1
|
Kang DD, Li H, Dong Y. Advancements of in vitro transcribed mRNA (IVT mRNA) to enable translation into the clinics. Adv Drug Deliv Rev 2023; 199:114961. [PMID: 37321375 PMCID: PMC10264168 DOI: 10.1016/j.addr.2023.114961] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
The accelerated progress and approval of two mRNA-based vaccines to address the SARS-CoV-2 virus were unprecedented. This record-setting feat was made possible through the solid foundation of research on in vitro transcribed mRNA (IVT mRNA) which could be utilized as a therapeutic modality. Through decades of thorough research to overcome barriers to implementation, mRNA-based vaccines or therapeutics offer many advantages to rapidly address a broad range of applications including infectious diseases, cancers, and gene editing. Here, we describe the advances that have supported the adoption of IVT mRNA in the clinics, including optimization of the IVT mRNA structural components, synthesis, and lastly concluding with different classes of IVT RNA. Continuing interest in driving IVT mRNA technology will enable a safer and more efficacious therapeutic modality to address emerging and existing diseases.
Collapse
Affiliation(s)
- Diana D Kang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States; Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Haoyuan Li
- Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States; Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center; Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, United States; Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
2
|
Gamper H, McCormick C, Makhamreh A, Wanunu M, Rouhanifard SH, Hou YM. Enzymatic synthesis of RNA standards for mapping and quantifying RNA modifications in sequencing analysis. Methods Enzymol 2023; 692:127-153. [PMID: 37925177 DOI: 10.1016/bs.mie.2023.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Synthesis of RNA standards that contain an internal site-specific modification is important for mapping and quantification of the modified nucleotide in sequencing analysis. While RNA containing a site-specific modification can be readily synthesized by solid-state coupling for less than 100-mer nucleotides, longer RNA must be synthesized by enzymatic ligation in the presence of a DNA splint. However, long RNAs have structural heterogeneity, and those generated by in vitro transcription have 3'-end sequence heterogeneity, which together substantially reduce the yield of ligation. Here we describe a method of 3-part splint ligation that joins an in vitro transcribed left-arm RNA, an in vitro transcribed right-arm RNA, and a chemically synthesized modification-containing middle RNA, with an efficiency higher than previously reported. We report that the improved efficiency is largely attributed to the inclusion of a pair of DNA disruptors proximal to the ligation sites, and to a lesser extent to the homogeneous processing of the 3'-end of the left-arm RNA. The yields of the ligated long RNA are sufficiently high to afford purification to homogeneity for practical RNA research. We also verify the sequence accuracy at each ligation junction by nanopore sequencing.
Collapse
Affiliation(s)
- Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Caroline McCormick
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Amr Makhamreh
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Meni Wanunu
- Department of Bioengineering, Northeastern University, Boston, MA, United States; Department of Physics, Northeastern University, Boston, MA, United States
| | - Sara H Rouhanifard
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
3
|
General protocols for preparation of plasmid DNA template, RNA in vitro transcription, and RNA purification by denaturing PAGE. Methods Mol Biol 2013; 941:43-58. [PMID: 23065552 DOI: 10.1007/978-1-62703-113-4_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The development of methods for in vitro transcription of defined RNA sequences has been a key factor driving the tremendous advances in RNA biology over the last three decades. The numerous approaches available today to study RNA structure and function vary widely in their demands on the quality and quantity of material needed. These range for example from a few micrograms in biochemical assays, RNA structure probing or RNA folding studies using UV melting, to up to tens of milligrams or more of highly purified RNA for structural studies by nuclear magnetic resonance (NMR) or X-ray crystallography. Therefore, robust and scalable protocols, such as those described in this chapter, for production of plasmid DNA template, RNA in vitro transcription, and RNA purification, are an essential component of any RNA laboratory's experimental repertoire.
Collapse
|
4
|
Vilfan ID, Kamping W, van den Hout M, Candelli A, Hage S, Dekker NH. An RNA toolbox for single-molecule force spectroscopy studies. Nucleic Acids Res 2007; 35:6625-39. [PMID: 17905817 PMCID: PMC2095808 DOI: 10.1093/nar/gkm585] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 07/15/2007] [Accepted: 07/17/2007] [Indexed: 01/29/2023] Open
Abstract
Precise, controllable single-molecule force spectroscopy studies of RNA and RNA-dependent processes have recently shed new light on the dynamics and pathways of RNA folding and RNA-enzyme interactions. A crucial component of this research is the design and assembly of an appropriate RNA construct. Such a construct is typically subject to several criteria. First, single-molecule force spectroscopy techniques often require an RNA construct that is longer than the RNA molecules used for bulk biochemical studies. Next, the incorporation of modified nucleotides into the RNA construct is required for its surface immobilization. In addition, RNA constructs for single-molecule studies are commonly assembled from different single-stranded RNA molecules, demanding good control of hybridization or ligation. Finally, precautions to prevent RNase- and divalent cation-dependent RNA digestion must be taken. The rather limited selection of molecular biology tools adapted to the manipulation of RNA molecules, as well as the sensitivity of RNA to degradation, make RNA construct preparation a challenging task. We briefly illustrate the types of single-molecule force spectroscopy experiments that can be performed on RNA, and then present an overview of the toolkit of molecular biology techniques at one's disposal for the assembly of such RNA constructs. Within this context, we evaluate the molecular biology protocols in terms of their effectiveness in producing long and stable RNA constructs.
Collapse
Affiliation(s)
| | | | | | | | | | - Nynke H. Dekker
- Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, 2628 CJ Delft, The Netherlands
| |
Collapse
|
5
|
Bogdanov AA, Karpov VL. RNA-protein interactions at the initial and terminal stages of protein biosynthesis as investigated by Lev Kisselev (on the occasion of his 70th anniversary). BIOCHEMISTRY (MOSCOW) 2006; 71:915-24. [PMID: 16978156 DOI: 10.1134/s0006297906080141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review highlights studies by Lev L. Kisselev and his colleagues on the initial and terminal stages of protein biosynthesis, which cover the period of the last 45 years (1961-2006). They investigated spatial structure of tRNAs, structure and functions of aminoacyl-tRNA-synthetases of higher organisms, and the final step of protein synthesis, termination of translation. L. Kisselev and his team have made three major contributions to these fields of molecular biology; (i) they proposed the hypothesis on the role of anticodon triplet of tRNA in recognition by cognate aminoacyl-tRNA synthetase, which has been experimentally confirmed and is now included in textbooks; (ii) identified primary structures and functions of two eukaryotic protein factors (eRF1 and eRF3) playing a pivotal role in translation termination; (iii) characterized a structural basis for stop codon recognition by eRF1 within the ribosome and discovered the negative structural elements of eRF1, limiting its recognition of one or two stop-codons.
Collapse
Affiliation(s)
- A A Bogdanov
- Lomonosov Moscow State University, Moscow, 119992, Russia.
| | | |
Collapse
|
6
|
Hausmann Y, Roman-Sosa G, Thiel HJ, Rümenapf T. Classical swine fever virus glycoprotein E rns is an endoribonuclease with an unusual base specificity. J Virol 2004; 78:5507-12. [PMID: 15113930 PMCID: PMC400347 DOI: 10.1128/jvi.78.10.5507-5512.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The glycoprotein E(rns) of pestiviruses is a virion-associated and -secreted RNase that is involved in virulence. The requirements at the cleavage site in heteropolymeric RNA substrates were studied for E(rns). Limited digestion of heteropolymeric RNA substrates indicated a cleavage 5' of uridine residues irrespective of the preceding nucleotide (Np/U). To further study specificity radiolabeled RNA, molecules of 45 to 56 nucleotides in length were synthesized that contained no or a single Np/U cleavage site. Cleavage was only observed in substrates containing an ApU, CpU, GpU, or UpU dinucleotide and occurred in two steps, an initial NpU-specific and a consecutive unspecific degradation. The NpU-specific cleavage was resistant to 7 M urea while the second-order cleavage was sensitive to denaturation. Kinetic analyses revealed that E(rns) is a highly active endoribonuclease (k(cat)/K(m) = 2 x 10(6) to 10 x 10(6) M(-1) s(-1)) with a strong affinity to NpU containing single-stranded RNA substrates (K(m) = 85 to 260 nM).
Collapse
Affiliation(s)
- Yvonne Hausmann
- Institut für Virologie, Justus-Liebig-Universität, Frankfurter Strasse 107, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
7
|
Wichlacz A, Legiewicz M, Ciesiołka J. Generating in vitro transcripts with homogenous 3' ends using trans-acting antigenomic delta ribozyme. Nucleic Acids Res 2004; 32:e39. [PMID: 14973333 PMCID: PMC373431 DOI: 10.1093/nar/gnh037] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In most in vitro run-off transcription reactions with T7 RNA polymerase, transcripts with heterogeneous ends are commonly obtained. Towards the goal of finding a simple and effective procedure for correct processing of their 3' ends we propose the use of trans-acting antigenomic delta ribozyme. We demonstrate that the extension of nascent transcripts with only seven nucleotides complementary to the ribozyme's recognition site, and subsequently, the removal of those nucleotides with the ribozyme acting in trans, is an efficient procedure for generating transcripts with homogenous 3' ends. This approach was tested on two model RNA molecules: an in vitro transcript of yeast tRNA(Phe) and a delta ribozyme, which processed itself during transcription. The proposed procedure is a simple alternative to the use of ribozymes as cis-cleaving autocatalytic cassettes attached to transcript 3' ends. As there is little possibility that the required additional stretch, only seven nucleotides long, enters into stable interactions with other parts of the transcripts, it can be cleaved off with high efficacy.
Collapse
Affiliation(s)
- Agnieszka Wichlacz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | | | | |
Collapse
|
8
|
Walker SC, Avis JM, Conn GL. General plasmids for producing RNA in vitro transcripts with homogeneous ends. Nucleic Acids Res 2003; 31:e82. [PMID: 12888534 PMCID: PMC169970 DOI: 10.1093/nar/gng082] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In vitro transcripts of bacteriophage RNA polymerases (RNAPs), such as T7 RNAP, often suffer from a considerable degree of 3'-end heterogeneity and, with certain promoter sequences, 5'-end heterogeneity. For some applications, this transcript heterogeneity poses a significant problem. A potential solution is to incorporate ribozymes into the transcripts at the 5'- and/or 3'-end of the target RNA sequence. This approach has been used quite widely but has required the generation of new transcription vectors or PCR-derived templates for each new RNA to be studied. To overcome this limitation, we have created two general plasmids for producing homogeneous RNA transcripts: one encodes a 3'- hepatitis delta virus (HDV) ribozyme and the other, used in combination with a two-step PCR, allows the production of double [5'-hammerhead (HH) and 3'-HDV] ribozyme constructs. A choice of cloning and run-off transcription linearisation restriction enzyme sites ensures that virtually any RNA sequence can be cloned and transcribed from these plasmids. For all the RNA sequences tested, good yields of transcript were obtained. These plasmids provide the tools for the simple, rapid creation of new RNA-coding plasmids to produce milligram quantities of homogeneous in vitro transcripts for all applications.
Collapse
Affiliation(s)
- Scott C Walker
- Department of Biomolecular Sciences, UMIST, PO Box 88, Manchester M60 1QD, UK
| | | | | |
Collapse
|
9
|
Kruszka K, Barneche F, Guyot R, Ailhas J, Meneau I, Schiffer S, Marchfelder A, Echeverría M. Plant dicistronic tRNA-snoRNA genes: a new mode of expression of the small nucleolar RNAs processed by RNase Z. EMBO J 2003; 22:621-32. [PMID: 12554662 PMCID: PMC140725 DOI: 10.1093/emboj/cdg040] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) guiding modifications of ribosomal RNAs and other RNAs display diverse modes of gene organization and expression depending on the eukaryotic system: in animals most are intron encoded, in yeast many are monocistronic genes and in plants most are polycistronic (independent or intronic) genes. Here we report an unprecedented organization: plant dicistronic tRNA-snoRNA genes. In Arabidopsis thaliana we identified a gene family encoding 12 novel box C/D snoRNAs (snoR43) located just downstream from tRNA(Gly) genes. We confirmed that they are transcribed, probably from the tRNA gene promoter, producing dicistronic tRNA(Gly)-snoR43 precursors. Using transgenic lines expressing a tagged tRNA-snoR43.1 gene we show that the dicistronic precursor is accurately processed to both snoR43.1 and tRNA(Gly). In addition, we show that a recombinant RNase Z, the plant tRNA 3' processing enzyme, efficiently cleaves the dicistronic precursor in vitro releasing the snoR43.1 from the tRNA(Gly). Finally, we describe a similar case in rice implicating a tRNA(Met-e) expressed in fusion with a novel C/D snoRNA, showing that this mode of snoRNA expression is found in distant plant species.
Collapse
Affiliation(s)
| | - Fredy Barneche
- Laboratoire Génome et Développement des Plantes, UMR CNRS 5096, Université de Perpignan, 66860 Perpignan cedex, France,
Molecular Biology Department, University of Geneva-Sciences II, 30 Quai Ernest Ansermet, 1211-Geneva, Institut of Plant Biology, University of Zurich, Zollikerstrasse 19, 8008-Zurich, Switzerland and Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany Corresponding author e-mail:
K.Kruszka, F.Barneche and R.Guyot contributed equally to this work
| | - Romain Guyot
- Laboratoire Génome et Développement des Plantes, UMR CNRS 5096, Université de Perpignan, 66860 Perpignan cedex, France,
Molecular Biology Department, University of Geneva-Sciences II, 30 Quai Ernest Ansermet, 1211-Geneva, Institut of Plant Biology, University of Zurich, Zollikerstrasse 19, 8008-Zurich, Switzerland and Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany Corresponding author e-mail:
K.Kruszka, F.Barneche and R.Guyot contributed equally to this work
| | | | | | - Steffen Schiffer
- Laboratoire Génome et Développement des Plantes, UMR CNRS 5096, Université de Perpignan, 66860 Perpignan cedex, France,
Molecular Biology Department, University of Geneva-Sciences II, 30 Quai Ernest Ansermet, 1211-Geneva, Institut of Plant Biology, University of Zurich, Zollikerstrasse 19, 8008-Zurich, Switzerland and Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany Corresponding author e-mail:
K.Kruszka, F.Barneche and R.Guyot contributed equally to this work
| | - Anita Marchfelder
- Laboratoire Génome et Développement des Plantes, UMR CNRS 5096, Université de Perpignan, 66860 Perpignan cedex, France,
Molecular Biology Department, University of Geneva-Sciences II, 30 Quai Ernest Ansermet, 1211-Geneva, Institut of Plant Biology, University of Zurich, Zollikerstrasse 19, 8008-Zurich, Switzerland and Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany Corresponding author e-mail:
K.Kruszka, F.Barneche and R.Guyot contributed equally to this work
| | - Manuel Echeverría
- Laboratoire Génome et Développement des Plantes, UMR CNRS 5096, Université de Perpignan, 66860 Perpignan cedex, France,
Molecular Biology Department, University of Geneva-Sciences II, 30 Quai Ernest Ansermet, 1211-Geneva, Institut of Plant Biology, University of Zurich, Zollikerstrasse 19, 8008-Zurich, Switzerland and Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany Corresponding author e-mail:
K.Kruszka, F.Barneche and R.Guyot contributed equally to this work
| |
Collapse
|
10
|
Korencić D, Söll D, Ambrogelly A. A one-step method for in vitro production of tRNA transcripts. Nucleic Acids Res 2002; 30:e105. [PMID: 12384607 PMCID: PMC137149 DOI: 10.1093/nar/gnf104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sequencing of a large number of microbial genomes has led to the discovery of new enzymes involved in tRNA biosynthesis and tRNA function. Preparation of a great variety of RNA molecules is, therefore, of major interest for biochemical characterization of these proteins. We describe a fast, cost-effective and efficient method for in vitro production of tRNA transcripts. T7 RNA polymerase requires a double-stranded DNA promoter in order to initiate transcription; however, elongation does not require a double-stranded DNA template. A partially double-stranded transcription template formed by annealing of a short oligonucleotide, complementary to the T7 promoter, to a larger oligonucleotide is shown to be a good substrate for in vitro transcription. This method allows rapid production of a variety of tRNA transcripts which can be aminoacylated well. This eliminates the need for cloning of tRNA genes, large-scale plasmid preparation and enzymatic digestion.
Collapse
Affiliation(s)
- Dragana Korencić
- Department of Molecular Biophysics and Biochemistry and. Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
11
|
Schürer H, Lang K, Schuster J, Mörl M. A universal method to produce in vitro transcripts with homogeneous 3' ends. Nucleic Acids Res 2002; 30:e56. [PMID: 12060694 PMCID: PMC117298 DOI: 10.1093/nar/gnf055] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A method is described that allows a general drawback of in vitro transcription assays to be overcome: RNA polymerases tend to add extra nucleotides to the RNA 3' end that are not encoded in the linearized DNA template. Furthermore, these polymerases show a considerable rate of premature termination close to the RNA's 3' end. These features lead to a decreased yield of full-length transcripts and often make it difficult to determine and isolate the correctly transcribed full-length RNA. The hammerhead ribozyme is frequently used in cis to cleave off these extra nucleotides. However, the upstream sequence requirements of this ribozyme restrict its general usability. In contrast, the hepatitis delta virus ribozyme has no such requirements and can therefore be applied to any RNA sequence in cis. Due to the catalytic activity of the ribozyme, the desired transcript is released as an RNA molecule with a homogeneous 3' end. The resulting 2',3'-cyclo-phosphate group of the released RNA can be easily and efficiently removed by T4 polynucleotide kinase treatment. The presented method can be applied for virtually any sequence to be transcribed and is therefore superior to other ribozyme strategies, suggesting possible applications in every field where transcripts with homogeneous 3' ends are required.
Collapse
Affiliation(s)
- Heike Schürer
- Max-Planck-Institute for Evolutionary Anthropology, Inselstrasse 22, D-04103 Leipzig, Germany
| | | | | | | |
Collapse
|