm. These peptides can be cleaved from the cellulose support by ammonia gas and afterward spotted on glass microchips. Alternatively, the peptides can be synthesized on modified cellulose discs and CelluSpot microarrays can be produced.
Collapse
|
50
|
The spot technique: synthesis and screening of peptide macroarrays on cellulose membranes. Methods Mol Biol 2008; 494:47-70. [PMID: 18726568 DOI: 10.1007/978-1-59745-419-3_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Peptide arrays are a widely used tool for drug development. For peptide-based drug design it is necessary to screen a large number of peptides. However, there are often difficulties with this approach. Most common peptide synthesis techniques are able to simultaneously synthesize only up to a few hundred single peptides. Spot synthesis is a positionally addressable, multiple synthesis technique offering the possibility of synthesizing and screening up to 10,000 peptides or peptide mixtures on cellulose or other membrane surfaces. In this chapter we present the basic procedures and screening methods related to spot synthesis and outline protocols for easy-to-use detection methods on these peptide arrays.
Collapse
|