1
|
Torban E, Goodyer P. Wilms' tumor gene 1: lessons from the interface between kidney development and cancer. Am J Physiol Renal Physiol 2024; 326:F3-F19. [PMID: 37916284 DOI: 10.1152/ajprenal.00248.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
In 1990, mutations of the Wilms' tumor-1 gene (WT1), encoding a transcription factor in the embryonic kidney, were found in 10-15% of Wilms' tumors; germline WT1 mutations were associated with hereditary syndromes involving glomerular and reproductive tract dysplasia. For more than three decades, these discoveries prompted investigators to explore the embryonic role of WT1 and the mechanisms by which loss of WT1 leads to malignant transformation. Here, we discuss how alternative splicing of WT1 generates isoforms that act in a context-specific manner to activate or repress target gene transcription. WT1 also regulates posttranscriptional regulation, alters the epigenetic landscape, and activates miRNA expression. WT1 functions at multiple stages of kidney development, including the transition from resting stem cells to committed nephron progenitor, which it primes to respond to WNT9b signals from the ureteric bud. WT1 then drives nephrogenesis by activating WNT4 expression and directing the development of glomerular podocytes. We review the WT1 mutations that account for Denys-Drash syndrome, Frasier syndrome, and WAGR syndrome. Although the WT1 story began with Wilms' tumors, an understanding of the pathways that link aberrant kidney development to malignant transformation still has some important gaps. Loss of WT1 in nephrogenic rests may leave these premalignant clones with inadequate DNA repair enzymes and may disturb the epigenetic landscape. Yet none of these observations provide a complete picture of Wilms' tumor pathogenesis. It appears that the WT1 odyssey is unfinished and still holds a great deal of untilled ground to be explored.
Collapse
Affiliation(s)
- Elena Torban
- Department of Medicine, McGill University and Research Institute of McGill University Health Center, Montreal, Quebec, Canada
| | - Paul Goodyer
- Department of Human Genetics, Montreal Children's Hospital and McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, Montreal Children's Hospital and McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Evaluating Established Roles, Future Perspectives and Methodological Heterogeneity for Wilms’ Tumor 1 (WT1) Antigen Detection in Adult Renal Cell Carcinoma, Using a Novel N-Terminus Targeted Antibody (Clone WT49). Biomedicines 2022; 10:biomedicines10040912. [PMID: 35453662 PMCID: PMC9026801 DOI: 10.3390/biomedicines10040912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Renal cell carcinoma (RCC) is arguably the deadliest form of genitourinary malignancy and is nowadays viewed as a heterogeneous series of cancers, with the same origin but fundamentally different metabolisms and clinical behaviors. Immunohistochemistry (IHC) is increasingly necessary for RCC subtyping and definitive diagnosis. WT1 is a complex gene involved in carcinogenesis. To address reporting heterogeneity and WT1 IHC standardization, we used a recent N-terminus targeted monoclonal antibody (clone WT49) to evaluate WT1 protein expression in 56 adult RCC (aRCC) cases. This is the largest WT1 IHC investigation focusing exclusively on aRCCs and the first report on clone WT49 staining in aRCCs. We found seven (12.5%) positive cases, all clear cell RCCs, showing exclusively nuclear staining for WT1. We did not disregard cytoplasmic staining in any of the negative cases. Extratumoral fibroblasts, connecting tubules and intratumoral endothelial cells showed the same exclusively nuclear WT1 staining pattern. We reviewed WT1 expression patterns in aRCCs and the possible explanatory underlying metabolomics. For now, WT1 protein expression in aRCCs is insufficiently investigated, with significant discrepancies in the little data reported. Emerging WT1-targeted RCC immunotherapy will require adequate case selection and sustained efforts to standardize the quantification of tumor-associated antigens for aRCC and its many subtypes.
Collapse
|
3
|
Wang Y, Chen Q, Zhang F, Yang X, Shang L, Ren S, Pan Y, Zhou Z, Li G, Fang Y, Jin L, Wu Y, Zhang X. Whole exome sequencing identified a rare WT1 loss-of-function variant in a non-syndromic POI patient. Mol Genet Genomic Med 2022; 10:e1820. [PMID: 34845858 PMCID: PMC8801142 DOI: 10.1002/mgg3.1820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/11/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is a highly heterogeneous disease, and up to 25% of cases can be explained by genetic causes. The transcription factor WT1 has long been reported to play a crucial role in ovary function. Wt1-mutated female mice exhibited POI-like phenotypes. METHODS AND RESULTS In this study, whole exome sequencing (WES) was applied to find the cause of POI in Han Chinese women. A nonsense variant in the WT1 gene: NM_024426.6:c.1387C>T(p.R463*) was identified in a non-syndromic POI woman. The variant is a heterozygous de novo mutation that is very rare in the human population. The son of the patient inherited the mutation and developed Wilms' tumor and urethral malformation at the age of 7. According to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines, the novel variant is categorized as pathogenic. Western blot analysis further demonstrated that the WT1 variant could produce a truncated WT1 isoform in vitro. CONCLUSIONS A rare heterozygous nonsense WT1 mutant is associated with non-syndromic POI and Wilms' tumor. Our finding characterized another pathogenic WT1 variant, providing insight into genetic counseling.
Collapse
Affiliation(s)
- Yingchen Wang
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
| | - Qing Chen
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiChina
| | - Feng Zhang
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghaiChina
| | - Xi Yang
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiChina
| | - Lingyue Shang
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
| | - Shuting Ren
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
| | - Yuncheng Pan
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
| | - Zixue Zhou
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiChina
| | - Guoqing Li
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
| | - Yunzheng Fang
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiChina
| | - Li Jin
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
| | - Yanhua Wu
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghaiChina
- National Demonstration Center for Experimental Biology EducationSchool of Life SciencesFudan UniversityShanghaiChina
| | - Xiaojin Zhang
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghaiChina
| |
Collapse
|
4
|
Truncated WT1 Protein Isoform Expression Is Increased in MCF-7 Cells with Long-Term Estrogen Depletion. Int J Breast Cancer 2021; 2021:6282514. [PMID: 34845427 PMCID: PMC8627338 DOI: 10.1155/2021/6282514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/26/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Background The wt1 gene codes for a transcription factor that presents several protein isoforms with diverse biological properties, capable of positively and negatively regulating genes involved in proliferation, differentiation, and apoptosis. WT1 protein is overexpressed in more than 90% of breast cancer; however, its role during tumor progression is still unknown. Methodology. In this work, we analyzed the expression of WT1 isoforms in several breast cancer cells with different tumor marker statuses and an in vitro assay using MCF-7 cells cultured with long-term estrogen depletion (MCF-7 LTED cells) with the finality to mimic the process of switching from hormone-dependent to hormone-independent. Moreover, growth kinetics, sensitivity to tamoxifen, and relative expression analysis of ER and Her2/neu were performed. Results Initially, the expression of 52-54 kDa protein isoform of WT1 in the breast cancer cell line ER (+) was detected by western blot and was absent in ER (-), and the 36-38 kDa protein isoform of WT1 was detected in all cell lines analyzed. The analysis of alternative splicing by RT-PCR shows that the 17AA (+)/KTS (-) isoform of WT1 was the most frequent in the four cell lines analyzed. In vitro, the MCF-7 cells in the estrogen depletion assay show an increase in the expression of the 52-54 kDa isoform of WT1 in the first 48 hours, and this was maintained until week 13, and later, this expression was decreased, and the 36-38 kDa isoform of WT1 did not show change during the first 48 hours but from week 1 showed an increase of expression, and this remained until week 27. Growth kinetic analysis showed that MCF-7 LTED cells presented a 1.4-fold decrease in cellular proliferation compared to MCF-7 cells cultured under normal conditions. In addition, MCF-7 LTED cells showed a decrease in sensitivity to the antiproliferative effect of tamoxifen (p ≤ 0.05). Samples collected until week 57 analyzed by qRT-PCR showed an increase in the relative expression of the Her2/neu and ER. Conclusions Modulation of protein isoforms showed differential expression of WT1 isoforms dependent on estrogen receptor. The absence of 52-54 kDa and the presence of the 36-38 kDa protein isoform of WT1 were detected in ER-negative breast cancer cell lines classified as advanced stage cells. Long-term estrogen depletion assay in MCF-7 cells increased the expression of the 36-38 kDa isoform and reduced the 52-54 kDa isoform, and these cells show an increase in the expression of tumor markers of ER and Her2/neu. MCF-7 LTED cells showed low proliferation and insensitivity to tamoxifen compared to MCF-7 cells in normal conditions. These results support the theory about the relationship of the 36-38 kDa isoform of WT1 and the absence of ER function in advanced breast cancer.
Collapse
|
5
|
A Novel WT1 Mutation Identified in a 46,XX Testicular/Ovotesticular DSD Patient Results in the Retention of Intron 9. BIOLOGY 2021; 10:biology10121248. [PMID: 34943163 PMCID: PMC8698877 DOI: 10.3390/biology10121248] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Disorders/differences of sexual development are very diverse. Among them is a condition characterized by the presence of testicular tissue in people with female chromosomes, which is typically manifested by male or ambiguous genitalia. While genetic counseling is beneficial for these people and their families, the genetic causes of these cases are only partially understood. We describe a new mutation in the WT1 gene that results in the presence of testicular tissue in a child with a female karyotype. We propose molecular mechanisms disrupted by this mutation. This finding widened our understanding of processes that govern sexual development and can be used to develop diagnostic tests for disorders/differences of sexual development. Abstract The 46,XX testicular DSD (disorder/difference of sexual development) and 46,XX ovotesticular DSD (46,XX TDSD and 46,XX OTDSD) phenotypes are caused by genetic rearrangements or point mutations resulting in imbalance between components of the two antagonistic, pro-testicular and pro-ovarian pathways; however, the genetic causes of 46,XX TDSD/OTDSD are not fully understood, and molecular diagnosis for many patients with the conditions is unavailable. Only recently few mutations in the WT1 (WT1 transcription factor; 11p13) gene were described in a group of 46,XX TDSD and 46,XX OTDSD individuals. The WT1 protein contains a DNA/RNA binding domain consisting of four zinc fingers (ZnF) and a three-amino acid (KTS) motif that is present or absent, as a result of alternative splicing, between ZnF3 and ZnF4 (±KTS isoforms). Here, we present a patient with 46,XX TDSD/OTDSD in whom whole exome sequencing revealed a heterozygous de novo WT1 c.1437A>G mutation within an alternative donor splice site which is used for −KTS WT1 isoform formation. So far, no mutation in this splice site has been identified in any patient group. We demonstrated that the mutation results in the retention of intron 9 in the mature mRNA of the 46,XX TDSD/OTDSD patient. In cases when the erroneous mRNA is translated, exclusively the expression of a truncated WT1 +KTS protein lacking ZnF4 and no −KTS protein occurs from the mutated allele of the patient. We discuss potential mechanisms and pathways which can be disturbed upon two conditions: Absence of Zn4F and altered +KTS/−KTS ratio.
Collapse
|
6
|
Every Beat You Take-The Wilms' Tumor Suppressor WT1 and the Heart. Int J Mol Sci 2021; 22:ijms22147675. [PMID: 34299295 PMCID: PMC8306835 DOI: 10.3390/ijms22147675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022] Open
Abstract
Nearly three decades ago, the Wilms’ tumor suppressor Wt1 was identified as a crucial regulator of heart development. Wt1 is a zinc finger transcription factor with multiple biological functions, implicated in the development of several organ systems, among them cardiovascular structures. This review summarizes the results from many research groups which allowed to establish a relevant function for Wt1 in cardiac development and disease. During development, Wt1 is involved in fundamental processes as the formation of the epicardium, epicardial epithelial-mesenchymal transition, coronary vessel development, valve formation, organization of the cardiac autonomous nervous system, and formation of the cardiac ventricles. Wt1 is further implicated in cardiac disease and repair in adult life. We summarize here the current knowledge about expression and function of Wt1 in heart development and disease and point out controversies to further stimulate additional research in the areas of cardiac development and pathophysiology. As re-activation of developmental programs is considered as paradigm for regeneration in response to injury, understanding of these processes and the molecules involved therein is essential for the development of therapeutic strategies, which we discuss on the example of WT1.
Collapse
|
7
|
Allemailem KS, Almatroudi A, Alsahli MA, Basfar GT, Alrumaihi F, Rahmani AH, Khan AA. Recent advances in understanding oligonucleotide aptamers and their applications as therapeutic agents. 3 Biotech 2020; 10:551. [PMID: 33269185 PMCID: PMC7686427 DOI: 10.1007/s13205-020-02546-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
The innovative discovery of aptamers was based on target-specific treatment in clinical diagnostics and therapeutics. Aptamers are synthetic, single-stranded oligonucleotides, simply described as chemical antibodies, which can bind to diverse targets with high specificity and affinity. Aptamers are synthesized by the SELEX technique, and possess distinctive properties as small size (10-50 kDa), higher stability, easy manufacture and less immunogenicity. These oligonucleotides are easily degraded by nucleases, so require some important modifications like capping and incorporation of modified nucleotides. RNA aptamers can be modified chemically on 2' positions using -NH3, -F, -deoxy, or -OMe groups to enhance their nuclease resistance. Aptamers have been employed for multiple purposes, as direct drugs or aptamer-drug conjugates targeted against different diseased cells. Different aptamer-conjugated nanovehicles (e.g., micelles, liposomes, silica nano-shells) have been designed to transport diverse anticancer-drugs like doxorubicin and cisplatin in bulk to minimize systemic cytotoxicity. Some drug-loaded nanovehicles (up to 97% loading capacity) and conjugated with specific aptamer resulted in more than 60% tumor inhibition as compared to unconjugated drug-loaded nanovehicles which showed only 31% cancer inhibition. In addition, aptamers have been widely used in basic research, food safety, environmental monitoring, clinical diagnostics and therapeutics. Different FDA-approved RNA and DNA aptamers are now available in the market, used for the treatment of diverse diseases, especially cancer. These aptamers include Macugen, Pegaptanib, etc. Despite a good progress in aptamer use, the present-day chemotherapeutics and drug targeting systems still face great challenges. Here in this review article, we are discussing nucleic acid aptamers, preparation, role in the transportation of different nanoparticle vehicles and their applications as therapeutic agents.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraydah, 51452 Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ghaiyda Talal Basfar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraydah, 51452 Saudi Arabia
| |
Collapse
|
8
|
Nishikawa T, Wojciak JM, Dyson HJ, Wright PE. RNA Binding by the KTS Splice Variants of Wilms' Tumor Suppressor Protein WT1. Biochemistry 2020; 59:3889-3901. [PMID: 32955251 DOI: 10.1021/acs.biochem.0c00602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Wilms' tumor suppressor protein WT1 regulates the expression of multiple genes through binding of the Cys2-His2 zinc finger domain to promoter sites. WT1 has also been proposed to be involved in post-transcriptional regulation, by binding to RNA using the same set of zinc fingers. WT1 has two major splice variants, where the Lys-Thr-Ser (KTS) tripeptide is inserted into the linker between the third and fourth zinc fingers. To obtain insights into the mechanism by which the different WT1 splice variants recognize both DNA and RNA, we have determined the solution structure of the WT1 (-KTS) zinc finger domain in complex with a 29mer stem-loop RNA. Zinc fingers 1-3 bind in a widened major groove favored by the presence of a bulge nucleotide in the double-stranded helical stem. Fingers 2 and 3 make specific contacts with the nucleobases in a conserved AUGG sequence in the helical stem. Nuclear magnetic resonance chemical shift mapping and relaxation analysis show that fingers 1-3 of the two splice variants (-KTS and +KTS) of WT1 form similar complexes with RNA. Finger 4 of the -KTS isoform interacts weakly with the RNA loop, an interaction that is abrogated in the +KTS isoform, and both isoforms bind with similar affinity to the RNA. In contrast, finger 4 is required for high-affinity binding to DNA and insertion of KTS into the linker of fingers 3 and 4 abrogates DNA binding. While finger 1 is required for RNA binding, it is dispensable for binding to consensus DNA sites.
Collapse
Affiliation(s)
- Tadateru Nishikawa
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jonathan M Wojciak
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
9
|
Fang D, Gan H, Cheng L, Lee JH, Zhou H, Sarkaria JN, Daniels DJ, Zhang Z. H3.3K27M mutant proteins reprogram epigenome by sequestering the PRC2 complex to poised enhancers. eLife 2018; 7:36696. [PMID: 29932419 PMCID: PMC6033537 DOI: 10.7554/elife.36696] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/21/2018] [Indexed: 11/21/2022] Open
Abstract
Expression of histone H3.3K27M mutant proteins in human diffuse intrinsic pontine glioma (DIPG) results in a global reduction of tri-methylation of H3K27 (H3K27me3), and paradoxically, H3K27me3 peaks remain at hundreds of genomic loci, a dichotomous change that lacks mechanistic insights. Here, we show that the PRC2 complex is sequestered at poised enhancers, but not at active promoters with high levels of H3.3K27M proteins, thereby contributing to the global reduction of H3K27me3. Moreover, the levels of H3.3K27M proteins are low at the retained H3K27me3 peaks and consequently having minimal effects on the PRC2 activity at these loci. H3K27me3-mediated silencing at specific tumor suppressor genes, including Wilms Tumor 1, promotes proliferation of DIPG cells. These results support a model in which the PRC2 complex is redistributed to poised enhancers in H3.3K27M mutant cells and contributes to tumorigenesis in part by locally enhancing H3K27me3, and hence silencing of tumor suppressor genes.
Collapse
Affiliation(s)
- Dong Fang
- Department of Pediatrics and Department of Genetics and Development, Institute for Cancer Genetics, Irving Cancer Research Center, Columbia University, New York, United States
| | - Haiyun Gan
- Department of Pediatrics and Department of Genetics and Development, Institute for Cancer Genetics, Irving Cancer Research Center, Columbia University, New York, United States
| | - Liang Cheng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Jeong-Heon Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Hui Zhou
- Department of Pediatrics and Department of Genetics and Development, Institute for Cancer Genetics, Irving Cancer Research Center, Columbia University, New York, United States
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, United States
| | - David J Daniels
- Department of Neurosurgery, Mayo Clinic, Rochester, United States
| | - Zhiguo Zhang
- Department of Pediatrics and Department of Genetics and Development, Institute for Cancer Genetics, Irving Cancer Research Center, Columbia University, New York, United States
| |
Collapse
|
10
|
Ullmark T, Montano G, Gullberg U. DNA and RNA binding by the Wilms' tumour gene 1 (WT1) protein +KTS and −KTS isoforms-From initial observations to recent global genomic analyses. Eur J Haematol 2018; 100:229-240. [DOI: 10.1111/ejh.13010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Tove Ullmark
- Department of Haematology and Transfusion Medicine; Lund University; Lund Sweden
| | - Giorgia Montano
- Department of Haematology and Transfusion Medicine; Lund University; Lund Sweden
| | - Urban Gullberg
- Department of Haematology and Transfusion Medicine; Lund University; Lund Sweden
| |
Collapse
|
11
|
Rambout X, Dequiedt F, Maquat LE. Beyond Transcription: Roles of Transcription Factors in Pre-mRNA Splicing. Chem Rev 2017; 118:4339-4364. [PMID: 29251915 DOI: 10.1021/acs.chemrev.7b00470] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Whereas individual steps of protein-coding gene expression in eukaryotes can be studied in isolation in vitro, it has become clear that these steps are intimately connected within cells. Connections not only ensure quality control but also fine-tune the gene expression process, which must adapt to environmental changes while remaining robust. In this review, we systematically present proven and potential mechanisms by which sequence-specific DNA-binding transcription factors can alter gene expression beyond transcription initiation and regulate pre-mRNA splicing, and thereby mRNA isoform production, by (i) influencing transcription elongation rates, (ii) binding to pre-mRNA to recruit splicing factors, and/or (iii) blocking the association of splicing factors with pre-mRNA. We propose various mechanistic models throughout the review, in some cases without explicit supportive evidence, in hopes of providing fertile ground for future studies.
Collapse
|
12
|
Abstract
The study of genes mutated in human disease often leads to new insights into biology as well as disease mechanisms. One such gene is Wilms' tumour 1 (WT1), which plays multiple roles in development, tissue homeostasis and disease. In this Primer, I summarise how this multifaceted gene functions in various mammalian tissues and organs, including the kidney, gonads, heart and nervous system. This is followed by a discussion of our current understanding of the molecular mechanisms by which WT1 and its two major isoforms regulate these processes at the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Nicholas D Hastie
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road (S), Edinburgh, EH4 2XU, UK
| |
Collapse
|
13
|
Bharathavikru R, Dudnakova T, Aitken S, Slight J, Artibani M, Hohenstein P, Tollervey D, Hastie N. Transcription factor Wilms' tumor 1 regulates developmental RNAs through 3' UTR interaction. Genes Dev 2017; 31:347-352. [PMID: 28289143 PMCID: PMC5358755 DOI: 10.1101/gad.291500.116] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/15/2017] [Indexed: 12/23/2022]
Abstract
Bharathavikru et al. show that Wilms’ tumour 1 (WT1) binds preferentially to 3′ UTRs of developmental targets, which are down-regulated upon WT1 depletion in cell culture and developing kidney mesenchyme. Combining experimental and computational analyses, they propose that WT1 influences key developmental and disease processes in part through regulating mRNA turnover. Wilms’ tumor 1 (WT1) is essential for the development and homeostasis of multiple mesodermal tissues. Despite evidence for post-transcriptional roles, no endogenous WT1 target RNAs exist. Using RNA immunoprecipitation and UV cross-linking, we show that WT1 binds preferentially to 3′ untranslated regions (UTRs) of developmental targets. These target mRNAs are down-regulated upon WT1 depletion in cell culture and developing kidney mesenchyme. Wt1 deletion leads to rapid turnover of specific mRNAs. WT1 regulates reporter gene expression through interaction with 3′ UTR-binding sites. Combining experimental and computational analyses, we propose that WT1 influences key developmental and disease processes in part through regulating mRNA turnover.
Collapse
Affiliation(s)
- Ruthrothaselvi Bharathavikru
- Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Tatiana Dudnakova
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Stuart Aitken
- Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Joan Slight
- Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Mara Artibani
- Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Peter Hohenstein
- Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom.,Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Nick Hastie
- Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
14
|
Yao VJ, D'Angelo S, Butler KS, Theron C, Smith TL, Marchiò S, Gelovani JG, Sidman RL, Dobroff AS, Brinker CJ, Bradbury ARM, Arap W, Pasqualini R. Ligand-targeted theranostic nanomedicines against cancer. J Control Release 2016; 240:267-286. [PMID: 26772878 PMCID: PMC5444905 DOI: 10.1016/j.jconrel.2016.01.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/17/2015] [Accepted: 01/02/2016] [Indexed: 02/06/2023]
Abstract
Nanomedicines have significant potential for cancer treatment. Although the majority of nanomedicines currently tested in clinical trials utilize simple, biocompatible liposome-based nanocarriers, their widespread use is limited by non-specificity and low target site concentration and thus, do not provide a substantial clinical advantage over conventional, systemic chemotherapy. In the past 20years, we have identified specific receptors expressed on the surfaces of tumor endothelial and perivascular cells, tumor cells, the extracellular matrix and stromal cells using combinatorial peptide libraries displayed on bacteriophage. These studies corroborate the notion that unique receptor proteins such as IL-11Rα, GRP78, EphA5, among others, are differentially overexpressed in tumors and present opportunities to deliver tumor-specific therapeutic drugs. By using peptides that bind to tumor-specific cell-surface receptors, therapeutic agents such as apoptotic peptides, suicide genes, imaging dyes or chemotherapeutics can be precisely and systemically delivered to reduce tumor growth in vivo, without harming healthy cells. Given the clinical applicability of peptide-based therapeutics, targeted delivery of nanocarriers loaded with therapeutic cargos seems plausible. We propose a modular design of a functionalized protocell in which a tumor-targeting moiety, such as a peptide or recombinant human antibody single chain variable fragment (scFv), is conjugated to a lipid bilayer surrounding a silica-based nanocarrier core containing a protected therapeutic cargo. The functionalized protocell can be tailored to a specific cancer subtype and treatment regimen by exchanging the tumor-targeting moiety and/or therapeutic cargo or used in combination to create unique, theranostic agents. In this review, we summarize the identification of tumor-specific receptors through combinatorial phage display technology and the use of antibody display selection to identify recombinant human scFvs against these tumor-specific receptors. We compare the characteristics of different types of simple and complex nanocarriers, and discuss potential types of therapeutic cargos and conjugation strategies. The modular design of functionalized protocells may improve the efficacy and safety of nanomedicines for future cancer therapy.
Collapse
Affiliation(s)
- Virginia J Yao
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Sara D'Angelo
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Kimberly S Butler
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131
| | - Christophe Theron
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131
| | - Tracey L Smith
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Serena Marchiò
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131; Department of Oncology, University of Turin, Candiolo, 10060, Italy
| | - Juri G Gelovani
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI 48201
| | - Richard L Sidman
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Andrey S Dobroff
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - C Jeffrey Brinker
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131; Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM 87131; Cancer Research and Treatment Center, Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM 87131; Self-Assembled Materials Department, Sandia National Laboratories, Albuquerque, NM 87185
| | - Andrew R M Bradbury
- Bioscience Division, Los Alamos National Laboratories, Los Alamos, NM, 87545
| | - Wadih Arap
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Hematology/Oncology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131.
| | - Renata Pasqualini
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131.
| |
Collapse
|
15
|
Souza AG, Marangoni K, Fujimura PT, Alves PT, Silva MJ, Bastos VAF, Goulart LR, Goulart VA. 3D Cell-SELEX: Development of RNA aptamers as molecular probes for PC-3 tumor cell line. Exp Cell Res 2016; 341:147-56. [PMID: 26821206 DOI: 10.1016/j.yexcr.2016.01.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/22/2016] [Accepted: 01/24/2016] [Indexed: 10/25/2022]
Abstract
Human prostate cancer (PCa) is a highly heterogeneous and multifactorial disease. Current clinical biomarkers are not sufficiently accurate, thus being unable to predict the clinical outcome. Therefore, searching for new biomarkers aiming to improve diagnosis, prognosis and therapy is still required. In this study, we performed 3D Cell-SELEX against PC-3 prostate cancer cell line, a novel strategy to select specific nucleic acid ligands against spheroid cells in 3D cell culture. This original system combines Cell-SELEX, a process that exploits the cellular structure to generate specific ligands, and 3D cell culture, an approach that mimics the tissue microenvironment in vitro. In the first round of 3D Cell-SELEX, a negative selection against RWPE-1, non-tumor cell line, was performed to subtract non-tumor specific aptamers. The supernatant was used in eight additional rounds of selection, which were performed against PC-3 cell line. After nine selection cycles, eight PC-3 specific RNA aptamers were selected and sequenced. The aptamers presented sizes between 20 and 50 nucleotides-long, with low free energy (∆G<-13.6), which contributed for their spontaneous folding and high stability. Furthermore, our results showed the aptamer A4 as a specific ligand to prostate tumor cells, with dissociation constant in the nanomolar scale. Therefore, the novel 3D Cell-SELEX procedure improved the selection of PCa cell-surface ligands and the aptamer A4 has shown potential for the identification of prostate tumor cells, suggesting the application of this molecule in further screening assays for PCa.
Collapse
Affiliation(s)
- Aline G Souza
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), 38400-902 Uberlândia, MG, Brazil.
| | - Karina Marangoni
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), 38400-902 Uberlândia, MG, Brazil; Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, University of Campinas, SP, Brazil
| | - Patrícia T Fujimura
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), 38400-902 Uberlândia, MG, Brazil
| | - Patrícia T Alves
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), 38400-902 Uberlândia, MG, Brazil
| | - Márcio J Silva
- Center of Molecular Biology and Genetic Engineering, University of Campinas, SP, Brazil
| | - Victor Alexandre F Bastos
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), 38400-902 Uberlândia, MG, Brazil
| | - Luiz R Goulart
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), 38400-902 Uberlândia, MG, Brazil; University of California-Davis, Department of Medical Microbiology and Immunology, Davis, CA, USA
| | - Vivian A Goulart
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), 38400-902 Uberlândia, MG, Brazil
| |
Collapse
|
16
|
Romaniuk PJ. Measuring Equilibrium Binding Constants for the WT1-DNA Interaction Using a Filter Binding Assay. Methods Mol Biol 2016; 1467:155-176. [PMID: 27417968 DOI: 10.1007/978-1-4939-4023-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Equilibrium binding of WT1 to specific sites in DNA and potentially RNA molecules is central in mediating the regulatory roles of this protein. In order to understand the functional effects of mutations in the nucleic acid-binding domain of WT1 proteins and/or mutations in the DNA- or RNA-binding sites, it is necessary to measure the equilibrium constant for formation of the protein-nucleic acid complex. This chapter describes the use of a filter binding assay to make accurate measurements of the binding of the WT1 zinc finger domain to the consensus WT1-binding site in DNA. The method described is readily adapted to the measurement of the effects of mutations in either the WT1 zinc finger domain or the putative binding sites within a promoter element or cellular RNA.
Collapse
Affiliation(s)
- Paul J Romaniuk
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, BC, Canada, V8P 5C2.
| |
Collapse
|
17
|
Ma H, Liu J, Ali MM, Mahmood MAI, Labanieh L, Lu M, Iqbal SM, Zhang Q, Zhao W, Wan Y. Nucleic acid aptamers in cancer research, diagnosis and therapy. Chem Soc Rev 2015; 44:1240-56. [PMID: 25561050 DOI: 10.1039/c4cs00357h] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded DNA or RNA oligomers, identified from a random sequence pool, with the ability to form unique and versatile tertiary structures that bind to cognate molecules with superior specificity. Their small size, excellent chemical stability and low immunogenicity enable them to rival antibodies in cancer imaging and therapy applications. Their facile chemical synthesis, versatility in structural design and engineering, and the ability for site-specific modifications with functional moieties make aptamers excellent recognition motifs for cancer biomarker discovery and detection. Moreover, aptamers can be selected or engineered to regulate cancer protein functions, as well as to guide anti-cancer drug design or screening. This review summarizes their applications in cancer, including cancer biomarker discovery and detection, cancer imaging, cancer therapy, and anti-cancer drug discovery. Although relevant applications are relatively new, the significant progress achieved has demonstrated that aptamers can be promising players in cancer research.
Collapse
Affiliation(s)
- Haitao Ma
- The Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215006, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Identification of a Novel C-Terminal Truncated WT1 Isoform with Antagonistic Effects against Major WT1 Isoforms. PLoS One 2015; 10:e0130578. [PMID: 26090994 PMCID: PMC4474557 DOI: 10.1371/journal.pone.0130578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 05/22/2015] [Indexed: 01/10/2023] Open
Abstract
The Wilms’ tumor gene WT1 consists of 10 exons and encodes a zinc finger transcription factor. There are four major WT1 isoforms resulting from alternative splicing at two sites, exon 5 (17AA) and exon 9 (KTS). All major WT1 isoforms are overexpressed in leukemia and solid tumors and play oncogenic roles such as inhibition of apoptosis, and promotion of cell proliferation, migration and invasion. In the present study, a novel alternatively spliced WT1 isoform that had an extended exon 4 (designated as exon 4a) with an additional 153 bp (designated as 4a sequence) at the 3’ end was identified and designated as an Ex4a(+)WT1 isoform. The insertion of exon 4a resulted in the introduction of premature translational stop codons in the reading frame in exon 4a and production of C-terminal truncated WT1 proteins lacking zinc finger DNA-binding domain. Overexpression of the truncated Ex4a(+)WT1 isoform inhibited the major WT1-mediated transcriptional activation of anti-apoptotic Bcl-xL gene promoter and induced mitochondrial damage and apoptosis. Conversely, suppression of the Ex4a(+)WT1 isoform by Ex4a-specific siRNA attenuated apoptosis. These results indicated that the Ex4a(+)WT1 isoform exerted dominant negative effects on anti-apoptotic function of major WT1 isoforms. Ex4a(+)WT1 isoform was endogenously expressed as a minor isoform in myeloid leukemia and solid tumor cells and increased regardless of decrease in major WT1 isoforms during apoptosis, suggesting the dominant negative effects on anti-apoptotic function of major WT1 isoforms. These results indicated that Ex4a(+)WT1 isoform had an important physiological function that regulated oncogenic function of major WT1 isoforms.
Collapse
|
19
|
Busch M, Schwindt H, Brandt A, Beier M, Görldt N, Romaniuk P, Toska E, Roberts S, Royer HD, Royer-Pokora B. Classification of a frameshift/extended and a stop mutation in WT1 as gain-of-function mutations that activate cell cycle genes and promote Wilms tumour cell proliferation. Hum Mol Genet 2014; 23:3958-74. [PMID: 24619359 PMCID: PMC4082364 DOI: 10.1093/hmg/ddu111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/06/2014] [Indexed: 12/26/2022] Open
Abstract
The WT1 gene encodes a zinc finger transcription factor important for normal kidney development. WT1 is a suppressor for Wilms tumour development and an oncogene for diverse malignant tumours. We recently established cell lines from primary Wilms tumours with different WT1 mutations. To investigate the function of mutant WT1 proteins, we performed WT1 knockdown experiments in cell lines with a frameshift/extension (p.V432fsX87 = Wilms3) and a stop mutation (p.P362X = Wilms2) of WT1, followed by genome-wide gene expression analysis. We also expressed wild-type and mutant WT1 proteins in human mesenchymal stem cells and established gene expression profiles. A detailed analysis of gene expression data enabled us to classify the WT1 mutations as gain-of-function mutations. The mutant WT1(Wilms2) and WT1(Wilms3) proteins acquired an ability to modulate the expression of a highly significant number of genes from the G2/M phase of the cell cycle, and WT1 knockdown experiments showed that they are required for Wilms tumour cell proliferation. p53 negatively regulates the activity of a large number of these genes that are also part of a core proliferation cluster in diverse human cancers. Our data strongly suggest that mutant WT1 proteins facilitate expression of these cell cycle genes by antagonizing transcriptional repression mediated by p53. We show that mutant WT1 can physically interact with p53. Together the findings show for the first time that mutant WT1 proteins have a gain-of-function and act as oncogenes for Wilms tumour development by regulating Wilms tumour cell proliferation.
Collapse
Affiliation(s)
- Maike Busch
- Institute of Human Genetics and Anthropology, Heinrich-Heine University, Medical Faculty, Düsseldorf D-40225, Germany
| | - Heinrich Schwindt
- Institute of Human Genetics and Anthropology, Heinrich-Heine University, Medical Faculty, Düsseldorf D-40225, Germany
| | - Artur Brandt
- Institute of Human Genetics and Anthropology, Heinrich-Heine University, Medical Faculty, Düsseldorf D-40225, Germany
| | - Manfred Beier
- Institute of Human Genetics and Anthropology, Heinrich-Heine University, Medical Faculty, Düsseldorf D-40225, Germany
| | - Nicole Görldt
- Institute of Human Genetics and Anthropology, Heinrich-Heine University, Medical Faculty, Düsseldorf D-40225, Germany
| | - Paul Romaniuk
- Institute of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8P 5C2
| | - Eneda Toska
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Stefan Roberts
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Hans-Dieter Royer
- Institute of Human Genetics and Anthropology, Heinrich-Heine University, Medical Faculty, Düsseldorf D-40225, Germany
| | - Brigitte Royer-Pokora
- Institute of Human Genetics and Anthropology, Heinrich-Heine University, Medical Faculty, Düsseldorf D-40225, Germany
| |
Collapse
|
20
|
Nucleic acid aptamers: research tools in disease diagnostics and therapeutics. BIOMED RESEARCH INTERNATIONAL 2014; 2014:540451. [PMID: 25050359 PMCID: PMC4090538 DOI: 10.1155/2014/540451] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/18/2014] [Indexed: 12/20/2022]
Abstract
Aptamers are short sequences of nucleic acid (DNA or RNA) or peptide molecules which adopt a conformation and bind cognate ligands with high affinity and specificity in a manner akin to antibody-antigen interactions. It has been globally acknowledged that aptamers promise a plethora of diagnostic and therapeutic applications. Although use of nucleic acid aptamers as targeted therapeutics or mediators of targeted drug delivery is a relatively new avenue of research, one aptamer-based drug “Macugen” is FDA approved and a series of aptamer-based drugs are in clinical pipelines. The present review discusses the aspects of design, unique properties, applications, and development of different aptamers to aid in cancer diagnosis, prevention, and/or treatment under defined conditions.
Collapse
|
21
|
Germer K, Leonard M, Zhang X. RNA aptamers and their therapeutic and diagnostic applications. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 4:27-40. [PMID: 23638319 PMCID: PMC3627066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/15/2013] [Indexed: 06/02/2023]
Abstract
RNA Aptamers refer to RNA oligonulceotides that are capable of binding to specific targets with high affinity and specificity. Through a process called Systematic Evolution of Ligands by EXponential enrichment (SELEX), a number of RNA aptamers have been identified against various targets including organic compounds, nucleotides, proteins and even whole cells and organisms. RNA aptamers have proven to be of high therapeutic and diagnostic value with recent FDA approval of the first aptamer drug and additional ones in the clinical pipelines. It has also been found to be a particularly useful tool for cell-type specific delivery of other RNA therapeutics like siRNA. All these establish RNA aptamers as one of the pivotal tools of the emerging RNA nanotechnology field in the fight against human diseases including cancer, viral infections and other diseases. This article summarizes the current advancement in the identification of RNA aptamers and also provides some examples of their therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Katherine Germer
- Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine OH 45267
| | | | | |
Collapse
|
22
|
Fagerlund RD, Ooi PL, Wilbanks SM. Soluble expression and purification of tumor suppressor WT1 and its zinc finger domain. Protein Expr Purif 2012; 85:165-72. [DOI: 10.1016/j.pep.2012.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 08/02/2012] [Accepted: 08/02/2012] [Indexed: 12/25/2022]
|
23
|
Clarke JM, Morse MA, Lyerly HK, Clay T, Osada T. Adenovirus vaccine immunotherapy targeting WT1-expressing tumors. Expert Opin Biol Ther 2010; 10:875-83. [DOI: 10.1517/14712591003798278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Nurmemmedov E, Yengo RK, Ladomery MR, Thunnissen MMGM. Kinetic behaviour of WT 1's zinc finger domain in binding to the alpha-actinin-1 mRNA. Arch Biochem Biophys 2010; 497:21-7. [PMID: 20193655 DOI: 10.1016/j.abb.2010.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 12/13/2022]
Abstract
The zinc finger transcription factor Wilms tumour protein (WT 1) is known for its essential involvement in the development of the genitourinary system as well as of other organs and tissues. WT 1 is capable of selectively binding either DNA or mRNA targets. A KTS insertion due to alternative splicing between the zinc fingers 3 and 4 and an unconventional zinc finger 1 are the unique features that distinguish WT 1 from classical DNA-binding C(2)H(2)-type zinc finger proteins. The DNA binding characteristics of WT 1 are well studied. Due to lack of information about its native RNA targets, no extensive research has been directed at how WT 1 binds RNA. Using surface plasmon resonance, this study attempts to understand the binding behaviour of WT 1 zinc fingers with its recently reported and first putative mRNA target, ACT 34, whose stem-loop structure is believed to be critical for the interactions with WT 1. We have analysed the interactions of five WT 1 zinc finger truncations with wild-type ACT 34 and four variants. Our results indicate that WT 1 zinc fingers bind ACT 34 in a specific manner, and that this occurs as interplay of all four zinc fingers. We also report that a sensitive kinetic balance, which is equilibrated by both zinc finger 1 and KTS, regulates the interaction with ACT 34. The stem-loop and the flanking nucleotides are important elements for specific recognition by WT 1 zinc fingers.
Collapse
Affiliation(s)
- Elmar Nurmemmedov
- Molecular Biophysics, Chemical Center, Lund University, 221 00 Lund, Sweden.
| | | | | | | |
Collapse
|
25
|
Chang B, Levin J, Thompson WA, Fairbrother WG. High-throughput binding analysis determines the binding specificity of ASF/SF2 on alternatively spliced human pre-mRNAs. Comb Chem High Throughput Screen 2010; 13:242-52. [PMID: 20015017 PMCID: PMC3427726 DOI: 10.2174/138620710790980522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 08/13/2009] [Indexed: 11/22/2022]
Abstract
High-throughput immunoprecipitation studies of transcription factors and splicing factors have revolutionized the fields of transcription and splicing. Recent location studies on Nova1/2 and Fox2 have identified a set of cellular targets of these splicing factors. One problem with identifying binding sites for splicing factors arises from the transient role of RNA in gene expression. The primary role of most splicing factors is to bind pre-mRNA co-transcriptionally and participate in the extremely rapid process of splice site selection and catalysis. Pre-mRNA is a labile species with a steady state level that is three orders of magnitude less abundant than mRNA. As many splicing factors also bind mRNA to some degree, these substrates tend to dominate the output of location studies. Here we present an in-vitro method for screening RNA protein interactions that circumvents these problems. We screen approximately 4000 alternatively spliced exons and the entire Hepatitis C genome for binding of ASF/SF2, the only splicing factor demonstrated to function as an oncogene. From the pre-mRNA sequences returned in this screen we discovered physiologically relevant ASF recognition element motifs. ASF binds two motifs: a C-rich and a purine rich motif. Comparisons with similar data derived from the hnRNP protein PTB reveals little overlap between strong PTB and ASF/SF2 sites. We illustrate how this method could be employed to screen disease alleles with the set of small molecules that have been shown to alter splicing in search for therapies for splicing diseases.
Collapse
Affiliation(s)
- B Chang
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - J Levin
- Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510 USA
| | - WA Thompson
- Division of Applied Math, Brown University, Providence, Rhode Island 02912, USA
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island 02912, USA
| | - WG Fairbrother
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
26
|
Lee KY, Kang H, Ryu SH, Lee DS, Lee JH, Kim S. Bioimaging of nucleolin aptamer-containing 5-(N-benzylcarboxyamide)-2'-deoxyuridine more capable of specific binding to targets in cancer cells. J Biomed Biotechnol 2010; 2010:168306. [PMID: 20204158 PMCID: PMC2829770 DOI: 10.1155/2010/168306] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/08/2009] [Accepted: 11/19/2009] [Indexed: 11/17/2022] Open
Abstract
Chemically modified nucleotides have been developed and applied into SELEX procedure to find a novel type of aptamers to fit with targets of interest. In this study, we directly performed chemical modification of 5-(N-benzylcarboxyamide)-2'-deoxyuridine (called 5-BzdU) in the AS1411 aptamer, which binds to the nucleolin protein expressed in cancer cells. Forty-seven compounds of AS1411-containing Cy3-labeled 5-BzdU (called Cy3-(5-BzdU)-modified-AS1411) were synthesized by randomly substituting thymidines one to twelve in AS1411 with Cy3-labeled 5-BzdU. Both statistically quantified fluorescence measurements and confocal imaging analysis demonstrated at least three potential compounds of interest: number 12, 29 and 41 that significantly increased the targeting affinity to cancer cells but no significant activity from normal healthy cells. These results suggest that the position and number of substituents in AS1411 are critical parameters to improve the aptamer function. In this study, we demonstrated that chemical modification of the existing aptamers enhanced the binding and targeting affinity to targets of interest without additional SELEX procedures.
Collapse
Affiliation(s)
- Kyue Yim Lee
- Laboratory of Molecular Imaging, Department of Applied BioScience, CHA Stem Cell Institute, CHA University, Seoul 135-081, South Korea
| | - Hyungu Kang
- Aptamer Initiative, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, South Korea
| | - Sung Ho Ryu
- Aptamer Initiative, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, South Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-744, South Korea
| | - Jung Hwan Lee
- Aptamer Initiative, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, South Korea
| | - Soonhag Kim
- Laboratory of Molecular Imaging, Department of Applied BioScience, CHA Stem Cell Institute, CHA University, Seoul 135-081, South Korea
| |
Collapse
|
27
|
Abstract
Over the last 25 years, we have learned that many structural classes of zinc-binding domains (zinc fingers, ZFs) exist and it has become clear that the molecular functions of these domains are by no means limited to the sequence-specific recognition of double-stranded DNA. For example, ZFs can act as protein recognition or RNA-binding modules, and some domains can exhibit more than one function. In this chapter we describe the progress that has been made in understanding the role of ZF domains as RNA-recognition modules, and we speculate about both the prevalence of such functions and the prospects for creating designer ZFs that target RNA.
Collapse
Affiliation(s)
- Josep Font
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
28
|
Nurmemmedov E, Yengo RK, Uysal H, Karlsson R, Thunnissen MMGM. New insights into DNA-binding behavior of Wilms tumor protein (WT1)--a dual study. Biophys Chem 2009; 145:116-25. [PMID: 19853363 DOI: 10.1016/j.bpc.2009.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 09/20/2009] [Accepted: 09/22/2009] [Indexed: 02/03/2023]
Abstract
Wilms Tumor suppressor protein (WT1) is a transcription factor that is involved in a variety of developmental functions during organ development. It is also implicated in the pathology of several different cancer forms. The protein contains four C(2)H(2)-type zinc fingers and it specifically binds GC-rich sequences in the promoter regions of its target genes, which are either up or down regulated. Two properties make WT1 a more unusual transcription factor - an unconventional amino acid composition for zinc finger 1, and the insertion of a tri-peptide KTS in some of the splice isoforms of WT1. Using six WT1 constructs in which zinc fingers are systematically deleted, a dual study based on a bacterial 1-hybrid system and surface plasmon resonance measurements is performed. The experiments show that the effect of zinc finger 1 is not significant in terms of overall DNA-binding kinetics, however it influences both the specificity of target recognition and stability of interaction in presence of KTS. The KTS insertion, however, only mildly retards binding affinity, mainly by affecting the on-rate. We suggest that the insertion disturbs zinc finger 4 from its binding frame, thus weakening the rate of target recognition. Finally, for the construct in which both zinc fingers 1 and 4 were deleted, the two middle fingers 2-3 still could function as a 'minimal DNA-recognition domain' for WT1, however the formation of a stable protein-DNA complex is impaired since the overall affinity was dramatically reduced mainly since the off-rate was severely affected.
Collapse
Affiliation(s)
- Elmar Nurmemmedov
- Center for Molecular Protein Science, Lund University, Getingevägen 60, 221 00, Lund, Sweden
| | | | | | | | | |
Collapse
|
29
|
Osada T, Woo CY, McKinney M, Yang XY, Lei G, Labreche HG, Hartman ZC, Niedzwiecki D, Chao N, Amalfitano A, Morse MA, Lyerly HK, Clay TM. Induction of Wilms' tumor protein (WT1)-specific antitumor immunity using a truncated WT1-expressing adenovirus vaccine. Clin Cancer Res 2009; 15:2789-96. [PMID: 19351755 DOI: 10.1158/1078-0432.ccr-08-2589] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Wilms' tumor protein (WT1) is overexpressed in most leukemias and many solid tumors and is a promising target for tumor immunotherapy. WT1 peptide-based cancer vaccines have been reported but have limited application due to HLA restriction of the peptides. We sought to vaccinate using adenoviral (Ad) vectors encoding tumor-associated antigens such as WT1 that can stimulate tumor-associated antigen-specific immunity across a broad array of HLA types and multiple class I and class II epitopes. EXPERIMENTAL DESIGN We developed a novel Ad vector encoding a truncated version of WT1 (Ad-tWT1) lacking the highly conserved COOH terminus zinc finger domains and tested its ability to stimulate WT1-specific immune responses and antitumor immunity in two murine models of WT1-expressing tumors. RESULTS Despite encoding a transcription factor, we found that Ad-tWT1-transduced murine and human dendritic cells showed cytoplasmic expression of the truncated WT1 protein. In addition, vaccination of C57BL/6 mice with Ad-tWT1 generated WT1-specific cell-mediated and humoral immune responses and conferred protection against challenge with the leukemia cell line, mWT1-C1498. Moreover, in a tumor therapy model, Ad-tWT1 vaccination of TRAMP-C2 tumor-bearing mice significantly suppressed tumor growth. CONCLUSIONS This is the first report of a WT1-encoding Ad vector that is capable of inducing effective immunity against WT1-expressing malignancies. Based on these findings, Ad-tWT1 warrants investigation in human clinical trials to evaluate its applications as a vaccine for patients with WT1-expressing cancers.
Collapse
Affiliation(s)
- Takuya Osada
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Weiss TC, Romaniuk PJ. Contribution of individual amino acids to the RNA binding activity of the Wilms' tumor suppressor protein WT1. Biochemistry 2009; 48:148-55. [PMID: 19123921 DOI: 10.1021/bi801586a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In addition to binding to DNA, the zinc finger protein WT1 can also bind specifically to RNA. To determine the role of individual zinc fingers of the protein in this RNA binding activity, deletion and substitution mutants of the WT1 zinc finger domain were constructed. The effects of the various mutations on the binding of WT1 to the RNA aptamers RNA22 and RNA38 were determined using a quantitative equilibrium binding assay. The results indicate that zinc fingers 2 and 3 of WT1 are essential for the binding of the protein to the RNA aptamers. For both of these fingers, the arginine residue immediately preceding the alpha-helix makes a significant contribution to RNA binding. For zinc finger 2, a second arginine residue within the alpha-helix is also critical for RNA binding, while several alpha-helical residues in zinc finger 3 contribute to the overall affinity of WT1 for RNA. Investigating the effects of the same point mutations on DNA binding indicates that there are similarities and differences in the contributions of zinc fingers 2 and 3 to the DNA and RNA binding activities of WT1.
Collapse
Affiliation(s)
- Tristen C Weiss
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, Victoria, British Columbia V8W 3P6, Canada
| | | |
Collapse
|
31
|
Morrison AA, Viney RL, Saleem MA, Ladomery MR. New insights into the function of the Wilms tumor suppressor gene WT1 in podocytes. Am J Physiol Renal Physiol 2008; 295:F12-7. [DOI: 10.1152/ajprenal.00597.2007] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Wilms tumor suppressor gene WT1 is essential for early urogenital development: homozygous mutations in WT1 result in embryonic lethality due to a failure in the development of kidneys and gonads. In the adult kidney, WT1 expression is limited to the glomerular podocytes. Several human nephrotic diseases arise from mutations of the WT1 gene, including mutations that affect its zinc-fingers and alternative splicing of +/−KTS isoforms. These include WAGR (for Wilms tumor, aniridia, genitourinary anomalies, and mental retardation), and Frasier and Denys-Drash syndromes. Recent advances including the development of transgenic mouse models and conditionally immortalized podocyte cell lines are beginning to shed light on WT1's crucial role in podocyte function.
Collapse
|
32
|
Levy-Nissenbaum E, Radovic-Moreno AF, Wang AZ, Langer R, Farokhzad OC. Nanotechnology and aptamers: applications in drug delivery. Trends Biotechnol 2008; 26:442-9. [PMID: 18571753 DOI: 10.1016/j.tibtech.2008.04.006] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 04/03/2008] [Accepted: 04/18/2008] [Indexed: 12/17/2022]
Abstract
Nucleic acid ligands, also known as aptamers, are a class of macromolecules that are being used in several novel nanobiomedical applications. Aptamers are characterized by high affinity and specificity for their target, a versatile selection process, ease of chemical synthesis and a small physical size, which collectively make them attractive molecules for targeting diseases or as therapeutics. These properties will enable aptamers to facilitate innovative new nanotechnologies with applications in medicine. In this review, we will highlight recent developments in using aptamers in nanotechnology solutions for treating and diagnosing disease.
Collapse
Affiliation(s)
- Etgar Levy-Nissenbaum
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
33
|
Morrison AA, Viney RL, Ladomery MR. The post-transcriptional roles of WT1, a multifunctional zinc-finger protein. Biochim Biophys Acta Rev Cancer 2007; 1785:55-62. [PMID: 17980713 DOI: 10.1016/j.bbcan.2007.10.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 09/28/2007] [Accepted: 10/03/2007] [Indexed: 11/19/2022]
Abstract
WT1 was first described in 1990 as a tumour suppressor gene associated with Wilms tumour (nephroblastoma). It encodes a typical transcription factor with four C(2)-H(2) zinc fingers in the C-terminus. However WT1 is surprisingly complex at multiple levels: it is involved in the development of several organ systems; and is both a tumour suppressor and oncogene. Here we review evidence that has accumulated over the past decade to suggest that as well as binding DNA, WT1 also binds mRNA targets via its zinc fingers and interacts with several splice factors. WT1's first reported post-transcriptional function is also reviewed. WT1's complex roles in development and disease now need to be understood in terms of both DNA and mRNA targets.
Collapse
Affiliation(s)
- Avril A Morrison
- Centre for Research in Biomedicine, Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
| | | | | |
Collapse
|
34
|
Stoll R, Lee BM, Debler EW, Laity JH, Wilson IA, Dyson HJ, Wright PE. Structure of the Wilms tumor suppressor protein zinc finger domain bound to DNA. J Mol Biol 2007; 372:1227-45. [PMID: 17716689 DOI: 10.1016/j.jmb.2007.07.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/11/2007] [Accepted: 07/12/2007] [Indexed: 11/22/2022]
Abstract
The zinc finger domain of the Wilms tumor suppressor protein (WT1) contains four canonical Cys(2)His(2) zinc fingers. WT1 binds preferentially to DNA sequences that are closely related to the EGR-1 consensus site. We report the structure determination by both X-ray crystallography and NMR spectroscopy of the WT1 zinc finger domain in complex with DNA. The X-ray structure was determined for the complex with a cognate 14 base-pair oligonucleotide, and composite X-ray/NMR structures were determined for complexes with both the 14 base-pair and an extended 17 base-pair DNA. This combined approach allowed unambiguous determination of the position of the first zinc finger, which is influenced by lattice contacts in the crystal structure. The crystal structure shows the second, third and fourth zinc finger domains inserted deep into the major groove of the DNA where they make base-specific interactions. The DNA duplex is distorted in the vicinity of the first zinc finger, with a cytidine twisted and tilted out of the base stack to pack against finger 1 and the tip of finger 2. By contrast, the composite X-ray/NMR structures show that finger 1 continues to follow the major groove in the solution complexes. However, the orientation of the helix is non-canonical, and the fingertip and the N terminus of the helix project out of the major groove; as a consequence, the zinc finger side-chains that are commonly involved in base recognition make no contact with the DNA. We conclude that finger 1 helps to anchor WT1 to the DNA by amplifying the binding affinity although it does not contribute significantly to binding specificity. The structures provide molecular level insights into the potential consequences of mutations in zinc fingers 2 and 3 that are associated with Denys-Drash syndrome and nephritic syndrome. The mutations are of two types, and either destabilize the zinc finger structure or replace key base contact residues.
Collapse
Affiliation(s)
- Raphael Stoll
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Ariyaratana S, Loeb DM. The role of the Wilms tumour gene (WT1) in normal and malignant haematopoiesis. Expert Rev Mol Med 2007; 9:1-17. [PMID: 17524167 DOI: 10.1017/s1462399407000336] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In addition to its loss playing a pivotal role in the development of a childhood kidney malignancy, the Wilms tumour 1 gene (WT1) has emerged as an important factor in normal and malignant haematopoiesis. Preferentially expressed in CD34+ haematopoietic progenitors and down-regulated in more-differentiated cells, the WT1 transcription factor has been implicated in regulation of apoptosis, proliferation and differentiation. Putative target genes, such as BCL2, MYC, A1 and cyclin E, may cooperate with WT1 to modulate cell growth. However, the effects of WT1 on target gene expression appear to be isoform-specific. Certain WT1 isoforms are over-represented in leukaemia, but the exact mechanisms underlying the role of WT1 in transformation remain unclear. The ubiquity of WT1 in haematological malignancies has led to efforts to exploit it as a marker for minimal residual disease and as a prognostic factor, with conflicting results. In vitro killing of tumour cells by WT1-specific CD8+ cytotoxic T lymphocytes facilitated design of Phase I vaccine trials that showed clinical regression of WT1-positive tumours. Alternative methods employing WT1-specific immunotherapy are being investigated and might ultimately be used to optimise multimodal therapy of haematological malignancies.
Collapse
Affiliation(s)
- Suzie Ariyaratana
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | | |
Collapse
|
36
|
Morrison AA, Venables JP, Dellaire G, Ladomery MR. The Wilms tumour suppressor protein WT1 (+KTS isoform) binds alpha-actinin 1 mRNA via its zinc-finger domain. Biochem Cell Biol 2007; 84:789-98. [PMID: 17167543 DOI: 10.1139/o06-065] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations in WT1 are associated with developmental syndromes that affect the urogenital system and neoplasms, including Wilms tumour, acute myeloid leukemia, and breast and prostate cancers. The WT1 protein belongs to the early growth response family of zinc-finger transcription factors. Uniquely to WT1, an evolutionarily conserved alternative splice event inserts the tripeptide KTS, between zinc fingers 3 and 4. Whereas -KTS isoforms bind DNA and activate or repress transcription, +KTS isoforms bind DNA less efficiently and interact with splice factors and RNA in vitro and in vivo. Although candidate DNA targets have been found, physiological mRNA targets are yet to be defined. We examined the distribution of WT1 in ribonucleoprotein (RNP) complexes in nuclear extract prepared from M15 cells, a mouse mesonephric fetal kidney cell line. WT1 cofractionated with the splice factor PSF in large RNP particles >or=2 MDa. We also found that PSF co-immunoprecipitated with WT1, suggesting a functional interaction between these 2 multifunctional proteins. Using yeast three-hybrid library constructed from the co-immunoprecipitated RNA we found that WT1 (+KTS) binds close to or at the start codon of alpha-actinin 1 (ACTN1) mRNA. A band shift assay confirmed the ability of the WT1 zinc-finger domain (+KTS) to bind this sequence in vitro. ACTN1 is the first likely physiological mRNA target of WT1.
Collapse
Affiliation(s)
- A A Morrison
- Bristol Genomics Research Institute, Faculty of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
| | | | | | | |
Collapse
|
37
|
Schumacher VA, Jeruschke S, Eitner F, Becker JU, Pitschke G, Ince Y, Miner JH, Leuschner I, Engers R, Everding AS, Bulla M, Royer-Pokora B. Impaired glomerular maturation and lack of VEGF165b in Denys-Drash syndrome. J Am Soc Nephrol 2007; 18:719-29. [PMID: 17267748 DOI: 10.1681/asn.2006020124] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Individuals with Denys-Drash syndrome (DDS) develop diffuse mesangial sclerosis, ultimately leading to renal failure. The disease is caused by mutations that affect the zinc finger structure of the Wilms' tumor protein (WT1), but the mechanisms whereby these mutations result in glomerulosclerosis remain largely obscure. How WT1 regulates genes is likely to be complex, because it has multiple splice forms, binds both DNA and RNA, and associates with spliceosomes. Herein is described that in DDS podocytes, the ratio of both WT1 +KTS isoforms C to D differs considerably from that of normal child and adult control podocytes and more closely resembles fetal profiles. Aside from the delay in podocyte maturation, DDS glomeruli show swollen endothelial cells, reminiscent of endotheliosis, together with incompletely fused capillary basement membranes; a dramatic decrease in collagen alpha4(IV) and laminin beta2 chains; and the presence of immature or activated mesangial cells that express alpha-smooth muscle actin. Because appropriate vascular endothelial growth factor A (VEGF-A) expression is known to be essential for the development and maintenance of glomerular architecture and function, this article addresses the question of whether VEGF-A expression is deregulated in DDS. The data presented here show that DDS podocytes express high levels of the proangiogenic isoform VEGF165, but completely lack the inhibitory isoform VEGF165b. The VEGF165/VEGF165b ratio in DDS resembles that of fetal S-shaped bodies, rather than that of normal child or adult control subjects. The alteration in VEGF-A expression presented here may provide a mechanistic insight into the pathogenesis of DDS.
Collapse
|
38
|
Geng J, Carstens RP. Two methods for improved purification of full-length mammalian proteins that have poor expression and/or solubility using standard Escherichia coli procedures. Protein Expr Purif 2006; 48:142-50. [PMID: 16529945 DOI: 10.1016/j.pep.2006.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 01/16/2006] [Accepted: 01/27/2006] [Indexed: 11/16/2022]
Abstract
Many mammalian proteins are multifunctional proteins with biological activities whose characterization often requires in vitro studies. However, these studies depend on generation of sufficient quantities of recombinant protein and many mammalian proteins cannot be easily expressed and purified as full-length products. One example is the Wilm's tumor gene product, WT1, which has proven difficult to express as a full-length purified recombinant protein using standard approaches. To facilitate expression of full-length WT1 we have developed approaches that optimized its expression and purification in Escherichia coli and mammalian cells. First, using a bicistronic vector system, we successfully expressed and purified WT1 containing a C-terminal tandem affinity tag in 293T cells. Second, using a specific strain of E. coli transformed with a modified GST vector, we successfully expressed and purified N-terminal GST tagged and C-terminal 2x FLAG tagged full-length human WT1. The benefits of these approaches include: (1) two-step affinity purification to allow high quality of protein purification, (2) large soluble tags that can be used for a first affinity purification step, but then conveniently removed with the highly site-specific TEV protease, and (3) the use of non-denaturing purification and elution conditions that are predicted to preserve native protein conformation and function.
Collapse
Affiliation(s)
- Jinming Geng
- Renal-Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA
| | | |
Collapse
|
39
|
Bor YC, Swartz J, Morrison A, Rekosh D, Ladomery M, Hammarskjöld ML. The Wilms' tumor 1 (WT1) gene (+KTS isoform) functions with a CTE to enhance translation from an unspliced RNA with a retained intron. Genes Dev 2006; 20:1597-608. [PMID: 16738405 PMCID: PMC1482480 DOI: 10.1101/gad.1402306] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Wilms' tumor 1 (WT1) gene plays an important role in mammalian urogenital development, and dysregulation of this gene is observed in many human cancers. Alternative splicing of WT1 RNA leads to the expression of two major protein isoforms, WT1(+KTS) and WT1(-KTS). Whereas WT1(-KTS) acts as a transcriptional regulator, no clear function has been ascribed to WT1(+KTS), despite the fact that this protein is crucial for normal development. Here we show that WT1(+KTS) functions to enhance expression from RNA possessing a retained intron and containing either a cellular or viral constitutive transport element (CTE). WT1(+KTS) expression increases the levels of unspliced RNA containing a CTE and specifically promotes the association of this RNA with polyribosomes. These studies provide further support for links between different steps in RNA metabolism and for the existence of post-transcriptional operons.
Collapse
Affiliation(s)
- Yeou-cherng Bor
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
40
|
Graham K, Li W, Williams BRG, Fraizer G. Vascular endothelial growth factor (VEGF) is suppressed in WT1-transfected LNCaP cells. Gene Expr 2006; 13:1-14. [PMID: 16572586 PMCID: PMC6032449 DOI: 10.3727/000000006783991953] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Wilms' tumor suppressor gene product (WT1) regulates expression of growth control genes. Microarray analysis of gene expression profiles of hormone-treated LNCaP prostate cancer cell lines transfected with either wild-type WT1 or a zinc finger mutant form, DDS (R394W), revealed significantly altered patterns of expression. Validation studies using quantitative real-time PCR confirmed the differential expression of the tumor progression gene, vascular endothelial growth factor (VEGF). WT1-LNCaP cells had significantly reduced levels of VEGF mRNA when compared to vector control cells; in contrast, DDS-LNCaP cells showed elevated levels of VEGF transcripts. To address a functional role for WT1 overexpression, we investigated whether induction of VEGF expression, by the synthetic androgen R1881, would be disrupted in wild-type or mutant WT1-transfected LNCaP cells. Hormone treatment failed to elevate VEGF transcript levels above uninduced baseline levels in WT1-LNCaP cells, despite 48 h of treatment with 5 nM R1881. Consistent with our quantitative real-time PCR analysis, immunofluorescent staining of VEGF protein was reduced in WT1-LNCaP cells in both the presence and absence of R1881 treatment. Conversely, VEGF levels increased in vector control and DDS-LNCaP cells treated with 5 nM R1881. Not only do these studies point out the regulatory potential of WT1 for VEGF, but they also indicate an altered function for the mutant DDS isoform. Because VEGF is associated with neovascularization and promotion of metastasis in a variety of solid tumors including prostate cancer, a better understanding of the regulation of VEGF expression by transcription factors, such as WT1, is important for halting disease progression.
Collapse
Affiliation(s)
- Kylie Graham
- *Department of Biological Sciences, Kent State University, Kent, OH 44242
| | - Wenliang Li
- †Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Bryan R. G. Williams
- †Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Gail Fraizer
- *Department of Biological Sciences, Kent State University, Kent, OH 44242
| |
Collapse
|
41
|
Nurmemmedov E, Thunnissen M. Expression, purification, and characterization of the 4 zinc finger region of human tumor suppressor WT1. Protein Expr Purif 2005; 46:379-89. [PMID: 16343939 DOI: 10.1016/j.pep.2005.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 10/26/2005] [Accepted: 10/30/2005] [Indexed: 12/31/2022]
Abstract
Wilm's Tumor gene 1 (WT1) encodes a zinc finger protein with four distinct splice isoforms. WT1 has a critical role in genesis of various cancer types both at the DNA/RNA and the protein level. The zinc-finger DNA-binding capacity of the protein is located in the C-terminal domain. Two recombinant proteins, 6HIS-ZN-wt1 and 6HIS-ZN+wt1, corresponding to two alternative splice variants of the C-terminal regions of human WT1 (-KTS) and WT1 (+KTS), respectively, were over-expressed with hexa-histidine fusion tags in inclusion bodies in Escherichia coli for crystallization studies. A combination of Ni2+-NTA affinity and size-exclusion chromatography was applied for purification of the proteins in denaturing conditions. The effects of various buffers, salts and other additives were scrutinized in a systematic screening to establish the optimal conditions for solubility and refolding of the recombinant WT1 proteins. Circular dichroism analysis revealed the expected betabetaalpha content for the refolded proteins, with a notable degradation of the alpha-helical segment in the DNA-free state. Electrophoretic mobility shift assay with double-stranded DNA containing the double Egr1 consensus site 5'-GCG-TGG-GCG-3' confirmed that 6HIS-ZN-wt1 has higher DNA binding affinity than 6HIS-ZN+wt1.
Collapse
Affiliation(s)
- Elmar Nurmemmedov
- Department of Molecular Biophysics, Lund University, Chemical Center, Box 124, SE 221 00, Lund, Sweden.
| | | |
Collapse
|
42
|
Discenza MT, Pelletier J. Insights into the physiological role of WT1 from studies of genetically modified mice. Physiol Genomics 2004; 16:287-300. [PMID: 14966251 DOI: 10.1152/physiolgenomics.00164.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Discenza, Maria Teresa, and Jerry Pelletier. Insights into the physiological role of WT1 from studies of genetically modified mice. Physiol Genomics 16: 287-300, 2004; 10.1152/physiolgenomics.00164.2003.—The identification of WT1 gene mutations in children with WAGR and Denys-Drash syndromes pointed toward a role for WT1 in genitourinary system development. Biochemical analysis of the different WT1 protein isoforms showed that WT1 is a transcription factor and also has the ability to bind RNA. Analysis of WT1 complexes identified several target genes and protein partners capable of interacting with WT1. Some of these studies placed WT1, its downstream targets, and protein partners in a transcriptional regulatory network that controls urogenital system development. We review herein studies on WT1 knockout and transgenic models that have been instrumental in defining a physiological role for WT1 in normal and abnormal urogenital development.
Collapse
|
43
|
Berasain C, Herrero JI, García-Trevijano ER, Avila MA, Esteban JI, Mato JM, Prieto J. Expression of Wilms' tumor suppressor in the liver with cirrhosis: relation to hepatocyte nuclear factor 4 and hepatocellular function. Hepatology 2003; 38:148-57. [PMID: 12829997 DOI: 10.1053/jhep.2003.50269] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Wilms' tumor suppressor WT1 is a transcriptional regulator present in the fetal but not in the mature liver. Its expression and functional role in liver diseases remains unexplored. In this study, we analyzed WT1 expression by reverse-transcription polymerase chain reaction (RT-PCR) and by immunohistochemistry in normal and diseased livers. In addition, we performed in vitro studies in isolated rat hepatocytes to investigate WT1 regulation and function. We detected WT1 messenger RNA (mRNA) in 18% of normal livers, 17% of chronic hepatitis with minimal fibrosis, 49% of chronic hepatitis with bridging fibrosis, and 71% of cirrhotic livers. In cirrhosis, WT1 immunoreactivity was localized to the nucleus of hepatocytes. WT1 mRNA abundance correlated inversely with prothrombin time (P =.04) and directly with serum bilirubin (P =.002) and with the MELD score (P =.001) of disease severity. In rats, WT1 expression was present in fetal hepatocytes and in the cirrhotic liver but not in normal hepatic tissue. In vitro studies showed that isolated primary hepatocytes express WT1 when stimulated with transforming growth factor beta (TGF-beta) or when the cells undergo dedifferentiation in culture. Moreover, we found that WT1 down-regulates hepatocyte nuclear factor 4 (HNF-4), a factor that is essential to maintain liver function and metabolic regulation in the mature organ. Hepatic expression of HNF-4 was impaired in advanced human cirrhosis and negatively correlated with WT1 mRNA levels (P =.001). In conclusion, we show that WT1 is induced by TGF-beta and down-regulates HNF-4 in liver cells. WT1 is reexpressed in the cirrhotic liver in relation to disease progression and may play a role in the development of hepatic insufficiency in cirrhosis.
Collapse
Affiliation(s)
- Carmen Berasain
- Division of Hepatology and Gene Therapy, Department of Medicine, Clínica Universitaria, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
44
|
Ladomery M, Sommerville J, Woolner S, Slight J, Hastie N. Expression in Xenopus oocytes shows that WT1 binds transcripts in vivo, with a central role for zinc finger one. J Cell Sci 2003; 116:1539-49. [PMID: 12640038 DOI: 10.1242/jcs.00324] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Wilms' tumour suppressor gene WT1 encodes a protein involved in urogenital development and disease. The salient feature of WT1 is the presence of four 'Krüppel'-type C(2)-H(2) zinc fingers in the C-terminus. Uniquely to WT1, an evolutionarily conserved alternative splicing event inserts three amino acids (KTS) between the third and fourth zinc fingers, which disrupts DNA binding. The ratio of +KTS:-KTS isoforms is crucial for normal development. Previous work has shown that WT1 (+KTS) interacts with splice factors and that WT1 zinc fingers, particularly zinc finger one, bind to RNA in vitro. In this study we investigate the role of zinc finger one and the +KTS splice in vivo by expressing tagged proteins in mammalian cells and Xenopus oocytes. We find that both full-length +/-KTS isoforms and deletion constructs that include zinc finger one co-sediment with ribonucleoprotein particles (RNP) on density gradients. In Xenopus oocytes both isoforms located to the lateral loops of lampbrush chromosomes. Strikingly, only the +KTS isoform was detected in B-snurposomes, but not when co-expressed with -KTS. However, co-expression of the C-terminus (amino acids 233-449, +KTS) resulted in snurposome staining, which is consistent with an in vivo interaction between isoforms via the N-terminus. Expressed WT1 was also detected in the RNA-rich granular component of nucleoli and co-immunoprecipitated with oocyte transcripts. Full-length WT1 was most stably bound to transcripts, followed by the C-terminus; the least stably bound was CTDeltaF1 (C-terminus minus zinc finger one). Expression of the transcription factor early growth response 1 (EGR1), whose three zinc fingers correspond to WT1 zinc fingers 2-4, caused general chromosomal loop retraction and transcriptional shut-down. However, a construct in which WT1 zinc finger one was added to EGR1 mimicked the properties of WT1 (-KTS). We suggest that in evolution, WT1 has acquired the ability to interact with transcripts and splice factors because of the modification of zinc finger one and the +KTS alternative splice.
Collapse
Affiliation(s)
- Michael Ladomery
- MRC Human Genetics Unit, Western General Hospital, Crewe Rd, Edinburgh EH4 2XU, UK
| | | | | | | | | |
Collapse
|
45
|
Lee TH, Lwu S, Kim J, Pelletier J. Inhibition of Wilms tumor 1 transactivation by bone marrow zinc finger 2, a novel transcriptional repressor. J Biol Chem 2002; 277:44826-37. [PMID: 12239212 DOI: 10.1074/jbc.m205667200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Wilms tumor suppressor gene, wt1, encodes a zinc finger transcription factor that has been implicated in the regulation of a number of genes. Protein-protein interactions are known to modulate the transcription regulatory functions of Wilms tumor (WT1) and have also implicated WT1 in splicing. In this report, we identify a novel WT1-interacting protein, bone marrow zinc finger 2 (BMZF2), by affinity chromatography utilizing immobilized WT1 protein. BMZF2 is a potential transcription factor with 18 zinc fingers. The BMZF2 mRNA is mainly expressed in fetal tissues, and the protein is predominantly nuclear. Co-immunoprecipitation experiments are consistent with an in vivo association between WT1 and BMZF2. Glutathione S-transferase pulldown assays and far Western blots revealed that zinc fingers VI-X (amino acids 231-370) are required for interaction with the zinc finger region of WT1. Functionally, BMZF2 inhibits transcriptional activation by WT1. Moreover, a chimeric protein generated by fusion of BMZF2 to the GAL4 DNA-binding domain significantly decreases promoter activity of a reporter containing GAL4 DNA-binding sites, suggesting the presence of an active repressor domain within BMZF2. Our results suggest that BMZF2 interferes with the transactivation potential of WT1.
Collapse
Affiliation(s)
- Tae Ho Lee
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
46
|
Yan W, Burns KH, Ma L, Matzuk MM. Identification of Zfp393, a germ cell-specific gene encoding a novel zinc finger protein. Mech Dev 2002; 118:233-9. [PMID: 12351194 DOI: 10.1016/s0925-4773(02)00258-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Using the digital differential display program of the National Center for Biotechnology Information, we identified a contig of expression sequence tags (ESTs) which were unique to ovary, testis, and egg libraries. The full-length cDNA of this transcript was deduced and further confirmed by reverse transcriptase polymerase chain reaction (RT-PCR). The cDNA encodes a novel protein of 341 amino acids with a nuclear localization signal. The carboxyl-terminus of the protein contains three C2H2 zinc fingers, and the NH(2)-terminus is proline and serine-rich. Based on the conserved zinc finger motifs, we have termed this novel protein as zinc finger protein 393 (ZFP393). Northern blot and RT-PCR analyses revealed that Zfp393 mRNA was exclusively expressed in testis and ovary. The expression sites were further localized by in situ hybridization to step 3-8 spermatids in testis and growing oocytes in ovary. The Zfp393 gene consists of three exons spanning approximately 8 kb on the distal part of mouse chromosome 4. The carboxyl-terminal zinc finger region is highly homologous to several zinc finger-containing proteins, but no proteins were found to share sequence similarity with the NH(2)-terminal region of ZFP393. Genomic database mining and Southern blot analysis indicate that Zfp393 is a single copy gene. We hypothesize that ZFP393 functions as a germ cell-specific transcription factor that plays important roles in spermatid differentiation and oocyte development.
Collapse
Affiliation(s)
- Wei Yan
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
47
|
Abstract
WT1 encodes a zinc finger transcription factor implicated in normal development and tumorigenesis. Germline mutation or deletion of WT1 results in a spectrum of abnormal kidney development, male-to-female intersex disorders, and predisposition to pediatric nephroblastoma, Wilms tumor. Initially thought to encode a transcriptional repressor, WT1-dependent functions are now more clearly linked to its property as a transcriptional activator of genes involved in renal development and sex determination. WT1 is expressed in 4 isoforms as a result of 2 alternative messenger RNA splicing events, the more significant of which encodes the 3 amino acids lysine, threonine, and serine (KTS) between zinc fingers 3 and 4. Although WT1 isoforms lacking KTS act as sequence-specific DNA binding factors, a large body of evidence now implicates the KTS-containing isoforms in RNA processing. In keeping with distinct biochemical mechanisms for these isoforms, genetic data from humans and mice point to separate but partially overlapping roles for WT1 (+KTS) and (-KTS) during genitourinary development. Recently, a hematopoietic model system has been used to study functional properties of WT1 in vitro. WT1 expression in primary hematopoietic cells leads to stage-specific effects that may be relevant to WT1-mediated tumor suppression.
Collapse
Affiliation(s)
- Leif W Ellisen
- Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA.
| |
Collapse
|
48
|
Inoue A, Omori A, Ichinose S, Takahashi KP, Kinoshita Y, Mita S. S1 proteins C2 and D2 are novel hnRNPs similar to the transcriptional repressor, CArG box motif-binding factor A. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3654-63. [PMID: 11432731 DOI: 10.1046/j.1432-1327.2001.02267.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
S1 proteins A-D are liberated from thoroughly washed nuclei by mild digestion with DNase I or RNase A, and extracted selectively at pH 4.9 from the reaction supernatants. Here, we characterized the S1 proteins, focusing on protein D2, the most abundant S1 protein in the rat liver, and on protein C2 as well. Using a specific antibody, McAb 351, they were shown to occur in the extranucleolar nucleoplasm, and to be extracted partly in the nuclear soluble fraction. We demonstrate that the S1 proteins in this fraction exist constituting heterogeneous nuclear ribonucleoproteins (hnRNPs), through direct binding to hnRNAs, as revealed by centrifugation on density gradients, immunoprecipitation, and UV cross-linking. In hnRNPs, protein D2 occurred at nuclease-hypersensitive sites and C2 in the structures that gave rise to 40 S RNP particles. By microsequencing, protein D2 was identified with a known protein, CArG box motif-binding factor A (CBF-A), which has been characterized as a transcriptional repressor, and C2 as its isoform protein. In fact, CBF-A expressed from its cDNA was indistinguishable from protein D2 in molecular size and immunoreactivity to McAb 351. Thus, the present results demonstrate that S1 proteins C2 and D2 are novel hnRNP proteins, and suggest that the proteins C2 and D2 act in both transcriptional and post-transcriptional processes in gene expression.
Collapse
Affiliation(s)
- A Inoue
- Department of Biochemistry, Osaka City University Medical School, Abenoku, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Brunelli JP, Robison BD, Thorgaard GH. Ancient and recent duplications of the rainbow trout Wilms' tumor gene. Genome 2001. [DOI: 10.1139/g01-020] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Wilms' tumor suppressor (WT1) gene plays an important role in the development and functioning of the genitourinary system, and mutations in this gene are associated with nephroblastoma formation in humans. Rainbow trout (Oncorhynchus mykiss) is one of the rare animal models that readily form nephroblastomas, yet trout express three distinct WT1 genes, one of which is duplicated and inherited tetrasomically. Sequence analyses suggest an ancient gene duplication in the common ancestor of bony fishes resulted in the formation of two WT1 gene families, that conserve the splicing variations of tetrapod WT1, and a second duplication event occurred in the trout lineage. The WT1 genes of one family map to linkage groups 6 and 27 in the trout genome map. Reverse transcribed polymerase chain reaction (RT-PCR) expression analysis demonstrated little difference in WT1 tissue expression pattern between genes.Key words: tumor suppressor, nephroblastoma, RT-PCR expression, kidney, cancer, cDNA, gene mapping.
Collapse
|
50
|
Herzer U, Lutz B, Hartmann K, Englert C. The speckling domain of the Wilms tumor suppressor WT1 overlaps with the transcriptional repression domain. FEBS Lett 2001; 494:69-73. [PMID: 11297737 DOI: 10.1016/s0014-5793(01)02313-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Wilms tumor suppressor gene WT1 encodes a zinc finger protein, expressed as different splicing variants, that has all the hallmarks of a transcription factor. The -KTS form of WT1 displays a homogeneous localization within the nucleus and has been shown to activate or repress the activity of various target genes. In contrast, the WT1(+KTS) variant demonstrates a speckled pattern of expression within the nucleus. This and its association with factors of the splicing machinery has led to the hypothesis that WT1(+KTS) might play a role in post-transcriptional processes. By the generation of a series of deletion constructs and subsequent immunofluorescence analysis, we have identified and characterized the domain which is responsible for the localization of WT1 variants in nuclear speckles. The speckling domain comprises amino acids 76-120 within the N-terminus of WT1 and is sufficient to target other proteins into distinct nuclear domains. Interestingly the WT1 speckling domain does not overlap with the domain required for interaction with the splicing factor U2AF65 but overlaps with the transcriptional repression domain. Thus our data challenge the view that association of WT1 with spliceosomes is responsible for the speckling phenotype.
Collapse
Affiliation(s)
- U Herzer
- Institut für Toxikologie und Genetik, Forschungszentrum Karlsruhe, Hermann von Helmholtz-Platz 1, 76021, Karlsruhe, Germany
| | | | | | | |
Collapse
|