1
|
Kuszczynska A, Bors M, Podskoczyj K, Leszczynska G. Chemistry of installing epitranscriptomic 5-modified cytidines in RNA oligomers. Org Biomol Chem 2024; 22:7271-7286. [PMID: 39177469 DOI: 10.1039/d4ob01098a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Studies of 5-hydroxymethylcytidine (hm5C), 5-formylcytidine (f5C) and 5-carboxycytidine (ca5C) modifications as products of the 5-methylcytidine (m5C) oxidative demethylation pathway in cellular mRNAs constitute an important element of the new epitranscriptomic field of research. The dynamic process of m5C conversion and final turnover to the parent cytidine is considered a post-transcriptional layer of gene-expression regulation. However, the regulatory mechanism associated with epitranscriptomic cytidine modifications remains largely unknown. Therefore, oligonucleotides containing m5C oxidation products are of great value for the next generation of biochemical, biophysical, and structural studies on their function, metabolism, and contribution to human diseases. Herein, we summarize the synthetic strategies developed for the incorporation of hm5C, f5C and ca5C into RNA oligomers by phosphoramidite chemistry, including post-synthetic C5-cytidine functionalization and enzymatic methods.
Collapse
Affiliation(s)
- Anna Kuszczynska
- Institute of Organic Chemistry, Faculty of Chemistry, University of Technology, 90-924 Lodz, Zeromskiego 116, Poland.
| | - Milena Bors
- Institute of Organic Chemistry, Faculty of Chemistry, University of Technology, 90-924 Lodz, Zeromskiego 116, Poland.
| | - Karolina Podskoczyj
- Institute of Organic Chemistry, Faculty of Chemistry, University of Technology, 90-924 Lodz, Zeromskiego 116, Poland.
| | - Grazyna Leszczynska
- Institute of Organic Chemistry, Faculty of Chemistry, University of Technology, 90-924 Lodz, Zeromskiego 116, Poland.
| |
Collapse
|
2
|
Kriukienė E, Tomkuvienė M, Klimašauskas S. 5-Hydroxymethylcytosine: the many faces of the sixth base of mammalian DNA. Chem Soc Rev 2024; 53:2264-2283. [PMID: 38205583 DOI: 10.1039/d3cs00858d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Epigenetic phenomena play a central role in cell regulatory processes and are important factors for understanding complex human disease. One of the best understood epigenetic mechanisms is DNA methylation. In the mammalian genome, cytosines (C) in CpG dinucleotides were long known to undergo methylation at the 5-position of the pyrimidine ring (mC). Later it was found that mC can be oxidized to 5-hydroxymethylcytosine (hmC) or even further to 5-formylcytosine (fC) and to 5-carboxylcytosine (caC) by the action of 2-oxoglutarate-dependent dioxygenases of the TET family. These findings unveiled a long elusive mechanism of active DNA demethylation and bolstered a wave of studies in the area of epigenetic regulation in mammals. This review is dedicated to critical assessment of recent data on biochemical and chemical aspects of the formation and conversion of hmC in DNA, analytical techniques used for detection and mapping of this nucleobase in mammalian genomes as well as epigenetic roles of hmC in DNA replication, transcription, cell differentiation and human disease.
Collapse
Affiliation(s)
- Edita Kriukienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Miglė Tomkuvienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Saulius Klimašauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
3
|
Baljinnyam T, Sowers ML, Hsu CW, Conrad JW, Herring JL, Hackfeld LC, Sowers LC. Chemical and enzymatic modifications of 5-methylcytosine at the intersection of DNA damage, repair, and epigenetic reprogramming. PLoS One 2022; 17:e0273509. [PMID: 36037209 PMCID: PMC9423628 DOI: 10.1371/journal.pone.0273509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
The DNA of all living organisms is persistently damaged by endogenous reactions including deamination and oxidation. Such damage, if not repaired correctly, can result in mutations that drive tumor development. In addition to chemical damage, recent studies have established that DNA bases can be enzymatically modified, generating many of the same modified bases. Irrespective of the mechanism of formation, modified bases can alter DNA-protein interactions and therefore modulate epigenetic control of gene transcription. The simultaneous presence of both chemically and enzymatically modified bases in DNA suggests a potential intersection, or collision, between DNA repair and epigenetic reprogramming. In this paper, we have prepared defined sequence oligonucleotides containing the complete set of oxidized and deaminated bases that could arise from 5-methylcytosine. We have probed these substrates with human glycosylases implicated in DNA repair and epigenetic reprogramming. New observations reported here include: SMUG1 excises 5-carboxyuracil (5caU) when paired with A or G. Both TDG and MBD4 cleave 5-formyluracil and 5caU when mispaired with G. Further, TDG not only removes 5-formylcytosine and 5-carboxycytosine when paired with G, but also when mispaired with A. Surprisingly, 5caU is one of the best substrates for human TDG, SMUG1 and MBD4, and a much better substrate than T. The data presented here introduces some unexpected findings that pose new questions on the interactions between endogenous DNA damage, repair, and epigenetic reprogramming pathways.
Collapse
Affiliation(s)
- Tuvshintugs Baljinnyam
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Mark L. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
- MD-PhD Combined Degree Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Chia Wei Hsu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
- MD-PhD Combined Degree Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - James W. Conrad
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jason L. Herring
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Linda C. Hackfeld
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lawrence C. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
4
|
An Improved Approach for Practical Synthesis of 5-Hydroxymethyl-2′-deoxycytidine (5hmdC) Phosphoramidite and Triphosphate. Molecules 2022; 27:molecules27030749. [PMID: 35164012 PMCID: PMC8839764 DOI: 10.3390/molecules27030749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
5-Hydroxymethyl-2′-deoxycytidine (5hmdC) phosphoramidite and triphosphate are important building blocks in 5hmdC-containing DNA synthesis for epigenetic studies. However, efficient and practical methods for the synthesis of these compounds are still limited. The current research provides an intensively improved synthetic method that enables the preparation of commercially available cyanoethyl-protected 5hmdC phosphoramidite with an overall yield of 39% on 5 g scale. On the basis of facile and efficient accesses to cyanoethyl protected-5hmdU and 5hmdC intermediates, two efficient synthetic routes for 5hmdC triphosphate were also developed.
Collapse
|
5
|
Tran A, Zheng S, White DS, Curry AM, Cen Y. Retracted Article: Divergent synthesis of 5-substituted pyrimidine 2'-deoxynucleosides and their incorporation into oligodeoxynucleotides for the survey of uracil DNA glycosylases. Chem Sci 2020; 11:11818-11826. [PMID: 34123208 PMCID: PMC8162711 DOI: 10.1039/d0sc04161k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/07/2020] [Indexed: 11/21/2022] Open
Abstract
Recent studies have indicated that 5-methylcytosine (5mC) residues in DNA can be oxidized and potentially deaminated to the corresponding thymine analogs. Some of these oxidative DNA damages have been implicated as new epigenetic markers that could have profound influences on chromatin function as well as disease pathology. In response to oxidative damage, the cells have a complex network of repair systems that recognize, remove and rebuild the lesions. However, how the modified nucleobases are detected and repaired remains elusive, largely due to the limited availability of synthetic oligodeoxynucleotides (ODNs) containing these novel DNA modifications. A concise and divergent synthetic strategy to 5mC derivatives has been developed. These derivatives were further elaborated to the corresponding phosphoramidites to enable the site-specific incorporation of modified nucleobases into ODNs using standard solid-phase DNA synthesis. The synthetic methodology, along with the panel of ODNs, is of great value to investigate the biological functions of epigenetically important nucleobases, and to elucidate the diversity in chemical lesion repair.
Collapse
Affiliation(s)
- Ai Tran
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences Colchester VT 05446 USA
| | - Song Zheng
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences Colchester VT 05446 USA
| | - Dawanna S White
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Alyson M Curry
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University Richmond VA 23219 USA
| |
Collapse
|
6
|
A cross-omics approach to investigate temporal gene expression regulation by 5-hydroxymethylcytosine via TBH-derived oxidative stress showed involvement of different regulatory kinases. Toxicol In Vitro 2018; 48:318-328. [DOI: 10.1016/j.tiv.2018.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/24/2018] [Accepted: 02/07/2018] [Indexed: 02/06/2023]
|
7
|
|
8
|
Carell T, Kurz MQ, Müller M, Rossa M, Spada F. Non-canonical Bases in the Genome: The Regulatory Information Layer in DNA. Angew Chem Int Ed Engl 2018; 57:4296-4312. [DOI: 10.1002/anie.201708228] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Thomas Carell
- Center for Integrated Protein Science; Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 Munich Germany
| | - Matthias Q. Kurz
- Center for Integrated Protein Science; Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 Munich Germany
| | - Markus Müller
- Center for Integrated Protein Science; Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 Munich Germany
| | - Martin Rossa
- Center for Integrated Protein Science; Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 Munich Germany
| | - Fabio Spada
- Center for Integrated Protein Science; Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 Munich Germany
| |
Collapse
|
9
|
Shen W, Ji S, Chen L, Zhang Y, Wu X. Synthesis and Properties of Alkoxyethyl β-d-
Xylopyranoside. J SURFACTANTS DETERG 2018. [DOI: 10.1002/jsde.12013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Wangzhen Shen
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; Xiangtan University; Xiangtan 411105 Hunan China
| | - Shanwei Ji
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; Xiangtan University; Xiangtan 411105 Hunan China
| | - Langqiu Chen
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; Xiangtan University; Xiangtan 411105 Hunan China
| | - Yanhua Zhang
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; Xiangtan University; Xiangtan 411105 Hunan China
| | - Xiubing Wu
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; Xiangtan University; Xiangtan 411105 Hunan China
| |
Collapse
|
10
|
Riml C, Lusser A, Ennifar E, Micura R. Synthesis, Thermodynamic Properties, and Crystal Structure of RNA Oligonucleotides Containing 5-Hydroxymethylcytosine. J Org Chem 2017; 82:7939-7945. [PMID: 28707898 DOI: 10.1021/acs.joc.7b01171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
5-Hydroxymethylcytosine (hm5C) is an RNA modification that has attracted significant interest because of the finding that RNA hydroxymethylation can favor mRNA translation. For insight into the mechanistic details of hm5C function to be obtained, the availability of RNAs containing this modification at defined positions that can be used for in vitro studies is highly desirable. In this work, we present an eight-step route to 5-hydroxymethylcytidine (hm5rC) phosphoramidite for solid-phase synthesis of modified RNA oligonucleotides. Furthermore, we examined the effects of hm5rC on RNA duplex stability and its impact on structure formation using the sarcin-ricin loop (SRL) motif. Thermal denaturation experiments revealed that hm5rC increases RNA duplex stability. By contrast, when cytosine within an UNCG tetraloop motif was replaced by hm5rC, the thermodynamic stability of the corresponding hairpin fold was attenuated. Importantly, incorporation of hm5rC into the SRL motif resulted in an RNA crystal structure at 0.85 Å resolution. Besides changes in the hydration pattern at the site of modification, a slight opening of the hm5rC-G pair compared to the unmodified C-G in the native structure was revealed.
Collapse
Affiliation(s)
- Christian Riml
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck , 6020 Innsbruck, Austria
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck , 6020 Innsbruck, Austria
| | - Eric Ennifar
- Université de Strasbourg, CNRS , Architecture et Réactivité des ARN, UPR 9002, 67000 Strasbourg, France
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck , 6020 Innsbruck, Austria
| |
Collapse
|
11
|
Lagger S, Connelly JC, Schweikert G, Webb S, Selfridge J, Ramsahoye BH, Yu M, He C, Sanguinetti G, Sowers LC, Walkinshaw MD, Bird A. MeCP2 recognizes cytosine methylated tri-nucleotide and di-nucleotide sequences to tune transcription in the mammalian brain. PLoS Genet 2017; 13:e1006793. [PMID: 28498846 PMCID: PMC5446194 DOI: 10.1371/journal.pgen.1006793] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/26/2017] [Accepted: 05/02/2017] [Indexed: 01/10/2023] Open
Abstract
Mutations in the gene encoding the methyl-CG binding protein MeCP2 cause several neurological disorders including Rett syndrome. The di-nucleotide methyl-CG (mCG) is the classical MeCP2 DNA recognition sequence, but additional methylated sequence targets have been reported. Here we show by in vitro and in vivo analyses that MeCP2 binding to non-CG methylated sites in brain is largely confined to the tri-nucleotide sequence mCAC. MeCP2 binding to chromosomal DNA in mouse brain is proportional to mCAC + mCG density and unexpectedly defines large genomic domains within which transcription is sensitive to MeCP2 occupancy. Our results suggest that MeCP2 integrates patterns of mCAC and mCG in the brain to restrain transcription of genes critical for neuronal function.
Collapse
Affiliation(s)
- Sabine Lagger
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - John C. Connelly
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Gabriele Schweikert
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Shaun Webb
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Jim Selfridge
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Bernard H. Ramsahoye
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Miao Yu
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, United States of America
- Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois, United States of America
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, United States of America
- Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois, United States of America
| | - Guido Sanguinetti
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Lawrence C. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Malcolm D. Walkinshaw
- Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Zhang Y, Li Y, Wei Y, Sun H, Wang H. A sensitive signal-off electrogenerated chemiluminescence biosensing method for the discrimination of DNA hydroxymethylation based on glycosylation modification and signal quenching from ferroceneboronic acid. Talanta 2017; 170:546-551. [PMID: 28501209 DOI: 10.1016/j.talanta.2017.04.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/11/2017] [Accepted: 04/21/2017] [Indexed: 01/10/2023]
Abstract
In this study, a new and sensitive signal-off electrogenerated chemiluminescence (ECL) biosensing method for the quantification of 5-hydroxymethylcytosine in DNA (5-hmC-DNA) was developed. The method achieved simple and sensitive detection of 5-hmC-DNA based on the glycosylation of 5-hmC, combining both the amplification function of gold nanoparticles (AuNPs) and the high quenching efficiency of the tris(2, 2'-ripyridine) dichlororuthenium(II) (Ru(bpy)32+)-ferrocene (Fc) system. First, the electrode modified with a mixture of Nafion and AuNPs was utilized as the platform for electrostatically adsorbing Ru(bpy)32+(an ECL-emitting species) and assembling 5-hmC-DNA. The 5-hmC-DNA was glycosylated by T4 β-glucosyltransferase, yielding β-glucosyl-5-hydroxymethyl-cytosine in DNA (5-ghmC-DNA). Finally, quencher-FcBA was further covalently bound to 5-ghmC-DNA through formation of boronate ester covalent bonds between boronic acid and cis-diols of 5-ghmC, resulting in a decrease in ECL intensity. The results indicated that the decreased ECL intensity was directly linear to the concentration of 5-hmC-DNA in the range from 1.0×10-8 to 5.0×10-11M with a low detection limit of 1.63×10-11M. In addition, this ECL method was demonstrated to be useful for the quantification of 5-hmC in clinical serum samples. Moreover, the method allowed good discrimination among cytosine (5-C), 5-methylcytosine (5-mC), and 5-hmC in DNA.
Collapse
Affiliation(s)
- Yuling Zhang
- Institute of Analytical Science, Northwest University, Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Xi'an, Shaanxi 710069, China
| | - Yan Li
- Institute of Analytical Science, Northwest University, Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Xi'an, Shaanxi 710069, China.
| | - Yingying Wei
- Institute of Analytical Science, Northwest University, Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Xi'an, Shaanxi 710069, China
| | - Huiping Sun
- Institute of Analytical Science, Northwest University, Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Xi'an, Shaanxi 710069, China
| | - Huan Wang
- Institute of Analytical Science, Northwest University, Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Xi'an, Shaanxi 710069, China
| |
Collapse
|
13
|
Riml C, Micura R. Automated Chemical Solid-Phase Synthesis and Deprotection of 5-Hydroxymethylcytosine-Containing RNA. Methods Mol Biol 2017; 1562:295-302. [PMID: 28349469 DOI: 10.1007/978-1-4939-6807-7_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
5-Hydroxymethylcytosine is an epigenetic base modification that is part of the demethylation pathway of 5-methylcytosine in DNA. 5-Methylcytosine is iteratively oxidized to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine by enzymes of the TET protein family. Since the discovery of 5-hydroxymethylcytosine also in RNA its role in regulatory processes and metabolism remains elusive. To gain more insight into the function of RNA containing 5-hydroxymethylcytidine, innovative and interdisciplinary approaches are required. In this context, synthetic oligoribonucleotides containing 5-hyroxymethylcytidine are an inevitable tool. Therefore, in this chapter, we present the efficient synthesis of RNA oligonucleotides containing 5-hydroxymethylcytosine by solid-phase synthesis. The incorporation of the modified cytosine derivative into RNA is compatible with standard phosphoramidite-based synthesis procedures of oligoribonucleotides.
Collapse
Affiliation(s)
- Christian Riml
- Institute of Organic Chemistry and Center for Molecular Biosciences, CMBI, Leopold-Franzens University, Innrain 80-82, 6020, Innbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences, CMBI, Leopold-Franzens University, Innrain 80-82, 6020, Innbruck, Austria.
| |
Collapse
|
14
|
Shiratori H, Feinweber C, Knothe C, Lötsch J, Thomas D, Geisslinger G, Parnham MJ, Resch E. High-Throughput Analysis of Global DNA Methylation Using Methyl-Sensitive Digestion. PLoS One 2016; 11:e0163184. [PMID: 27749902 PMCID: PMC5066982 DOI: 10.1371/journal.pone.0163184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 09/02/2016] [Indexed: 11/26/2022] Open
Abstract
DNA methylation is a major regulatory process of gene transcription, and aberrant DNA methylation is associated with various diseases including cancer. Many compounds have been reported to modify DNA methylation states. Despite increasing interest in the clinical application of drugs with epigenetic effects, and the use of diagnostic markers for genome-wide hypomethylation in cancer, large-scale screening systems to measure the effects of drugs on DNA methylation are limited. In this study, we improved the previously established fluorescence polarization-based global DNA methylation assay so that it is more suitable for application to human genomic DNA. Our methyl-sensitive fluorescence polarization (MSFP) assay was highly repeatable (inter-assay coefficient of variation = 1.5%) and accurate (r2 = 0.99). According to signal linearity, only 50–80 ng human genomic DNA per reaction was necessary for the 384-well format. MSFP is a simple, rapid approach as all biochemical reactions and final detection can be performed in one well in a 384-well plate without purification steps in less than 3.5 hours. Furthermore, we demonstrated a significant correlation between MSFP and the LINE-1 pyrosequencing assay, a widely used global DNA methylation assay. MSFP can be applied for the pre-screening of compounds that influence global DNA methylation states and also for the diagnosis of certain types of cancer.
Collapse
Affiliation(s)
- Hiromi Shiratori
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
- * E-mail:
| | - Carmen Feinweber
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
| | - Claudia Knothe
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| | - Jörn Lötsch
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| | - Michael J. Parnham
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
| | - Eduard Resch
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Ludwig AK, Zhang P, Cardoso MC. Modifiers and Readers of DNA Modifications and Their Impact on Genome Structure, Expression, and Stability in Disease. Front Genet 2016; 7:115. [PMID: 27446199 PMCID: PMC4914596 DOI: 10.3389/fgene.2016.00115] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/06/2016] [Indexed: 12/16/2022] Open
Abstract
Cytosine base modifications in mammals underwent a recent expansion with the addition of several naturally occurring further modifications of methylcytosine in the last years. This expansion was accompanied by the identification of the respective enzymes and proteins reading and translating the different modifications into chromatin higher order organization as well as genome activity and stability, leading to the hypothesis of a cytosine code. Here, we summarize the current state-of-the-art on DNA modifications, the enzyme families setting the cytosine modifications and the protein families reading and translating the different modifications with emphasis on the mouse protein homologs. Throughout this review, we focus on functional and mechanistic studies performed on mammalian cells, corresponding mouse models and associated human diseases.
Collapse
Affiliation(s)
- Anne K Ludwig
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt Germany
| | - Peng Zhang
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt Germany
| | - M C Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt Germany
| |
Collapse
|
16
|
Riml C, Micura R. Synthesis of 5-Hydroxymethylcytidine- and 5-Hydroxymethyl-uridine-Modified RNA. SYNTHESIS-STUTTGART 2016; 48:1108-1116. [PMID: 27413246 PMCID: PMC4939872 DOI: 10.1055/s-0035-1561220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report on the syntheses of 5-hydroxymethyl-uridine [5hm(rU)] and -cytidine [5hm(rC)] phosphoramidites and their incorporation into RNA by solid-phase synthesis. Deprotection of the oligonucleotides is accomplished in a straightforward manner using standard conditions, confirming the appropriateness of the acetyl protection used for the pseudobenzylic alcohol moieties. The approach provides robust access to 5hm(rC/U)-modified RNAs that await applications in pull-down experiments to identify potential modification enzymes. They will also serve as synthetic probes for the development of high-throughput-sequencing methods in native RNAs. 1Introduction2Protection Strategies Reported for the Synthesis of 5hm(dC)-Modified DNA3Synthesis of 5-Hydroxymethylpyrimidine-Modified RNA3.1Synthesis of 5hm(rC) Phosphoramidite3.2Synthesis of 5hm(rU) Phosphoramidite3.3Synthesis of 5hm(rC)- and 5hm(rU)-Modified RNA4Conclusions.
Collapse
Affiliation(s)
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences, CMBI, Leopold-Franzens University, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
17
|
Cleavage of DNA containing 5-fluorocytosine or 5-fluorouracil by type II restriction endonucleases. Bioorg Med Chem 2015; 23:6885-90. [PMID: 26463367 DOI: 10.1016/j.bmc.2015.09.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/25/2015] [Accepted: 09/30/2015] [Indexed: 11/24/2022]
Abstract
A systematic study of the cleavage of DNA sequences containing 5-fluorocytosine or 5-fluorouracil by type II restriction endonucleases (REs) was performed and the results compared with the same sequences containing natural pyrimidine bases, uracil or 5-methylcytosine. The results show that some REs recognize fluorine as a hydrogen on cytosine and cleave the corresponding sequences where the presence of m5dC leads to blocking of the cleavage. However, on uracil, the same REs recognize the F as a methyl surrogate and cleave the sequences which are not cleaved if uracil is incorporated instead of thymine. These results are interesting for understanding the recognition of DNA sequences by REs and for manipulation of the specific DNA cutting.
Collapse
|
18
|
5-Hydroxymethylcytosine and 5-formylcytosine containing deoxyoligonucleotides: facile syntheses and melting temperature studies. Bioorg Med Chem Lett 2015; 25:1186-91. [PMID: 25704892 DOI: 10.1016/j.bmcl.2015.01.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 02/08/2023]
Abstract
An oxidation-based synthetic approach was developed for facile preparation of 5-formyl-2'-deoxycytidine and 5-hydroxymethyl-2'-deoxycytidine phosphoramidites. Upon introducing organic solvent components and copper catalysts, C5-methyl groups of 5-methyl-2'-deoxycytidine and thymidine were readily oxidized to formyl and hydroxyl functionality, respectively. Standard solid phase DNA synthesis and conventional deprotection methods were applicable to synthesize 5-formyl- or 5-hydroxymethyl-cytosine containing DNA oligonucleotides, which were used to study the effect of epigenetic modifications on DNA thermal dynamic stability.
Collapse
|
19
|
Facile enzymatic synthesis of base J-containing oligodeoxyribonucleotides and an analysis of the impact of base J on DNA replication in cells. PLoS One 2014; 9:e103335. [PMID: 25061973 PMCID: PMC4111573 DOI: 10.1371/journal.pone.0103335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/26/2014] [Indexed: 12/17/2022] Open
Abstract
We reported here the use of T4 bacteriophage β-glucosyltransferase (T4 β-GT) for the facile synthesis of base J-containing oligodeoxyribonucleotides (ODNs). We found that the enzyme could catalyze the glucosylation of 5-hydroxymethyl-2-deoxyuridine (5hmU) in both single- and double-stranded ODNs, though the latter reaction occurred only when 5hmU was mispaired with a guanine. In addition, base J blocked moderately DNA replication, but it did not induce mutations during replication in human cells.
Collapse
|
20
|
Wang P, Williams RT, Guerrero CR, Ji D, Wang Y. Fragmentation of electrospray-produced deprotonated ions of oligodeoxyribonucleotides containing an alkylated or oxidized thymidine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1167-1176. [PMID: 24664806 PMCID: PMC4057974 DOI: 10.1007/s13361-014-0848-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 06/03/2023]
Abstract
Alkylation and oxidation constitute major routes of DNA damage induced by endogenous and exogenous genotoxic agents. Understanding the biological consequences of DNA lesions often necessitates the availability of oligodeoxyribonucleotide (ODN) substrates harboring these lesions, and sensitive and robust methods for validating the identities of these ODNs. Tandem mass spectrometry is well suited for meeting these latter analytical needs. In the present study, we evaluated how the incorporation of an ethyl group to different positions (i.e., O(2), N3, and O(4)) of thymine and the oxidation of its 5-methyl carbon impact collisionally activated dissociation (CAD) pathways of electrospray-produced deprotonated ions of ODNs harboring these thymine modifications. Unlike an unmodified thymine, which often manifests poor cleavage of the C3'-O3' bond, the incorporation of an alkyl group to the O(2) position and, to a much lesser extent, the O(4) position, but not the N3 position of thymine, led to facile cleavage of the C3'-O3' bond on the 3' side of the modified thymine. Similar efficient chain cleavage was observed when thymine was oxidized to 5-formyluracil or 5-carboxyluracil, but not 5-hydroxymethyluracil. Additionally, with the support of computational modeling, we revealed that proton affinity and acidity of the modified nucleobases govern the fragmentation of ODNs containing the alkylated and oxidized thymidine derivatives, respectively. These results provided important insights into the effects of thymine modifications on ODN fragmentation.
Collapse
Affiliation(s)
- Pengcheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403
| | - Renee T. Williams
- Department of Chemistry, University of California, Riverside, California 92521-0403
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0343
| | - Candace R. Guerrero
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Debin Ji
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403
- Department of Chemistry, University of California, Riverside, California 92521-0403
| |
Collapse
|
21
|
Richa R, Sinha RP. Hydroxymethylation of DNA: an epigenetic marker. EXCLI JOURNAL 2014; 13:592-610. [PMID: 26417286 DOI: 10.17877/de290r-181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/08/2003] [Indexed: 05/25/2023]
Affiliation(s)
- Rajneesh Richa
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, India
| | - Rajeshwar P Sinha
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
22
|
Zhao C, Wang H, Zhao B, Li C, Yin R, Song M, Liu B, Liu Z, Jiang G. Boronic acid-mediated polymerase chain reaction for gene- and fragment-specific detection of 5-hydroxymethylcytosine. Nucleic Acids Res 2014; 42:e81. [PMID: 24682822 PMCID: PMC4027215 DOI: 10.1093/nar/gku216] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gene- or fragment-specific detection of newly recognized deoxyribonucleic acid (DNA) base 5-hydroxymethylcytosine (5hmC) will provide insights into its critical functions in development and diseases, and is also important for screening 5hmC-rich genes as an indicator of epigenetic states, pathogenic processes and pharmacological responses. Current analytical technologies for gene-specific detection of 5hmC are heavily dependent on glucosylated 5hmC-resistant restriction endonuclease cleavage. Here, we find that boronic acid (BA) can inhibit the amplification activity of Taq DNA polymerase for replicating glucosylated 5hmC bases in template DNA by interacting with their glucose moiety. On the basis of this finding, we propose for the first time a BA-mediated polymerase chain reaction (PCR) assay for rapid and sensitive detection of gene- or fragment-specific 5hmC without restriction-assay-like sequence limitations. To optimize the BA-mediated PCR assay, we further tested BA derivatives and show that one BA derivative, 2-(2′-chlorobenzyloxy) phenylboronic acid, displays the highest inhibitory efficiency. Using the optimized assay, we demonstrate the enrichment of 5hmC in an intron region of Pax5 gene (a member of the paired box family of transcription factors) in mouse embryonic stem cells. Our work potentially opens a new way for the screening and identification of 5hmC-rich genes and for high throughput analysis of 5hmC in mammalian cells.
Collapse
Affiliation(s)
- Chao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bailin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Cuiping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruichuan Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Baodong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhen Liu
- Department of Chemistry, Nanjing University, Nanjing 210093, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
23
|
Ikeda S, Tainaka K, Matsumoto K, Shinohara Y, Ode KL, Susaki EA, Ueda HR. Non-enzymatic DNA cleavage reaction induced by 5-ethynyluracil in methylamine aqueous solution and application to DNA concatenation. PLoS One 2014; 9:e92369. [PMID: 24647759 PMCID: PMC3960239 DOI: 10.1371/journal.pone.0092369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 02/21/2014] [Indexed: 11/19/2022] Open
Abstract
DNA can be concatenated by hybridization of DNA fragments with protruding single-stranded termini. DNA cleavage occurring at a nucleotide containing a DNA base analogue is a useful method to obtain DNA with designed protruding termini. Here, we report a novel non-enzymatic DNA cleavage reaction for DNA concatenation. We found that DNA is cleaved at a nucleotide containing 5-ethynyluracil in a methylamine aqueous solution to generate 5′-phosphorylated DNA fragment as a cleavage product. We demonstrated that the reaction can be applied to DNA concatenation of PCR-amplified DNA fragments. This novel non-enzymatic DNA cleavage reaction is a simple practical approach for DNA concatenation.
Collapse
Affiliation(s)
- Shuji Ikeda
- Laboratory for Synthetic Biology, Quantitative Biology Center, RIKEN, Chuo-ku, Kobe, Japan
| | - Kazuki Tainaka
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Katsuhiko Matsumoto
- Laboratory for Synthetic Biology, Quantitative Biology Center, RIKEN, Chuo-ku, Kobe, Japan
| | - Yuta Shinohara
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Etsuo A Susaki
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroki R Ueda
- Laboratory for Synthetic Biology, Quantitative Biology Center, RIKEN, Chuo-ku, Kobe, Japan; Laboratory for Systems Biology, Center for Developmental Biology, RIKEN, Chuo-ku, Kobe, Japan; Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
24
|
A validated quantitative liquid chromatography-tandem quadrupole mass spectrometry method for monitoring isotopologues to evaluate global modified cytosine ratios in genomic DNA. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 953-954:38-47. [PMID: 24568937 DOI: 10.1016/j.jchromb.2014.01.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/24/2014] [Accepted: 01/29/2014] [Indexed: 12/17/2022]
Abstract
5-Hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) represent important epigenetic modifications to DNA, and a sensitive analytical method is required to determine the levels of 5hmC in the genomic DNA of tumor cells or cultured cell lines because 5hmC is present at particular low levels in these cells. We have developed a sensitive liquid chromatography-tandem quadrupole mass spectrometric method for quantifying 5-hydroxymethyldeoxycytidine (5hmdC), 5-methyldeoxycytidine (5mdC), and deoxyguanosine (dG) levels using stable isotope labeled internal standards, and used this method to estimate the global level of 2 modified cytosines in genomic DNA prepared from small number of cells. The quantification limits for 5hmdC, 5mdC and dG were 20pM, 2nM and 10nM, respectively. MRM transitions for isotopologue (isotopologue-MRM) were used to quantify the 5mdC and dG levels because of the abundance of these nucleosides relative to 5hmdC. The use of isotopologue-MRM for the abundant nucleosides could also avoid the saturation of the detector, and allow for all three nucleosides to be analyzed simultaneously without the need for the dilution and re-injection of samples into the instrument. The global ratios of modified cytosine nucleosides to dG were estimated following the quantification of each nucleoside in the hydrolysate of genomic DNA. The limit of estimation for the global 5hmC level was less than 0.001% using 200ng of DNA. Using this method, we found that MLL-TET1, which a fusion protein in acute myelogenous leukemia, did not produce 5hmC, but interfered with TET1 activity to produce 5hmC in cells. Our analytical method is therefore a valuable tool for further studies aiming at a deeper understanding of the role of modified cytosine in the epigenetic regulation of cells.
Collapse
|
25
|
Fulneček J, Kovařík A. How to interpret methylation sensitive amplified polymorphism (MSAP) profiles? BMC Genet 2014; 15:2. [PMID: 24393618 PMCID: PMC3890580 DOI: 10.1186/1471-2156-15-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/10/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND DNA methylation plays a key role in development, contributes to genome stability, and may also respond to external factors supporting adaptation and evolution. To connect different types of stimuli with particular biological processes, identifying genome regions with altered 5-methylcytosine distribution at a genome-wide scale is important. Many researchers are using the simple, reliable, and relatively inexpensive Methylation Sensitive Amplified Polymorphism (MSAP) method that is particularly useful in studies of epigenetic variation. However, electrophoretic patterns produced by the method are rather difficult to interpret, particularly when MspI and HpaII isoschizomers are used because these enzymes are methylation-sensitive, and any C within the CCGG recognition motif can be methylated in plant DNA. RESULTS Here, we evaluate MSAP patterns with respect to current knowledge of the enzyme activities and the level and distribution of 5-methylcytosine in plant and vertebrate genomes. We discuss potential caveats related to complex MSAP patterns and provide clues regarding how to interpret them. We further show that addition of combined HpaII + MspI digestion would assist in the interpretation of the most controversial MSAP pattern represented by the signal in the HpaII but not in the MspI profile. CONCLUSIONS We recommend modification of the MSAP protocol that definitely discerns between putative hemimethylated mCCGG and internal CmCGG sites. We believe that our view and the simple improvement will assist in correct MSAP data interpretation.
Collapse
Affiliation(s)
- Jaroslav Fulneček
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno CZ-612 65, Czech Republic
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno CZ-612 65, Czech Republic
| |
Collapse
|
26
|
Sowers JL, Johnson KM, Conrad C, Patterson JT, Sowers LC. The role of inflammation in brain cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 816:75-105. [PMID: 24818720 DOI: 10.1007/978-3-0348-0837-8_4] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Malignant brain tumors are among the most lethal of human tumors, with limited treatment options currently available. A complex array of recurrent genetic and epigenetic changes has been observed in gliomas that collectively result in derangements of common cell signaling pathways controlling cell survival, proliferation, and invasion. One important determinant of gene expression is DNA methylation status, and emerging studies have revealed the importance of a recently identified demethylation pathway involving 5-hydroxymethylcytosine (5hmC). Diminished levels of the modified base 5hmC is a uniform finding in glioma cell lines and patient samples, suggesting a common defect in epigenetic reprogramming. Within the tumor microenvironment, infiltrating immune cells increase oxidative DNA damage, likely promoting both genetic and epigenetic changes that occur during glioma evolution. In this environment, glioma cells are selected that utilize multiple metabolic changes, including changes in the metabolism of the amino acids glutamate, tryptophan, and arginine. Whereas altered metabolism can promote the destruction of normal tissues, glioma cells exploit these changes to promote tumor cell survival and to suppress adaptive immune responses. Further understanding of these metabolic changes could reveal new strategies that would selectively disadvantage tumor cells and redirect host antitumor responses toward eradication of these lethal tumors.
Collapse
Affiliation(s)
- James L Sowers
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | | | | | | | | |
Collapse
|
27
|
Ma L, Su M, Li T, Wang Z. Microarray-based resonance light scattering assay for detecting DNA methylation and human DNA methyltransferase simultaneously with high sensitivity. Analyst 2014; 139:3537-40. [DOI: 10.1039/c4an00336e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A microarray-based resonance light scattering assay has been proposed for sensitively detecting DNA methylation and DNA methyltransferase.
Collapse
Affiliation(s)
- Lan Ma
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, P. R. China
- University of Chinese Academy of Sciences
| | - Min Su
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, P. R. China
- University of Chinese Academy of Sciences
| | - Tao Li
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, P. R. China
| |
Collapse
|
28
|
Schröder AS, Steinbacher J, Steigenberger B, Gnerlich FA, Schiesser S, Pfaffeneder T, Carell T. Synthesis of a DNA Promoter Segment Containing All Four Epigenetic Nucleosides: 5-Methyl-, 5-Hydroxymethyl-, 5-Formyl-, and 5-Carboxy-2′-Deoxycytidine. Angew Chem Int Ed Engl 2013; 53:315-8. [DOI: 10.1002/anie.201308469] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Indexed: 01/19/2023]
|
29
|
Schröder AS, Steinbacher J, Steigenberger B, Gnerlich FA, Schiesser S, Pfaffeneder T, Carell T. Synthese eines DNA-Promotorsegments mit allen vier epigenetischen Nukleosiden: 5-Methyl-, 5-Hydroxymethyl-, 5-Formyl- und 5-Carboxy-2′-Desoxycytidin. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201308469] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
30
|
Schiesser S, Pfaffeneder T, Sadeghian K, Hackner B, Steigenberger B, Schröder AS, Steinbacher J, Kashiwazaki G, Höfner G, Wanner KT, Ochsenfeld C, Carell T. Deamination, oxidation, and C-C bond cleavage reactivity of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine. J Am Chem Soc 2013; 135:14593-9. [PMID: 23980549 DOI: 10.1021/ja403229y] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Three new cytosine derived DNA modifications, 5-hydroxymethyl-2'-deoxycytidine (hmdC), 5-formyl-2'-deoxycytidine (fdC) and 5-carboxy-2'-deoxycytidine (cadC) were recently discovered in mammalian DNA, particularly in stem cell DNA. Their function is currently not clear, but it is assumed that in stem cells they might be intermediates of an active demethylation process. This process may involve base excision repair, C-C bond cleaving reactions or deamination of hmdC to 5-hydroxymethyl-2'-deoxyuridine (hmdU). Here we report chemical studies that enlighten the chemical reactivity of the new cytosine nucleobases. We investigated their sensitivity toward oxidation and deamination and we studied the C-C bond cleaving reactivity of hmdC, fdC, and cadC in the absence and presence of thiols as biologically relevant (organo)catalysts. We show that hmdC is in comparison to mdC rapidly oxidized to fdC already in the presence of air. In contrast, deamination reactions were found to occur only to a minor extent. The C-C bond cleavage reactions require the presence of high concentration of thiols and are acid catalyzed. While hmdC dehydroxymethylates very slowly, fdC and especially cadC react considerably faster to dC. Thiols are active site residues in many DNA modifiying enzymes indicating that such enzymes could play a role in an alternative active DNA demethylation mechanism via deformylation of fdC or decarboxylation of cadC. Quantum-chemical calculations support the catalytic influence of a thiol on the C-C bond cleavage.
Collapse
Affiliation(s)
- Stefan Schiesser
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, ‡Chair for Theoretical Chemistry at the Department of Chemistry, §Center for Drug Research at the Department of Pharmacy, Ludwig-Maximilians-Universität München , Butenandtstrasse 5-13, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cadet J, Wagner JR. TET enzymatic oxidation of 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 764-765:18-35. [PMID: 24045206 DOI: 10.1016/j.mrgentox.2013.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 09/04/2013] [Indexed: 12/14/2022]
Abstract
5-Methylcytosine and methylated histones have been considered for a long time as stable epigenetic marks of chromatin involved in gene regulation. This concept has been recently revisited with the detection of large amounts of 5-hydroxymethylcytosine, now considered as the sixth DNA base, in mouse embryonic stem cells, Purkinje neurons and brain tissues. The dioxygenases that belong to the ten eleven translocation (TET) oxygenase family have been shown to initiate the formation of this methyl oxidation product of 5-methylcytosine that is also generated although far less efficiently by radical reactions involving hydroxyl radical and one-electron oxidants. It was found as additional striking data that iterative TET-mediated oxidation of 5-hydroxymethylcytosine gives rise to 5-formylcytosine and 5-carboxylcytosine. This survey focuses on chemical and biochemical aspects of the enzymatic oxidation reactions of 5-methylcytosine that are likely to be involved in active demethylation pathways through the implication of enzymatic deamination of 5-methylcytosine oxidation products and/or several base excision repair enzymes. The high biological relevance of the latter modified bases explains why major efforts have been devoted to the design of a broad range of assays aimed at measuring globally or at the single base resolution, 5-hydroxymethylcytosine and the two other oxidation products in the DNA of cells and tissues. Another critical issue that is addressed in this review article deals with the assessment of the possible role of 5-methylcytosine oxidation products, when present in elevated amounts in cellular DNA, in terms of mutagenesis and interference with key cellular enzymes including DNA and RNA polymerases.
Collapse
Affiliation(s)
- Jean Cadet
- Direction des Sciences de la Matière, Institut Nanosciences et Cryogénie, CEA/Grenoble, 38054 Grenoble, France; Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec JIH 5N4, Canada.
| | - J Richard Wagner
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec JIH 5N4, Canada.
| |
Collapse
|
32
|
Kore AR, Yang B, Srinivasan B. Concise synthesis of 5-methyl-, 5-formyl, and 5-carboxy analogues of 2′-deoxycytidine-5′-triphosphate. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.07.102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Longo A, Librizzi M, Naselli F, Caradonna F, Tobiasch E, Luparello C. PTHrP in differentiating human mesenchymal stem cells: transcript isoform expression, promoter methylation, and protein accumulation. Biochimie 2013; 95:1888-96. [PMID: 23810909 DOI: 10.1016/j.biochi.2013.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/18/2013] [Indexed: 12/19/2022]
Abstract
Human PTHrP gene displays a complex organization with nine exons producing diverse mRNA variants due to alternative splicing at 5' and 3' ends and the existence of three different transcriptional promoters (P1, P2 and P3), two of which (P2 and P3) contain CpG islands. It is known that the expression of PTHrP isoforms may be differentially regulated in a developmental stage- and tissue-specific manner. To search for novel molecular markers of stemness/differentiation, here we have examined isoform expression in fat-derived mesenchymal stem cells both maintained in stem conditions and induced toward adipo- and osteogenesis. In addition, the expression of the splicing isoforms derived from P2 and P3 promoters was correlated to the state of methylation of the latter. Moreover, we also performed a quantitative evaluation of intracellular and secreted PTHrP protein product in undifferentiated stem cells and in parallel cultures at various differentiation stages. The data obtained indicate that from the stemness condition to that of osteo- and adipo-genic differentiated cells, the expression of isoforms becomes increasingly selective, thereby being a potential gene signature for the monitoring of cell stem or committed/differentiating state and that the switching-off of PTHrP isoform expression is mostly promoter methylation-dependent. Moreover, PTHrP intracellular retention is down-regulated in osteo-differentiating cells whereas the secretion of the protein in the extracellular medium is up-regulated with respect to stem cells, thereby suggesting that these variations of the intracellular and extracellular levels of PTHrP could potentially be enclosed in the list of the available protein signature of osteogenic differentiation.
Collapse
|
34
|
Steigenberger B, Schiesser S, Hackner B, Brandmayr C, Laube SK, Steinbacher J, Pfaffeneder T, Carell T. Synthesis of 5-hydroxymethyl-, 5-formyl-, and 5-carboxycytidine-triphosphates and their incorporation into oligonucleotides by polymerase chain reaction. Org Lett 2013; 15:366-9. [PMID: 23286330 DOI: 10.1021/ol3033219] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The synthesis of the triphosphates of 5-hydroxymethyl-, 5-formyl-, and 5-carboxycytidine and the incorporation of these building blocks into long DNA fragments using the polymerase chain reaction (PCR) are reported. In this way DNA fragments containing multiple hmC, fC, and caC nucleobases are readily accessible.
Collapse
Affiliation(s)
- Barbara Steigenberger
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Podio M, Rodríguez MP, Felitti S, Stein J, Martínez EJ, Siena LA, Quarin CL, Pessino SC, Ortiz JPA. Sequence characterization, in silico mapping and cytosine methylation analysis of markers linked to apospory in Paspalum notatum. Genet Mol Biol 2012; 35:827-37. [PMID: 23271945 PMCID: PMC3526092 DOI: 10.1590/s1415-47572012005000070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 07/01/2012] [Indexed: 12/20/2022] Open
Abstract
In previous studies we reported the identification of several AFLP, RAPD and RFLP molecular markers linked to apospory in Paspalum notatum. The objective of this work was to sequence these markers, obtain their flanking regions by chromosome walking and perform an in silico mapping analysis in rice and maize. The methylation status of two apospory-related sequences was also assessed using methylation-sensitive RFLP experiments. Fourteen molecular markers were analyzed and several protein-coding sequences were identified. Copy number estimates and RFLP linkage analysis showed that the sequence PnMAI3 displayed 2–4 copies per genome and linkage to apospory. Extension of this marker by chromosome walking revealed an additional protein-coding sequence mapping in silico in the apospory-syntenic regions of rice and maize. Approximately 5 kb corresponding to different markers were characterized through the global sequencing procedure. A more refined analysis based on sequence information indicated synteny with segments of chromosomes 2 and 12 of rice and chromosomes 3 and 5 of maize. Two loci associated with apomixis locus were tested in methylation-sensitive RFLP experiments using genomic DNA extracted from leaves. Although both target sequences were methylated no methylation polymorphisms associated with the mode of reproduction were detected.
Collapse
Affiliation(s)
- Maricel Podio
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Santa Fe, Argentina. ; Instituto de Botánica del Nordeste, Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kriukienė E, Liutkevičiūtė Z, Klimašauskas S. 5-Hydroxymethylcytosine--the elusive epigenetic mark in mammalian DNA. Chem Soc Rev 2012; 41:6916-30. [PMID: 22842880 PMCID: PMC3467341 DOI: 10.1039/c2cs35104h] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Over the past decade, epigenetic phenomena claimed a central role in cell regulatory processes and proved to be important factors for understanding complex human diseases. One of the best understood epigenetic mechanisms is DNA methylation. In the mammalian genome, cytosines (C) were long known to exist in two functional states: unmethylated or methylated at the 5-position of the pyrimidine ring (5mC). Recent studies of genomic DNA from the human and mouse brain, neurons and from mouse embryonic stem cells found that a substantial fraction of 5mC in CpG dinucleotides is converted to 5-hydroxymethyl-cytosine (hmC) by the action of 2-oxoglutarate- and Fe(ii)-dependent oxygenases of the TET family. These findings provided important clues in a long elusive mechanism of active DNA demethylation and bolstered a fresh wave of studies in the area of epigenetic regulation in mammals. This review is dedicated to critical assessment of the most popular techniques with respect to their suitability for analysis of hmC in mammalian genomes. It also discusses the most recent data on biochemical and chemical aspects of the formation and further conversion of this nucleobase in DNA and its possible biological roles in cell differentiation, embryogenesis and brain function.
Collapse
Affiliation(s)
- Edita Kriukienė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Graičiūno 8, LT-02241 Vilnius, Lithuania
| | | | | |
Collapse
|
37
|
Ichiyanagi K. Inhibition of MspI cleavage activity by hydroxymethylation of the CpG site: a concern for DNA modification studies using restriction endonucleases. Epigenetics 2012; 7:131-6. [PMID: 22395461 DOI: 10.4161/epi.7.2.18909] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In mammalian genomic DNA, cytosine methylation predominantly occurs at CpG dinucleotides and provides epigenetic information. In some cells, 5-methyl-cytosine (5-mC) can be further converted to 5-hydroxymethyl-cytosine (5-hmC) by the ten-eleven translocation family of proteins. MspI restriction endonuclease has been used to analyze these modified cytosines. However, the kinetic analysis in this study revealed that MspI activity is dramatically decreased by symmetrical hydroxymethylation of its recognition sequence and partly inhibited by hemi-hydroxymethylation, whereas TaqI and HaeIII are relatively resistant to hydroxymethylation. Therefore, DNA modification studies that use MspI, for example, reduced representation bisulfite shotgun sequencing, quantitative analysis of 5-hmC, and cleavage-sensitivity analysis, should be carefully interpreted.
Collapse
Affiliation(s)
- Kenji Ichiyanagi
- Division of Epigenomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
38
|
Khare T, Pai S, Koncevicius K, Pal M, Kriukiene E, Liutkeviciute Z, Irimia M, Jia P, Ptak C, Xia M, Tice R, Tochigi M, Moréra S, Nazarians A, Belsham D, Wong AHC, Blencowe BJ, Wang SC, Kapranov P, Kustra R, Labrie V, Klimasauskas S, Petronis A. 5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary. Nat Struct Mol Biol 2012; 19:1037-43. [PMID: 22961382 PMCID: PMC3465469 DOI: 10.1038/nsmb.2372] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/02/2012] [Indexed: 02/07/2023]
Abstract
5-hydroxymethylcytosine (5-hmC), a derivative of 5-methylcytosine (5-mC), is abundant in the brain for unknown reasons. Our goal was to characterize the genomic distribution of 5-hmC and 5-mC in human and mouse tissues. We assayed 5-hmC using glucosylation coupled with restriction enzyme digestion, and interrogation on microarrays. We detected 5-hmC enrichment in genes with synapse-related functions in both human and mouse brain. We also identified substantial tissue-specific differential distributions of these DNA modifications at the exon-intron boundary, in both human and mouse. This boundary change was mainly due to 5-hmC in the brain, but due to 5-mC in non-neural contexts. This pattern was replicated in multiple independent datasets and with single molecule sequencing. Moreover, in human frontal cortex, constitutive exons contained higher levels of 5-hmC, relative to alternatively-spliced exons. Our study suggests a novel role for 5-hmC in RNA splicing and synaptic function in the brain.
Collapse
Affiliation(s)
- Tarang Khare
- The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Dai Q, He C. Preparation of DNA containing 5-hydroxymethyl-2'-deoxycytidine modification through phosphoramidites with TBDMS as 5-hydroxymethyl protecting group. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2011; Chapter 4:Unit 4.47.1-18. [PMID: 22147420 PMCID: PMC3666178 DOI: 10.1002/0471142700.nc0447s47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This unit describes procedures for preparation of two phosphoramidite building blocks III and IV, both containing a TBDMS as 5-CH(2)OH-protecting group. Phosphoramidites III and IV allow efficient incorporation of 5-hmC into DNA and a "one-step" deprotection procedure to cleanly remove all the protecting groups. A "two-step" deprotection strategy is compatible with ultramild DNA synthesis, which enables the synthesis of 5 hmC-containing DNA with additional modifications. Methods are also presented for their incorporation into oligonucleotides by solid-phase synthesis, subsequent deprotection, and HPLC analysis.
Collapse
Affiliation(s)
- Qing Dai
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
40
|
Münzel M, Lischke U, Stathis D, Pfaffeneder T, Gnerlich FA, Deiml CA, Koch SC, Karaghiosoff K, Carell T. Improved synthesis and mutagenicity of oligonucleotides containing 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine. Chemistry 2011; 17:13782-8. [PMID: 22069110 DOI: 10.1002/chem.201102782] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Indexed: 11/10/2022]
Abstract
5-Formylcytosine (fC or (5-CHO)dC) and 5-carboxylcytosine (caC or (5-COOH)dC) have recently been identified as constituents of mammalian DNA. The nucleosides are formed from 5-methylcytosine (mC or (5-Me)dC) via 5-hydroxymethylcytosine (hmC or (5-HOMe)dC) and are possible intermediates of an active DNA demethylation process. Here we show efficient syntheses of phosphoramidites which enable the synthesis of DNA strands containing these cytosine modifications based on Pd(0)-catalyzed functionalization of 5-iododeoxycytidine. The first crystal structure of fC reveals the existence of an intramolecular H-bond between the exocyclic amine and the formyl group, which controls the conformation of the formyl substituent. Using a newly designed in vitro mutagenicity assay we show that fC and caC are only marginally mutagenic, which is a prerequisite for the bases to function as epigenetic control units.
Collapse
Affiliation(s)
- Martin Münzel
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Song CX, He C. Bioorthogonal labeling of 5-hydroxymethylcytosine in genomic DNA and diazirine-based DNA photo-cross-linking probes. Acc Chem Res 2011; 44:709-17. [PMID: 21539303 DOI: 10.1021/ar2000502] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA is not merely a combination of four genetic codes, namely A, T, C, and G. It also contains minor modifications that play crucial roles throughout biology. For example, the fifth DNA base, 5-methylcytosine (5-mC), which accounts for ∼1% of all the nucleotides in mammalian genomic DNA, is a vital epigenetic mark. It impacts a broad range of biological functions, from development to cancer. Recently, an oxidized form of 5-methylcytosine, 5-hydroxymethylcytosine (5-hmC), was found to constitute the sixth base in the mammalian genome; it was believed to be another crucial epigenetic mark. Unfortunately, further study of this newly discovered DNA base modification has been hampered by inadequate detection and sequencing methods, because current techniques fail to differentiate 5-hmC from 5-mC. The immediate challenge, therefore, is to develop robust methods for ascertaining the positions of 5-hmC within the mammalian genome. In this Account, we describe our development of the first bioorthogonal, selective labeling of 5-hmC to specifically address this challenge. We utilize β-glucosyltransferase (βGT) to transfer an azide-modified glucose onto 5-hmC in genomic DNA. The azide moiety enables further bioorthogonal click chemistry to install a biotin group, which allows for detection, affinity enrichment, and, most importantly, deep sequencing of the 5-hmC-containing DNA. With this highly effective and selective method, we revealed the first genome-wide distribution of 5-hmC in the mouse genome and began to shed further light on the biology of 5-hmC. The strategy lays the foundation for developing high-throughput, single-base-resolution sequencing methods for 5-hmC in mammalian genomes in the future. DNA and RNA are not static inside cells. They interact with protein and other DNA and RNA in fundamental biological processes such as replication, transcription, translation, and DNA and RNA modification and repair. The ability to investigate these interactions will also be enhanced by developing and utilizing bioorthogonal probes. We have chosen the photoreactive diazirine photophore as a bioorthogonal moiety to develop nucleic acid probes. The small size and unique photo-cross-linking activity of diazirine enabled us to develop a series of novel cross-linking probes to streamline the study of protein-nucleic acid and nucleic acid-nucleic acid interactions. In the second half of this Account, we highlight a few examples of these probes.
Collapse
Affiliation(s)
- Chun-Xiao Song
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
42
|
Song CX, Sun Y, Dai Q, Lu XY, Yu M, Yang CG, He C. Detection of 5-hydroxymethylcytosine in DNA by transferring a keto-glucose by using T4 phage β-glucosyltransferase. Chembiochem 2011; 12:1682-5. [PMID: 21656634 PMCID: PMC4065167 DOI: 10.1002/cbic.201100278] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Indexed: 11/05/2022]
Affiliation(s)
- Chun-Xiao Song
- Department of Chemistry and Institute for Biophysical Dynamics The University of Chicago 929 East 57th Street, Chicago, IL, 60637 (USA)
| | - Yao Sun
- Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road, Shanghai, 201203 (China)
| | - Qing Dai
- Department of Chemistry and Institute for Biophysical Dynamics The University of Chicago 929 East 57th Street, Chicago, IL, 60637 (USA)
| | - Xing-Yu Lu
- Department of Chemistry and Institute for Biophysical Dynamics The University of Chicago 929 East 57th Street, Chicago, IL, 60637 (USA)
| | - Miao Yu
- Department of Chemistry and Institute for Biophysical Dynamics The University of Chicago 929 East 57th Street, Chicago, IL, 60637 (USA)
| | - Cai-Guang Yang
- Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road, Shanghai, 201203 (China)
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics The University of Chicago 929 East 57th Street, Chicago, IL, 60637 (USA)
| |
Collapse
|
43
|
Münzel M, Globisch D, Carell T. 5-Hydroxymethylcytosine, the sixth base of the genome. Angew Chem Int Ed Engl 2011; 50:6460-8. [PMID: 21688365 DOI: 10.1002/anie.201101547] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Indexed: 01/17/2023]
Abstract
5-Hydroxymethylcytosine (hmC) was recently discovered as a new constituent of mammalian DNA. Besides 5-methylcytosine (mC), it is the only other modified base in higher organisms. The discovery is of enormous importance because it shows that the methylation of cytosines to imprint epigenetic information is not a final chemical step that leads to gene silencing but that further chemistry occurs at the methyl group that might have regulatory function. Recent progress in hmC detection--most notably LC-MS and glucosyltransferase assays--helped to decipher the precise distribution of hmC in the body. This led to the surprising finding that, in contrast to constant mC levels, the hmC levels are strongly tissue-specific. The highest values of hmC are found in the central nervous system. It was furthermore discovered that hmC is involved in regulating the pluripotency of stem cells and that it is connected to the processes of cellular development and carcinogenesis. Evidence is currently accumulating that hmC may not exclusively be an intermediate of an active demethylation process, but that it functions instead as an important epigenetic marker.
Collapse
Affiliation(s)
- Martin Münzel
- Center for Integrated Protein Science, Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 Munich, Germany
| | | | | |
Collapse
|
44
|
Münzel M, Globisch D, Carell T. 5-Hydroxymethylcytosin, die sechste Base des Genoms. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101547] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Svilar D, Goellner EM, Almeida KH, Sobol RW. Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage. Antioxid Redox Signal 2011; 14:2491-507. [PMID: 20649466 PMCID: PMC3096496 DOI: 10.1089/ars.2010.3466] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nuclear and mitochondrial genomes are under continuous assault by a combination of environmentally and endogenously derived reactive oxygen species, inducing the formation and accumulation of mutagenic, toxic, and/or genome-destabilizing DNA lesions. Failure to resolve these lesions through one or more DNA-repair processes is associated with genome instability, mitochondrial dysfunction, neurodegeneration, inflammation, aging, and cancer, emphasizing the importance of characterizing the pathways and proteins involved in the repair of oxidative DNA damage. This review focuses on the repair of oxidative damage-induced lesions in nuclear and mitochondrial DNA mediated by the base excision repair (BER) pathway in mammalian cells. We discuss the multiple BER subpathways that are initiated by one of 11 different DNA glycosylases of three subtypes: (a) bifunctional with an associated β-lyase activity; (b) monofunctional; and (c) bifunctional with an associated β,δ-lyase activity. These three subtypes of DNA glycosylases all initiate BER but yield different chemical intermediates and hence different BER complexes to complete repair. Additionally, we briefly summarize alternate repair events mediated by BER proteins and the role of BER in the repair of mitochondrial DNA damage induced by ROS. Finally, we discuss the relation of BER and oxidative DNA damage in the onset of human disease.
Collapse
Affiliation(s)
- David Svilar
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
46
|
Dai Q, Song CX, Pan T, He C. Syntheses of two 5-hydroxymethyl-2'-deoxycytidine phosphoramidites with TBDMS as the 5-hydroxymethyl protecting group and their incorporation into DNA. J Org Chem 2011; 76:4182-8. [PMID: 21462947 PMCID: PMC4031239 DOI: 10.1021/jo200566d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
5-Hydroxymethylcytosine (5-hmC) is a newly discovered DNA base modification in mammalian genomic DNA that is proposed to be a major epigenetic mark. We report here the syntheses of two new versions of phosphoramidites III and IV from 5-iodo-2'-deoxyuridine in 18% and 32% overall yields, respectively, with TBDMS as the 5-hydroxyl protecting group. Phosphoramidites III and IV allow efficient incorporation of 5-hmC into DNA and a "one-step" deprotection procedure to cleanly remove all the protecting groups. A "two-step" deprotection strategy is compatible with ultramild DNA synthesis, which enables the synthesis of 5hmC-containing DNA with additional modifications.
Collapse
Affiliation(s)
- Qing Dai
- Department of Chemistry, The University of Chicago, 929 E. 57th St., Chicago, Illinois, 60637 United States.
| | | | | | | |
Collapse
|
47
|
Sugizaki K, Ikeda S, Yanagisawa H, Okamoto A. Facile synthesis of hydroxymethylcytosine-containing oligonucleotides and their reactivity upon osmium oxidation. Org Biomol Chem 2011; 9:4176-81. [PMID: 21499601 DOI: 10.1039/c1ob05247k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA strands containing a 5-hydroxymethylcytosine ((hm)C), which have recently been found in neuron cells and embryonic stem cells, were synthesized through a facile synthetic technique. The (hm)C-containing strands were efficiently oxidized at (hm)C using an osmium oxidation assay. The (hm)C was oxidized as easily as 5-methylcytosine, which can be distinguished from unmethylated cytosine.
Collapse
Affiliation(s)
- Kaori Sugizaki
- Advanced Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
48
|
Song CX, Yu M, Dai Q, He C. Detection of 5-hydroxymethylcytosine in a combined glycosylation restriction analysis (CGRA) using restriction enzyme Taq(α)I. Bioorg Med Chem Lett 2011; 21:5075-7. [PMID: 21524909 DOI: 10.1016/j.bmcl.2011.03.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 03/31/2011] [Indexed: 12/16/2022]
Abstract
5-Hydroxymethylcytosine (5-hmC) is a newly discovered DNA base in mammalian cells that is believed to be another important epigenetic modification. Here we report the use of a methylation-insensitive restriction enzyme Taq(α)I coupled with selective chemical labeling of 5-hmC in a combined glycosylation restriction analysis (CGRA) to detect 5-hmC in TCGA sequences. This method, differentiates fully versus hemi-hydroxymethylated cytosine in the CpG dinucleotide, adds a new tool to facilitate biological studies of 5-hmC.
Collapse
Affiliation(s)
- Chun-Xiao Song
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
49
|
Liutkevičiūtė Z, Kriukienė E, Grigaitytė I, Masevičius V, Klimašauskas S. Methyltransferase-directed derivatization of 5-hydroxymethylcytosine in DNA. Angew Chem Int Ed Engl 2011; 50:2090-3. [PMID: 21344558 DOI: 10.1002/anie.201007169] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Indexed: 01/19/2023]
Affiliation(s)
- Zita Liutkevičiūtė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, V. A. Graičiūno 8, 02241 Vilnius, Lithuania
| | | | | | | | | |
Collapse
|
50
|
Liutkevičiūtė Z, Kriukienė E, Grigaitytė I, Masevičius V, Klimašauskas S. Methyltransferase-Directed Derivatization of 5-Hydroxymethylcytosine in DNA. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007169] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|