1
|
Cooper LP, Roberts GA, White JH, Luyten YA, Bower EKM, Morgan RD, Roberts RJ, Lindsay JA, Dryden DTF. DNA target recognition domains in the Type I restriction and modification systems of Staphylococcus aureus. Nucleic Acids Res 2017; 45:3395-3406. [PMID: 28180279 PMCID: PMC5399793 DOI: 10.1093/nar/gkx067] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/03/2017] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus displays a clonal population structure in which horizontal gene transfer between different lineages is extremely rare. This is due, in part, to the presence of a Type I DNA restriction–modification (RM) system given the generic name of Sau1, which maintains different patterns of methylation on specific target sequences on the genomes of different lineages. We have determined the target sequences recognized by the Sau1 Type I RM systems present in a wide range of the most prevalent S. aureus lineages and assigned the sequences recognized to particular target recognition domains within the RM enzymes. We used a range of biochemical assays on purified enzymes and single molecule real-time sequencing on genomic DNA to determine these target sequences and their patterns of methylation. Knowledge of the main target sequences for Sau1 will facilitate the synthesis of new vectors for transformation of the most prevalent lineages of this ‘untransformable’ bacterium.
Collapse
Affiliation(s)
- Laurie P Cooper
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK
| | - Gareth A Roberts
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK
| | - John H White
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK
| | - Yvette A Luyten
- New England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA
| | - Edward K M Bower
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK
| | - Richard D Morgan
- New England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA
| | | | - Jodi A Lindsay
- Institute of Infection and Immunity, St George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - David T F Dryden
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| |
Collapse
|
2
|
Roberts GA, Houston PJ, White JH, Chen K, Stephanou AS, Cooper LP, Dryden DTF, Lindsay JA. Impact of target site distribution for Type I restriction enzymes on the evolution of methicillin-resistant Staphylococcus aureus (MRSA) populations. Nucleic Acids Res 2013; 41:7472-84. [PMID: 23771140 PMCID: PMC3753647 DOI: 10.1093/nar/gkt535] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A limited number of Methicillin-resistant Staphylococcus aureus (MRSA) clones are responsible for MRSA infections worldwide, and those of different lineages carry unique Type I restriction-modification (RM) variants. We have identified the specific DNA sequence targets for the dominant MRSA lineages CC1, CC5, CC8 and ST239. We experimentally demonstrate that this RM system is sufficient to block horizontal gene transfer between clinically important MRSA, confirming the bioinformatic evidence that each lineage is evolving independently. Target sites are distributed randomly in S. aureus genomes, except in a set of large conjugative plasmids encoding resistance genes that show evidence of spreading between two successful MRSA lineages. This analysis of the identification and distribution of target sites explains evolutionary patterns in a pathogenic bacterium. We show that a lack of specific target sites enables plasmids to evade the Type I RM system thereby contributing to the evolution of increasingly resistant community and hospital MRSA.
Collapse
Affiliation(s)
- Gareth A Roberts
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JJ, UK and Division of Clinical Sciences, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Morgan RD, Luyten YA. Rational engineering of type II restriction endonuclease DNA binding and cleavage specificity. Nucleic Acids Res 2009; 37:5222-33. [PMID: 19567736 PMCID: PMC2731914 DOI: 10.1093/nar/gkp535] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The type II restriction endonucleases are indispensible tools for molecular biology. Although enzymes recognizing nearly 300 unique sequences are known, the ability to engineer enzymes to recognize any sequence of choice would be valuable. However, previous attempts to engineer new recognition specificity have met limited success. Here we report the rational engineering of multiple new type II specificities. We recently identified a family of MmeI-like type II endonucleases that have highly similar protein sequences but different recognition specificity. We identified the amino-acid positions within these enzymes that determine position specific DNA base recognition at three positions within their recognition sequences through correlations between their aligned amino-acid residues and aligned recognition sequences. We then altered the amino acids at the identified positions to those correlated with recognition of a desired new base to create enzymes that recognize and cut at predictable new DNA sequences. The enzymes so altered have similar levels of endonuclease activity compared to the wild-type enzymes. Using simple and predictable mutagenesis in this family it is now possible to create hundreds of unique new type II restriction endonuclease specificities. The findings suggest a simple mechanism for the evolution of new DNA specificity in Nature.
Collapse
|
4
|
Kennaway CK, Obarska-Kosinska A, White JH, Tuszynska I, Cooper LP, Bujnicki JM, Trinick J, Dryden DTF. The structure of M.EcoKI Type I DNA methyltransferase with a DNA mimic antirestriction protein. Nucleic Acids Res 2009; 37:762-70. [PMID: 19074193 PMCID: PMC2647291 DOI: 10.1093/nar/gkn988] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 11/20/2008] [Accepted: 11/21/2008] [Indexed: 12/25/2022] Open
Abstract
Type-I DNA restriction-modification (R/M) systems are important agents in limiting the transmission of mobile genetic elements responsible for spreading bacterial resistance to antibiotics. EcoKI, a Type I R/M enzyme from Escherichia coli, acts by methylation- and sequence-specific recognition, leading to either methylation of DNA or translocation and cutting at a random site, often hundreds of base pairs away. Consisting of one specificity subunit, two modification subunits, and two DNA translocase/endonuclease subunits, EcoKI is inhibited by the T7 phage antirestriction protein ocr, a DNA mimic. We present a 3D density map generated by negative-stain electron microscopy and single particle analysis of the central core of the restriction complex, the M.EcoKI M(2)S(1) methyltransferase, bound to ocr. We also present complete atomic models of M.EcoKI in complex with ocr and its cognate DNA giving a clear picture of the overall clamp-like operation of the enzyme. The model is consistent with a large body of experimental data on EcoKI published over 40 years.
Collapse
Affiliation(s)
- Christopher K. Kennaway
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, UK, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, PL-02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland, School of Chemistry, University of Edinburgh, The Kings’ Buildings, Edinburgh, EH9 3JJ, UK and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | - Agnieszka Obarska-Kosinska
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, UK, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, PL-02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland, School of Chemistry, University of Edinburgh, The Kings’ Buildings, Edinburgh, EH9 3JJ, UK and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | - John H. White
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, UK, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, PL-02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland, School of Chemistry, University of Edinburgh, The Kings’ Buildings, Edinburgh, EH9 3JJ, UK and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | - Irina Tuszynska
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, UK, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, PL-02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland, School of Chemistry, University of Edinburgh, The Kings’ Buildings, Edinburgh, EH9 3JJ, UK and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | - Laurie P. Cooper
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, UK, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, PL-02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland, School of Chemistry, University of Edinburgh, The Kings’ Buildings, Edinburgh, EH9 3JJ, UK and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | - Janusz M. Bujnicki
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, UK, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, PL-02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland, School of Chemistry, University of Edinburgh, The Kings’ Buildings, Edinburgh, EH9 3JJ, UK and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | - John Trinick
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, UK, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, PL-02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland, School of Chemistry, University of Edinburgh, The Kings’ Buildings, Edinburgh, EH9 3JJ, UK and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | - David T. F. Dryden
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, UK, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, PL-02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland, School of Chemistry, University of Edinburgh, The Kings’ Buildings, Edinburgh, EH9 3JJ, UK and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| |
Collapse
|
5
|
Dryden DTF, Thomson AR, White JH. How much of protein sequence space has been explored by life on Earth? J R Soc Interface 2008; 5:953-6. [PMID: 18426772 PMCID: PMC2459213 DOI: 10.1098/rsif.2008.0085] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We suggest that the vastness of protein sequence space is actually completely explorable during the populating of the Earth by life by considering upper and lower limits for the number of organisms, genome size, mutation rate and the number of functionally distinct classes of amino acids. We conclude that rather than life having explored only an infinitesimally small part of sequence space in the last 4 Gyr, it is instead quite plausible for all of functional protein sequence space to have been explored and that furthermore, at the molecular level, there is no role for contingency.
Collapse
Affiliation(s)
- David T F Dryden
- School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JJ, UK.
| | | | | |
Collapse
|
6
|
Dong A, Zhou L, Zhang X, Stickel S, Roberts RJ, Cheng X. Structure of the Q237W mutant of HhaI DNA methyltransferase: an insight into protein-protein interactions. Biol Chem 2005; 385:373-9. [PMID: 15195996 PMCID: PMC506909 DOI: 10.1515/bc.2004.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have determined the structure of a mutant (Q237W) of HhaI DNA methyltransferase, complexed with the methyl-donor product AdoHcy. The Q237W mutant proteins were crystallized in the monoclinic space group C2 with two molecules in the crystallographic asymmetric unit. Protein-protein interface calculations in the crystal lattices suggest that the dimer interface has the specific characteristics for homodimer protein-protein interactions, while the two active sites are spatially independent on the outer surface of the dimer. The solution behavior suggests the formation of HhaI dimers as well. The same HhaI dimer interface is also observed in the previously characterized binary (M.HhaI-AdoMet) and ternary (M.HhaI-DNA-AdoHcy) complex structures, crystallized in different space groups. The dimer is characterized either by a non-crystallographic two-fold symmetry or a crystallographic symmetry. The dimer interface involves three segments: the amino-terminal residues 2-8, the carboxy-terminal residues 313-327, and the linker (amino acids 179-184) between the two functional domains--the catalytic methylation domain and the DNA target recognition domain. Both the amino- and carboxy-terminal segments are part of the methylation domain. We also examined protein-protein interactions of other structurally characterized DNA MTases, which are often found as a 2-fold related 'dimer' with the largest dimer interface area for the group-beta MTases. A possible evolutionary link between the Type I and Type II restriction-modification systems is discussed.
Collapse
Affiliation(s)
- Aiping Dong
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road,
Atlanta, GA 30322, USA
| | - Lan Zhou
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road,
Atlanta, GA 30322, USA
| | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road,
Atlanta, GA 30322, USA
| | - Shawn Stickel
- New England Biolabs, 32 Tozer Road, Beverly, MA 01915, USA
| | | | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road,
Atlanta, GA 30322, USA
- Corresponding author:
| |
Collapse
|
7
|
Su TJ, Connolly BA, Darlington C, Mallin R, Dryden DTF. Unusual 2-aminopurine fluorescence from a complex of DNA and the EcoKI methyltransferase. Nucleic Acids Res 2004; 32:2223-30. [PMID: 15107490 PMCID: PMC407817 DOI: 10.1093/nar/gkh531] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The methyltransferase, M.EcoKI, recognizes the DNA sequence 5'-AACNNNNNNGTGC-3' and methylates adenine at the underlined positions. DNA methylation has been shown by crystallography to occur via a base flipping mechanism and is believed to be a general mechanism for all methyltransferases. If no structure is available, the fluorescence of 2-aminopurine is often used as a signal for base flipping as it shows enhanced fluorescence when its environment is perturbed. We find that 2-aminopurine gives enhanced fluorescence emission not only when it is placed at the M.EcoKI methylation sites but also at a location adjacent to the target adenine. Thus it appears that 2-aminopurine fluorescence intensity is not a clear indicator of base flipping but is a more general measure of DNA distortion. Upon addition of the cofactor S-adenosyl-methionine to the M.EcoKI:DNA complex, the 2-aminopurine fluorescence changes to that of a new species showing excitation at 345 nm and emission at 450 nm. This change requires a fully active enzyme, the correct cofactor and the 2-aminopurine located at the methylation site. However, the new fluorescent species is not a covalently modified form of 2-aminopurine and we suggest that it represents a hitherto undetected physicochemical form of 2-aminopurine.
Collapse
Affiliation(s)
- T-J Su
- School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JJ, UK
| | | | | | | | | |
Collapse
|
8
|
Loenen WAM. Tracking EcoKI and DNA fifty years on: a golden story full of surprises. Nucleic Acids Res 2004; 31:7059-69. [PMID: 14654681 PMCID: PMC291878 DOI: 10.1093/nar/gkg944] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
1953 was a historical year for biology, as it marked the birth of the DNA helix, but also a report by Bertani and Weigle on 'a barrier to infection' of bacteriophage lambda in its natural host, Escherichia coli K-12, that could be lifted by 'host-controlled variation' of the virus. This paper lay dormant till Nobel laureate Arber and PhD student Dussoix showed that the lambda DNA was rejected and degraded upon infection of different bacterial hosts, unless it carried host-specific modification of that DNA, thus laying the foundations for the phenomenon of restriction and modification (R-M). The restriction enzyme of E.coli K-12, EcoKI, was purified in 1968 and required S-adenosylmethionine (AdoMet) and ATP as cofactors. By the end of the decade there was substantial evidence for a chromosomal locus hsdK with three genes encoding restriction (R), modification (M) and specificity (S) subunits that assembled into a large complex of >400 kDa. The 1970s brought the message that EcoKI cut away from its DNA recognition target, to which site the enzyme remained bound while translocating the DNA past itself, with concomitant ATP hydrolysis and subsequent double-strand nicks. This translocation event created clearly visible DNA loops in the electron microscope. EcoKI became the archetypal Type I R-M enzyme with curious DNA translocating properties reminiscent of helicases, recognizing the bipartite asymmetric site AAC(N6)GTGC. Cloning of the hsdK locus in 1976 facilitated molecular understanding of this sophisticated R-M complex and in an elegant 'pas de deux' Murray and Dryden constructed the present model based on a large body of experimental data plus bioinformatics. This review celebrates the golden anniversary of EcoKI and ends with the exciting progress on the vital issue of restriction alleviation after DNA damage, also first reported in 1953, which involves intricate control of R subunit activity by the bacterial proteasome ClpXP, important results that will keep scientists on the EcoKI track for another 50 years to come.
Collapse
Affiliation(s)
- Wil A M Loenen
- Department of Medical Microbiology, University Maastricht, Maastricht, The Netherlands.
| |
Collapse
|
9
|
|
10
|
Ackerman CJ, Harnett MM, Harnett W, Kelly SM, Svergun DI, Byron O. 19 A solution structure of the filarial nematode immunomodulatory protein, ES-62. Biophys J 2003; 84:489-500. [PMID: 12524301 PMCID: PMC1302629 DOI: 10.1016/s0006-3495(03)74868-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2002] [Accepted: 08/20/2002] [Indexed: 11/22/2022] Open
Abstract
ES-62, a protein secreted by filarial nematodes, parasites of vertebrates including humans, has an unusual posttranslational covalent addition of phosphorylcholine to an N-type glycan. Studies on ES-62 from the rodent parasite Acanthocheilonema viteae ascribe it a dominant role in ensuring parasite survival by modulating the host immune system. Understanding this immunomodulation at the molecular level awaits full elucidation but distinct components of ES-62 may participate: the protein contributes aminopeptidase-like activity whereas the phosphorylcholine is thought to act as a signal transducer. We have used biophysical and bioinformatics-based structure prediction methods to define a low-resolution model of ES-62. Sedimentation equilibrium showed that ES-62 is a tightly bound tetramer. The sedimentation coefficient is consistent with this oligomer and the overall molecular shape revealed by small angle x-ray scattering. A 19 A model for ES-62 was restored from the small-angle x-ray scattering data using the program DAMMIN which uses simulated annealing to find a configuration of densely packed scattering elements consistent with the experimental scattering curve. Analysis of the primary sequence with the position-specific iterated basic local alignment search tool, PSI-BLAST, identified six closely homologous proteins, five of which are peptidases, consistent with observed aminopeptidase activity in ES-62. Differences between the secondary structure content of ES-62 predicted using the consensus output from the secondary structure prediction server JPRED and measured using circular dichroism are discussed in relation to multimeric glycosylated proteins. This study represents the first attempt to understand the multifunctional properties of this important parasite-derived molecule by studying its structure.
Collapse
Affiliation(s)
- Claire J Ackerman
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, United Kingdom
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Survival is assuredly the prime directive for all living organisms either as individuals or as a species. One of the main challenges encountered by bacterial populations is the danger of bacteriophage attacks, since infection of a single bacterium may rapidly propagate, decimating the entire population. In order to protect themselves against this acute threat, bacteria have developed an array of defence mechanisms, which range from preventing the infection itself via interference with bacteriophage adsorption to the cell surface and prevention of phage DNA injection, to degradation of the injected phage DNA. This last defence mechanism is catalysed by the bacterial restriction-modification (R-M) systems, and in particular, by nucleoside 5'-triphosphate (NTP)-dependent restriction enzymes, e.g. type I and type III R-M systems or the modification-dependent endonucleases. Type I and type III restriction systems have dual properties. They may either act as methylases and protect the host's own DNA against restriction by methylating specific residues, or they catalyse ATP-dependent endonuclease activity so that invading foreign DNA lacking the host-specific methylation is degraded. These defence mechanism systems are further complemented by the presence of methylation-dependent, GTP-dependent endonucleases, that restricts specifically methylated DNA. Although all three types of endonucleases are structurally very different, they share a common functional mechanism. They recognise and bind to specific DNA sequences but do not cleave DNA within those target sites. They belong to the general class of DNA motor proteins, which use the free energy associated with nucleoside 5'-triphosphate hydrolysis to translocate DNA so that the subsequent DNA cleavage event occurs at a distance from the endonuclease recognition site. Moreover, DNA cleavage appears to be a random process triggered upon stalling of the DNA translocation process and requiring dimerisation of the bound endonucleases for a concerted break of both DNA strands. In this review, we present a detailed description and analysis of the functional mechanism of the three known NTP-dependent restriction systems: type I and type III restriction-modification enzymes, as well as the methylation-dependent McrBC endonuclease.
Collapse
Affiliation(s)
- Aude A Bourniquel
- Department of Molecular Microbiology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, Switzerland.
| | | |
Collapse
|
12
|
Atanasiu C, Su TJ, Sturrock SS, Dryden DTF. Interaction of the ocr gene 0.3 protein of bacteriophage T7 with EcoKI restriction/modification enzyme. Nucleic Acids Res 2002; 30:3936-44. [PMID: 12235377 PMCID: PMC137103 DOI: 10.1093/nar/gkf518] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ocr protein, the product of gene 0.3 of bacteriophage T7, is a structural mimic of the phosphate backbone of B-form DNA. In total it mimics 22 phosphate groups over approximately 24 bp of DNA. This mimicry allows it to block DNA binding by type I DNA restriction enzymes and to inhibit these enzymes. We have determined that multiple ocr dimers can bind stoichiometrically to the archetypal type I enzyme, EcoKI. One dimer binds to the core methyltransferase and two to the complete bifunctional restriction and modification enzyme. Ocr can also bind to the component subunits of EcoKI. Binding affinity to the methyltransferase core is extremely strong with a large favourable enthalpy change and an unfavourable entropy change. This strong interaction prevents the dissociation of the methyltransferase which occurs upon dilution of the enzyme. This stabilisation arises because the interaction appears to involve virtually the entire surface area of ocr and leads to the enzyme completely wrapping around ocr.
Collapse
Affiliation(s)
- C Atanasiu
- Department of Chemistry, The King's Buildings, University of Edinburgh, Edinburgh EH9 3JJ, UK
| | | | | | | |
Collapse
|
13
|
Cesnaviciene E, Petrusyte M, Kazlauskiene R, Maneliene Z, Timinskas A, Lubys A, Janulaitis A. Characterization of AloI, a restriction-modification system of a new type. J Mol Biol 2001; 314:205-16. [PMID: 11718555 DOI: 10.1006/jmbi.2001.5049] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the properties of the new AloI restriction and modification enzyme from Acinetobacter lwoffi Ks 4-8 that recognizes the DNA target 5' GGA(N)6GTTC3' (complementary strand 5' GAAC(N)6TCC3'), and the nucleotide sequence of the gene encoding this enzyme. AloI is a bifunctional large polypeptide (deduced M(r) 143 kDa) revealing both DNA endonuclease and methyltransferase activities. Depending on reaction cofactors, AloI cleaves double-stranded DNA on both strands, seven bases on the 5' side, and 12-13 bases on the 3' side of its recognition sequence, and modifies adenine residues in both DNA strands in the target sequence yielding N6-methyladenine. For cleavage activity AloI maintains an absolute requirement for Mg(2+) and does not depend on or is stimulated by either ATP or S-adenosyl-L-methionine. Modification function requires the presence of S-adenosyl-L-methionine and is stimulated by metal ions (Ca(2+)). The C-terminal and central parts of the protein were found to be homologous to certain specificity (HsdS) and modification (HsdM) subunits of type I R-M systems, respectively. The N-terminal part of the protein possesses the putative endonucleolytic motif DXnEXK of restriction endonucleases. The deduced amino acid sequence of AloI shares significant homology with polypeptides encoding HaeIV and CjeI restriction-modification proteins at the N-terminal and central, but not at the C-terminal domains. The organization of AloI implies that its evolution involved fusion of an endonuclease and the two subunits, HsdM and HsdS, of type I restriction enzymes. According to the structure and function properties AloI may be regarded as one more representative of a newly emerging group of HaeIV-like restriction endonucleases. Discovery of these enzymes opens new opportunities for constructing restriction endonucleases with a new specificity.
Collapse
Affiliation(s)
- E Cesnaviciene
- Institute of Biotechnology, Graiciūno 8, 2028 Vilnius, Lithuania
| | | | | | | | | | | | | |
Collapse
|
14
|
Titheradge AJ, King J, Ryu J, Murray NE. Families of restriction enzymes: an analysis prompted by molecular and genetic data for type ID restriction and modification systems. Nucleic Acids Res 2001; 29:4195-205. [PMID: 11600708 PMCID: PMC60208 DOI: 10.1093/nar/29.20.4195] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Current genetic and molecular evidence places all the known type I restriction and modification systems of Escherichia coli and Salmonella enterica into one of four discrete families: type IA, IB, IC or ID. StySBLI is the founder member of the ID family. Similarities of coding sequences have identified restriction systems in E.coli and Klebsiella pneumoniae as probable members of the type ID family. We present complementation tests that confirm the allocation of EcoR9I and KpnAI to the ID family. An alignment of the amino acid sequences of the HsdS subunits of StySBLI and EcoR9I identify two variable regions, each predicted to be a target recognition domain (TRD). Consistent with two TRDs, StySBLI was shown to recognise a bipartite target sequence, but one in which the adenine residues that are the substrates for methylation are separated by only 6 bp. Implications of family relationships are discussed and evidence is presented that extends the family affiliations identified in enteric bacteria to a wide range of other genera.
Collapse
Affiliation(s)
- A J Titheradge
- Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, UK
| | | | | | | |
Collapse
|
15
|
Abstract
The known nucleoside triphosphate-dependent restriction enzymes are hetero-oligomeric proteins that behave as molecular machines in response to their target sequences. They translocate DNA in a process dependent on the hydrolysis of a nucleoside triphosphate. For the ATP-dependent type I and type III restriction and modification systems, the collision of translocating complexes triggers hydrolysis of phosphodiester bonds in unmodified DNA to generate double-strand breaks. Type I endonucleases break the DNA at unspecified sequences remote from the target sequence, type III endonucleases at a fixed position close to the target sequence. Type I and type III restriction and modification (R-M) systems are notable for effective post-translational control of their endonuclease activity. For some type I enzymes, this control is mediated by proteolytic degradation of that subunit of the complex which is essential for DNA translocation and breakage. This control, lacking in the well-studied type II R-M systems, provides extraordinarily effective protection of resident DNA should it acquire unmodified target sequences. The only well-documented GTP-dependent restriction enzyme, McrBC, requires methylated target sequences for the initiation of phosphodiester bond cleavage.
Collapse
Affiliation(s)
- D T Dryden
- Department of Chemistry, University of Edinburgh, Joseph Black Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JJ, UK.
| | | | | |
Collapse
|
16
|
Bujnicki JM, Feder M, Radlinska M, Rychlewski L. mRNA:guanine-N7 cap methyltransferases: identification of novel members of the family, evolutionary analysis, homology modeling, and analysis of sequence-structure-function relationships. BMC Bioinformatics 2001; 2:2. [PMID: 11472630 PMCID: PMC35267 DOI: 10.1186/1471-2105-2-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2001] [Accepted: 06/22/2001] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The 5'-terminal cap structure plays an important role in many aspects of mRNA metabolism. Capping enzymes encoded by viruses and pathogenic fungi are attractive targets for specific inhibitors. There is a large body of experimental data on viral and cellular methyltransferases (MTases) that carry out guanine-N7 (cap 0) methylation, including results of extensive mutagenesis. However, a crystal structure is not available and cap 0 MTases are too diverged from other MTases of known structure to allow straightforward homology-based interpretation of these data. RESULTS We report a 3D model of cap 0 MTase, developed using sequence-to-structure threading and comparative modeling based on coordinates of the glycine N-methyltransferase. Analysis of the predicted structural features in the phylogenetic context of the cap 0 MTase family allows us to rationalize most of the experimental data available and to propose potential binding sites. We identified a case of correlated mutations in the cofactor-binding site of viral MTases that may be important for the rational drug design. Furthermore, database searches and phylogenetic analysis revealed a novel subfamily of hypothetical MTases from plants, distinct from "orthodox" cap 0 MTases. CONCLUSIONS Computational methods were used to infer the evolutionary relationships and predict the structure of Eukaryotic cap MTase. Identification of novel cap MTase homologs suggests candidates for cloning and biochemical characterization, while the structural model will be useful in designing new experiments to better understand the molecular function of cap MTases.
Collapse
Affiliation(s)
- Janusz M Bujnicki
- Bioinformatics Laboratory, International Institute of Cell and Molecular Biology, ul. ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Marcin Feder
- Bioinformatics Laboratory, International Institute of Cell and Molecular Biology, ul. ks. Trojdena 4, 02-109 Warsaw, Poland
- Institute of Microbiology, Warsaw University, ul. Miecznikowa 1, 02-093 Warsaw, Poland
| | - Monika Radlinska
- Institute of Microbiology, Warsaw University, ul. Miecznikowa 1, 02-093 Warsaw, Poland
| | - Leszek Rychlewski
- Bioinformatics Laboratory, International Institute of Cell and Molecular Biology, ul. ks. Trojdena 4, 02-109 Warsaw, Poland
- BioInfoBank, ul. Limanowskiego 24A, 60-744 Poznan, Poland
| |
Collapse
|
17
|
Deng YM, Liu CQ, Dunn NW. LldI, a plasmid-encoded type I restriction and modification system in Lactococcus lactis. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2001; 11:239-45. [PMID: 11092734 DOI: 10.3109/10425170009033237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A plasmid-encoded type I restriction and modification (R-M) system, designated LldI, was identified in Lactococcus lactis biovar diacetylactis LD10-1. LldI consists of three genes encoding endonuclease, methylase and specificity subunits, respectively. RT-PCR analysis revealed that the three genes are co-transcribed as a polycistronic mRNA in L. lactis. The specificity subunit of LldI differs significantly in the target recognition domains from those of other type I R-M systems, suggesting that LldI confers a novel specificity in L. lactis.
Collapse
Affiliation(s)
- Y M Deng
- Cooperative Research Centre for Food Industry Innovation, Department of Biotechnology, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
18
|
O'Neill M, Powell LM, Murray NE. Target recognition by EcoKI: the recognition domain is robust and restriction-deficiency commonly results from the proteolytic control of enzyme activity. J Mol Biol 2001; 307:951-63. [PMID: 11273713 DOI: 10.1006/jmbi.2001.4543] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report a genetic and biochemical analysis of a target recognition domain (TRD) of EcoKI, a type I restriction and modification enzyme. The TRDs of type I R-M systems are within the specificity subunit (HsdS) and HsdS confers sequence specificity to a complex endowed with both restriction and modification activities. Random mutagenesis has revealed that most substitutions within the amino TRD of EcoKI, a region comprising 157 amino acid residues, have no detectable effect on the phenotype of the bacterium, even when the substitutions are non- conservative. The structure of the TRD appears to be robust. All but one of the six substitutions that confer a restriction-deficient, modification-deficient (r(-)m(-)) phenotype were found to be in the interval between residues 80 and 110, a region predicted by sequence comparisons to form part of the protein-DNA interface. Additional site-directed mutations affecting this interval commonly impair both restriction and modification. However, we show that an r(-) phenotype cannot be taken as evidence that the EcoKI complex lacks endonuclease activity; in response to even a slightly impaired modification efficiency, the endonuclease activity of EcoKI is destroyed by a process dependent upon the ClpXP protease. Enzymes from mutants with an r(-)m(-) phenotype commonly retain some sequence-specific activity; methylase activity can be detected on hemimethylated DNA substrates and residual endonuclease activity is implied whenever the viability of the r(-)m(-) bacterium is dependent on ClpXP. Conversely, the viability of ClpX(-) r(-)m(-) bacteria can be used as evidence for little, or no, endonuclease activity. Of 14 mutants with an r(-)m(-) phenotype, only six are viable in the absence of ClpXP. The significance of four of the six residues (G91, G105, F107 and G141) is enhanced by the finding that even conservative substitutions for these residues impair modification, thereby conferring an r(-)m(-) phenotype.
Collapse
Affiliation(s)
- M O'Neill
- Institute of Cell and Molecular Biology, University of Edinburgh, Darwin Building, Mayfield Road, King's Buildings, Edinburgh, EH9 3JR, UK
| | | | | |
Collapse
|
19
|
Berge T, Ellis DJ, Dryden DT, Edwardson JM, Henderson RM. Translocation-independent dimerization of the EcoKI endonuclease visualized by atomic force microscopy. Biophys J 2000; 79:479-84. [PMID: 10866973 PMCID: PMC1300951 DOI: 10.1016/s0006-3495(00)76309-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Bacterial type I restriction/modification systems are capable of performing multiple actions in response to the methylation pattern on their DNA recognition sequences. The enzymes making up these systems serve to protect the bacterial cells against viral infection by binding to their recognition sequences on the invading DNA and degrading it after extensive ATP-driven translocation. DNA cleavage has been thought to occur as the result of a collision between two translocating enzyme complexes. Using atomic force microscopy (AFM), we show here that EcoKI dimerizes rapidly when bound to a plasmid containing two recognition sites for the enzyme. Dimerization proceeds in the absence of ATP and is also seen with an EcoKI mutant (K477R) that is unable to translocate DNA. Only monomers are seen when the enzyme complex binds to a plasmid containing a single recognition site. Based on our results, we propose that the binding of EcoKI to specific DNA target sequences is accompanied by a conformational change that leads rapidly to dimerization. This event is followed by ATP-dependent translocation and cleavage of the DNA.
Collapse
Affiliation(s)
- T Berge
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1QJ, England
| | | | | | | | | |
Collapse
|
20
|
Murray NE. Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol Mol Biol Rev 2000; 64:412-34. [PMID: 10839821 PMCID: PMC98998 DOI: 10.1128/mmbr.64.2.412-434.2000] [Citation(s) in RCA: 325] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Restriction enzymes are well known as reagents widely used by molecular biologists for genetic manipulation and analysis, but these reagents represent only one class (type II) of a wider range of enzymes that recognize specific nucleotide sequences in DNA molecules and detect the provenance of the DNA on the basis of specific modifications to their target sequence. Type I restriction and modification (R-M) systems are complex; a single multifunctional enzyme can respond to the modification state of its target sequence with the alternative activities of modification or restriction. In the absence of DNA modification, a type I R-M enzyme behaves like a molecular motor, translocating vast stretches of DNA towards itself before eventually breaking the DNA molecule. These sophisticated enzymes are the focus of this review, which will emphasize those aspects that give insights into more general problems of molecular and microbial biology. Current molecular experiments explore target recognition, intramolecular communication, and enzyme activities, including DNA translocation. Type I R-M systems are notable for their ability to evolve new specificities, even in laboratory cultures. This observation raises the important question of how bacteria protect their chromosomes from destruction by newly acquired restriction specifities. Recent experiments demonstrate proteolytic mechanisms by which cells avoid DNA breakage by a type I R-M system whenever their chromosomal DNA acquires unmodified target sequences. Finally, the review will reflect the present impact of genomic sequences on a field that has previously derived information almost exclusively from the analysis of bacteria commonly studied in the laboratory.
Collapse
Affiliation(s)
- N E Murray
- Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom.
| |
Collapse
|
21
|
Rao DN, Saha S, Krishnamurthy V. ATP-dependent restriction enzymes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 64:1-63. [PMID: 10697406 DOI: 10.1016/s0079-6603(00)64001-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The phenomenon of restriction and modification (R-M) was first observed in the course of studies on bacteriophages in the early 1950s. It was only in the 1960s that work of Arber and colleagues provided a molecular explanation for the host specificity. DNA restriction and modification enzymes are responsible for the host-specific barriers to interstrain and interspecies transfer of genetic information that have been observed in a variety of bacterial cell types. R-M systems comprise an endonuclease and a methyltransferase activity. They serve to protect bacterial cells against bacteriophage infection, because incoming foreign DNA is specifically cleaved by the restriction enzyme if it contains the recognition sequence of the endonuclease. The DNA is protected from cleavage by a specific methylation within the recognition sequence, which is introduced by the methyltransferase. Classic R-M systems are now divided into three types on the basis of enzyme complexity, cofactor requirements, and position of DNA cleavage, although new systems are being discovered that do not fit readily into this classification. This review concentrates on multisubunit, multifunctional ATP-dependent restriction enzymes. A growing number of these enzymes are being subjected to biochemical and genetic studies that, when combined with ongoing structural analyses, promise to provide detailed models for mechanisms of DNA recognition and catalysis. It is now clear that DNA cleavage by these enzymes involves highly unusual modes of interaction between the enzymes and their substrates. These unique features of mechanism pose exciting questions and in addition have led to the suggestion that these enzymes may have biological functions beyond that of restriction and modification. The purpose of this review is to describe the exciting developments in our understanding of how the ATP-dependent restriction enzymes recognize specific DNA sequences and cleave or modify DNA.
Collapse
Affiliation(s)
- D N Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
22
|
Janscak P, Weiserova M, Hubacek J, Holubova I, Dutta CF, Firman K. Two temperature-sensitive mutations in the DNA binding subunit of EcoKI with differing properties. FEMS Microbiol Lett 2000; 182:99-104. [PMID: 10612739 DOI: 10.1111/j.1574-6968.2000.tb08881.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Two temperature-sensitive mutations in the hsdS gene, which encodes the DNA specificity subunit of the type IA restriction-modification system EcoKI, designated Sts1 (Ser(340)Phe) and Sts2 (Ala(204)Thr) had a different impact on restriction-modification functions in vitro and in vivo. The enzyme activities of the Sts1 mutant were temperature-sensitive in vitro and were reduced even at 30 degrees C (permissive temperature). Gel retardation assays revealed that the Sts1 mutant had significantly decreased DNA binding, which was temperature-sensitive. In contrast the Sts2 mutant did not show differences from the wild-type enzyme even at 42 degrees C. Unlike the HsdSts1 subunit, the HsdSts2 subunit was not able to compete with the wild-type subunit in assembly of the restriction enzyme in vivo, suggesting that the Sts2 mutation affects subunit assembly. Thus, it appears that these two mutations map two important regions in HsdS subunit responsible for DNA-protein and protein-protein interactions, respectively.
Collapse
Affiliation(s)
- P Janscak
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 14220, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
23
|
Radlinska M, Bujnicki JM, Piekarowicz A. Structural characterization of two tandemly arranged DNA methyltransferase genes from Neisseria gonorrhoeae MS11: N4-cytosine specific M.NgoMXV and nonfunctional 5-cytosine-type M.NgoMorf2P. Proteins 1999; 37:717-28. [PMID: 10651285 DOI: 10.1002/(sici)1097-0134(19991201)37:4<717::aid-prot20>3.0.co;2-p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Two adjacent genes encoding DNA methyltransferases (MTases) of Neisseria gonorrhoeae MS11, an active N4-cytosine specific M. NgoMXV and an inactive 5-cytosine type M. NgoMorf2P, were cloned into Escherichia coli and sequenced. We analyzed the deduced amino acid sequence of both gene products and localized conserved regions characteristic for DNA MTases. Structure prediction, threading-derived alignments, and comparison with the common fold for DNA MTases allowed for construction of super-secondary and tertiary models for M.NgoMorf2P and M.NgoMXV, respectively. These models helped in identification of amino acids and structural elements essential for function of both enzymes. The implications of this putative structural model on the catalytic mechanism of M.NgoMXV and its possible relation to the common ancestor of modern DNA amino-MTases are also discussed.
Collapse
Affiliation(s)
- M Radlinska
- Institute of Microbiology, University of Warsaw, Poland.
| | | | | |
Collapse
|
24
|
Davies GP, Martin I, Sturrock SS, Cronshaw A, Murray NE, Dryden DT. On the structure and operation of type I DNA restriction enzymes. J Mol Biol 1999; 290:565-79. [PMID: 10390354 DOI: 10.1006/jmbi.1999.2908] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type I DNA restriction enzymes are large, molecular machines possessing DNA methyltransferase, ATPase, DNA translocase and endonuclease activities. The ATPase, DNA translocase and endonuclease activities are specified by the restriction (R) subunit of the enzyme. We demonstrate that the R subunit of the Eco KI type I restriction enzyme comprises several different functional domains. An N-terminal domain contains an amino acid motif identical with that forming the catalytic site in simple restriction endonucleases, and changes within this motif lead to a loss of nuclease activity and abolish the restriction reaction. The central part of the R subunit contains amino acid sequences characteristic of DNA helicases. We demonstrate, using limited proteolysis of this subunit, that the helicase motifs are contained in two domains. Secondary structure prediction of these domains suggests a structure that is the same as the catalytic domains of DNA helicases of known structure. The C-terminal region of the R subunit can be removed by elastase treatment leaving a large fragment, stable in the presence of ATP, which can no longer bind to the other subunits of Eco KI suggesting that this domain is required for protein assembly. Considering these results and previous models of the methyltransferase part of these enzymes, a structural and operational model of a type I DNA restriction enzyme is presented.
Collapse
Affiliation(s)
- G P Davies
- Institute of Cell and Molecular Biology, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JR, UK
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
The type I restriction and modification enzymes do not possess obvious DNA-binding motifs within their target recognition domains (TRDs) of 150-180 amino acids. To identify residues involved in DNA recognition, changes were made in the amino-TRD of EcoKI by random mutagenesis. Most of the 101 substitutions affecting 79 residues had no effect on the phenotype. Changes at only seven positions caused the loss of restriction and modification activities. The seven residues identified by mutation are not randomly distributed throughout the primary sequence of the TRD: five are within the interval between residues 80 and 110. Sequence analyses have led to the suggestion that the TRDs of type I restriction enzymes include a tertiary structure similar to the TRD of the HhaI methyltransferase, and to a model for a DNA-protein interface in EcoKI. In this model, the residues within the interval identified by the five mutations are close to the protein-DNA interface. Three additional residues close to the DNA in the model were changed; each substitution impaired both activities. Proteins from twelve mutants were purified: six from mutants with partial or wild-type activity and six from mutants lacking activity. There is a strong correlation between phenotype and DNA-binding affinity, as determined by fluorescence anisotropy.
Collapse
Affiliation(s)
- M O'Neill
- Institute of Cell and Molecular Biology, University of Edinburgh, Darwin Building, King's Buildings, Edinburgh EH9 3JR, UK
| | | | | |
Collapse
|
26
|
Alexeev D, Alexeeva M, Baxter RL, Campopiano DJ, Webster SP, Sawyer L. The crystal structure of 8-amino-7-oxononanoate synthase: a bacterial PLP-dependent, acyl-CoA-condensing enzyme. J Mol Biol 1998; 284:401-19. [PMID: 9813126 DOI: 10.1006/jmbi.1998.2086] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
8-Amino-7-oxononanoate synthase (or 8-amino-7-ketopelargonate synthase; EC 2.3.1.47; AONS) catalyses the decarboxylative condensation of l-alanine and pimeloyl-CoA in the first committed step of biotin biosynthesis. We have cloned, over-expressed and purified AONS from Escherichia coli and determined the crystal structures of the apo and PLP-bound forms of the enzyme. The protein is a symmetrical homodimer with a tertiary structure and active site organisation similar to, but distinct from, those of other PLP-dependent enzymes whose three-dimensional structures are known. The critical PLP-binding lysine of AONS is located at the end of a deep cleft that allows access of the pantothenate arm of pimeloyl-CoA. A cluster of positively charged residues at the entrance to this cleft forms a putative diphosphate binding site for CoA. The structure of E. coli AONS enables identification of the key residues of the PLP-binding site and thus provides a framework with which to understand the biochemical mechanism, which is similar to that catalysed by 5-aminolevulinate synthase and two other alpha-oxoamine synthases. Although AONS has a low overall sequence similarity with the catalytic domains of other alpha-oxoamine synthases, the structure reveals the regions of significant identity to be functionally important. This suggests that the organisation of the conserved catalytic residues in the active site is similar for all enzymes of this sub-class of PLP-dependent enzymes and they share a common mechanism. Knowledge of the three-dimensional structure of AONS will enable characterisation of the structural features of this enzyme sub-family that are responsible for this important type of reaction.
Collapse
Affiliation(s)
- D Alexeev
- Structural Biochemistry Group, The University of Edinburgh, Swann Building King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, Scotland
| | | | | | | | | | | |
Collapse
|