1
|
Claahsen - van der Grinten HL, Speiser PW, Ahmed SF, Arlt W, Auchus RJ, Falhammar H, Flück CE, Guasti L, Huebner A, Kortmann BBM, Krone N, Merke DP, Miller WL, Nordenström A, Reisch N, Sandberg DE, Stikkelbroeck NMML, Touraine P, Utari A, Wudy SA, White PC. Congenital Adrenal Hyperplasia-Current Insights in Pathophysiology, Diagnostics, and Management. Endocr Rev 2022; 43:91-159. [PMID: 33961029 PMCID: PMC8755999 DOI: 10.1210/endrev/bnab016] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Indexed: 11/19/2022]
Abstract
Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders affecting cortisol biosynthesis. Reduced activity of an enzyme required for cortisol production leads to chronic overstimulation of the adrenal cortex and accumulation of precursors proximal to the blocked enzymatic step. The most common form of CAH is caused by steroid 21-hydroxylase deficiency due to mutations in CYP21A2. Since the last publication summarizing CAH in Endocrine Reviews in 2000, there have been numerous new developments. These include more detailed understanding of steroidogenic pathways, refinements in neonatal screening, improved diagnostic measurements utilizing chromatography and mass spectrometry coupled with steroid profiling, and improved genotyping methods. Clinical trials of alternative medications and modes of delivery have been recently completed or are under way. Genetic and cell-based treatments are being explored. A large body of data concerning long-term outcomes in patients affected by CAH, including psychosexual well-being, has been enhanced by the establishment of disease registries. This review provides the reader with current insights in CAH with special attention to these new developments.
Collapse
Affiliation(s)
| | - Phyllis W Speiser
- Cohen Children’s Medical Center of NY, Feinstein Institute, Northwell Health, Zucker School of Medicine, New Hyde Park, NY 11040, USA
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, School of Medicine Dentistry & Nursing, University of Glasgow, Glasgow, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Departments of Internal Medicine and Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Henrik Falhammar
- Department of Molecular Medicine and Surgery, Karolinska Intitutet, Stockholm, Sweden
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart’s and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Angela Huebner
- Division of Paediatric Endocrinology and Diabetology, Department of Paediatrics, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Barbara B M Kortmann
- Radboud University Medical Centre, Amalia Childrens Hospital, Department of Pediatric Urology, Nijmegen, The Netherlands
| | - Nils Krone
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Deborah P Merke
- National Institutes of Health Clinical Center and the Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Walter L Miller
- Department of Pediatrics, Center for Reproductive Sciences, and Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| | - Anna Nordenström
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Endocrinology, Karolinska University Hospital, Stockholm, Sweden
| | - Nicole Reisch
- Medizinische Klinik IV, Klinikum der Universität München, Munich, Germany
| | - David E Sandberg
- Department of Pediatrics, Susan B. Meister Child Health Evaluation and Research Center, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, Center for Rare Endocrine Diseases of Growth and Development, Center for Rare Gynecological Diseases, Hôpital Pitié Salpêtrière, Sorbonne University Medicine, Paris, France
| | - Agustini Utari
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Stefan A Wudy
- Steroid Research & Mass Spectrometry Unit, Laboratory of Translational Hormone Analytics, Division of Paediatric Endocrinology & Diabetology, Justus Liebig University, Giessen, Germany
| | - Perrin C White
- Division of Pediatric Endocrinology, UT Southwestern Medical Center, Dallas TX 75390, USA
| |
Collapse
|
2
|
Zhao Z, Gao Y, Lu L, Tong A, Chen S, Zhang W, Zhang X, Sun B, Wu X, Mao J, Wang X, Nie M. The underlying cause of the simple virilizing phenotype in patients with 21-hydroxylase deficiency harboring P31L variant. Front Endocrinol (Lausanne) 2022; 13:1015773. [PMID: 36866166 PMCID: PMC9972294 DOI: 10.3389/fendo.2022.1015773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/11/2022] [Indexed: 02/16/2023] Open
Abstract
OBJECTIVE To analyze the relationship between genotype and phenotype in 21-Hydroxylase deficiency patients harboring P31L variant and the underlying mechanism. METHODS A total of 29 Chinese patients with 21-OHD harboring P31L variant were recruited, and the detailed clinical features of the patients were extracted and analyzed retrospectively. The TA clone combined with sequencing of the region containing the promotor and exon1 of CYP21A2 was performed to determine whether the variants in promotor and P31L aligned in cis. We further compared the clinical characteristics of 21-OHD patients between the promoter variant group and no promoter variant group. RESULTS Among the 29 patients diagnosed with 21-OHD harboring P31L variant, the incidence of classical simple virilizing form was 62.1%. Thirteen patients owned promoter variants (1 homozygote and 12 heterozygote) and all exhibited SV form. The promoter variants and the P31L variant were located in the same mutant allele as validated by TA cloning and sequencing. There were statistically significant differences in clinical phenotype and 17-OHP level between the patients with and without promoter region variations (P<0.05). CONCLUSION There exists high incidence (57.4%) of SV form among the 21-OHD patients harboring P31L variant, and the underlying mechanism is partially due to both the promoter variants and P31L aligning in cis on one allele. Further sequencing of promoter region will provide important hints for the explanation of phenotype in patients harboring P31L.
Collapse
Affiliation(s)
- Zhiyuan Zhao
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yinjie Gao
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Lu
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Anli Tong
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shi Chen
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Zhang
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxia Zhang
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Bang Sun
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xueyan Wu
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiangfeng Mao
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xi Wang
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Nie
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Min Nie,
| |
Collapse
|
3
|
EMQN best practice guidelines for molecular genetic testing and reporting of 21-hydroxylase deficiency. Eur J Hum Genet 2020; 28:1341-1367. [PMID: 32616876 PMCID: PMC7609334 DOI: 10.1038/s41431-020-0653-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 11/25/2022] Open
Abstract
Molecular genetic testing for congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is offered worldwide and is of importance for differential diagnosis, carrier detection and adequate genetic counseling, particularly for family planning. In 2008 the European Molecular Genetics Quality Network (EMQN) for the first time offered a European-wide external quality assessment scheme for CAH (due to 21-OH deficiency). The interest was great and over the last years at about 60 laboratories from Europe, USA and Australia regularly participated in that scheme. These best practice guidelines were drafted on the basis of the extensive knowledge and experience got from those annually organized CAH-schemes. In order to obtain the widest possible consultation with practicing laboratories the draft was therefore circulated twice by EMQN to all laboratories participating in the EQA-scheme for CAH genotyping and was updated by that input. The present guidelines address quality requirements for diagnostic molecular genetic laboratories, as well as criteria for CYP21A2 genotyping (including carrier-testing and prenatal diagnosis). A key aspect of that article is the use of appropriate methodologies (e.g., sequencing methods, MLPA (multiplex ligation dependent probe amplification), mutation specific assays) and respective limitations and analytical accuracy. Moreover, these guidelines focus on classification of variants, and the interpretation and standardization of the reporting of CYP21A2 genotyping results. In addition, the article provides a comprehensive list of common as well as so far unreported CYP21A2-variants.
Collapse
|
4
|
Simonetti L, Bruque CD, Fernández CS, Benavides-Mori B, Delea M, Kolomenski JE, Espeche LD, Buzzalino ND, Nadra AD, Dain L. CYP21A2 mutation update: Comprehensive analysis of databases and published genetic variants. Hum Mutat 2017; 39:5-22. [PMID: 29035424 DOI: 10.1002/humu.23351] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/20/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022]
Abstract
Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders of adrenal steroidogenesis. Disorders in steroid 21-hydroxylation account for over 95% of patients with CAH. Clinically, the 21-hydroxylase deficiency has been classified in a broad spectrum of clinical forms, ranging from severe or classical, to mild late onset or non-classical. Known allelic variants in the disease causing CYP21A2 gene are spread among different sources. Until recently, most variants reported have been identified in the clinical setting, which presumably bias described variants to pathogenic ones, as those found in the CYPAlleles database. Nevertheless, a large number of variants are being described in massive genome projects, many of which are found in dbSNP, but lack functional implications and/or their phenotypic effect. In this work, we gathered a total of 1,340 GVs in the CYP21A2 gene, from which 899 variants were unique and 230 have an effect on human health, and compiled all this information in an integrated database. We also connected CYP21A2 sequence information to phenotypic effects for all available mutations, including double mutants in cis. Data compiled in the present work could help physicians in the genetic counseling of families affected with 21-hydroxylase deficiency.
Collapse
Affiliation(s)
| | - Carlos D Bruque
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina.,Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | | | | | - Marisol Delea
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina
| | - Jorge E Kolomenski
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Lucía D Espeche
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina
| | | | - Alejandro D Nadra
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Liliana Dain
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina.,Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Molecular Analysis of CYP21A2 Gene Mutations among Iraqi Patients with Congenital Adrenal Hyperplasia. Enzyme Res 2016; 2016:9040616. [PMID: 27777794 PMCID: PMC5061977 DOI: 10.1155/2016/9040616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/31/2016] [Indexed: 01/15/2023] Open
Abstract
Congenital adrenal hyperplasia is a group of autosomal recessive disorders. The most frequent one is 21-hydroxylase deficiency. Analyzing CYP21A2 gene mutations was so far not reported in Iraq. This work aims to analyze the spectrum and frequency of CYP21A2 mutations among Iraqi CAH patients. Sixty-two children were recruited from the Pediatric Endocrine Consultation Clinic, Children Welfare Teaching Hospital, Baghdad, Iraq, from September 2014 till June 2015. Their ages ranged between one day and 15 years. They presented with salt wasting, simple virilization, or pseudoprecocious puberty. Cytogenetic study was performed for cases with ambiguous genitalia. Molecular analysis of CYP21A2 gene was done using the CAH StripAssay (ViennaLab Diagnostics) for detection of 11 point mutations and >50% of large gene deletions/conversions. Mutations were found in 42 (67.7%) patients; 31 (50%) patients were homozygotes, 9 (14.5%) were heterozygotes, and 2 (3.2%) were compound heterozygotes with 3 mutations, while 20 (32.3%) patients had none of the tested mutations. The most frequently detected mutations were large gene deletions/conversions found in 12 (19.4%) patients, followed by I2Splice and Q318X in 8 (12.9%) patients each, I172N in 5 (8.1%) patients, and V281L in 4 (6.5%) patients. Del 8 bp, P453S, and R483P were each found in one (1.6%) and complex alleles were found in 2 (3.2%). Four point mutations (P30L, Cluster E6, L307 frameshift, and R356W) were not identified in any patient. In conclusion, gene deletions/conversions and 7 point mutations were recorded in varying proportions, the former being the commonest, generally similar to what was reported in regional countries.
Collapse
|
6
|
Baş F, Kayserili H, Darendeliler F, Uyguner O, Günöz H, Yüksel Apak M, Atalar F, Bundak R, Wilson RC, New MI, Wollnik B, Saka N. CYP21A2 gene mutations in congenital adrenal hyperplasia: genotype-phenotype correlation in Turkish children. J Clin Res Pediatr Endocrinol 2009; 1:116-28. [PMID: 21274396 PMCID: PMC3005650 DOI: 10.4008/jcrpe.v1i3.49] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 02/23/2009] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Congenital adrenal hyperplasia (CAH) due 21-hydroxylase deficiency (21-OHD) is a common autosomal recessive disorder. It is caused by defects in the CYP21A2 gene. OBJECTIVE Our aim was to determine the frequency of common gene mutations and to evaluate genotype-phenotype correlations in Turkish 21-OHD patients. METHODS Molecular analysis of the CYP21A2 gene was performed for the detection of the eight most common point mutations [p.P30L, IVS2-13C>G (IVS-2), p.I172N, exon 6 mutation cluster (p.I236N, p.V237E, p.M239K), p.V281L, p.Q318X, p.R356W, 8-bp-deletion], of large deletion and conversion by southern blotting, allele specific semi-quantitative PCR/enzyme restriction method and sequencing, in 56 patients with 21-OHD, from 52 families. RESULTS Disease-causing mutations were identified in 77 out of 91 alleles (84.6%) of the patients. Mutations were found in 34 of 43 alleles (79.1%) in salt wasting (SW; n=26), 32 of 36 alleles (88.8%) in simple virilizing (SV; n=24) and 11 of 12 alleles (91.6%) in non-classical (NC; n=6) form of CAH. The most frequent mutations were IVS-2 (22.0%), large conversion (14.3%), p.I172N (9.9%) p.R356W (8.8%), and large deletion (6.6%). In the SW form, the most frequent genotypes were homozygous for IVS-2 (11.5%) and homozygous for large conversion of the gene (11.5%). In the SV form, the most frequent genotype was homozygous for IVS-2 (20%), followed by compound heterozygous for p.I172N/8-bp del (10%). Homozygous for p.V281L (16.7%) was most common in NC. In most cases there was good correlation between genotype and phenotype. In the SW and NC forms, genotypes of all the patients correlated with their phenotypes. CONCLUSIONS This is the first comprehensive study on the molecular basis of CAH patients in the Turkish population. Based on these results, we propose a modified screening strategy to facilitate molecular testing of CAH patients in our population.
Collapse
Affiliation(s)
- Firdevs Baş
- Istanbul University, Istanbul Faculty of Medicine, Department of Pediatrics, Pediatric Endocrinology Unit, Istanbul, Turkey.
| | - Hülya Kayserili
- Istanbul University, Istanbul Faculty of Medicine, Medical Genetics Department, Istanbul, Turkey
| | - Feyza Darendeliler
- Istanbul University, Istanbul Faculty of Medicine, Department of Pediatrics, Pediatric Endocrinology Unit, Istanbul, Turkey
| | - Oya Uyguner
- Istanbul University, Istanbul Faculty of Medicine, Medical Genetics Department, Istanbul, Turkey
| | - Hülya Günöz
- Istanbul University, Istanbul Faculty of Medicine, Department of Pediatrics, Pediatric Endocrinology Unit, Istanbul, Turkey
| | - Memnune Yüksel Apak
- Istanbul University, Istanbul Faculty of Medicine, Medical Genetics Department, Istanbul, Turkey
| | - Fatmahan Atalar
- Istanbul University, Istanbul Faculty of Medicine, Medical Genetics Department, Istanbul, Turkey
,
Istanbul University, Institute for Experimental Medicine, DETAE, Istanbul, Turkey
| | - Rüveyde Bundak
- Istanbul University, Istanbul Faculty of Medicine, Department of Pediatrics, Pediatric Endocrinology Unit, Istanbul, Turkey
| | - Robert C. Wilson
- Mount Sinai School of Medicine, Department of Pediatrics, New York, NY, USA
| | - Maria I. New
- Mount Sinai School of Medicine, Department of Pediatrics, New York, NY, USA
| | - Bernd Wollnik
- Center for Molecular Medicine Cologne, and Institute of Human Genetics, University of Cologne, Cologne, Germany
| | - Nurçin Saka
- Istanbul University, Istanbul Faculty of Medicine, Department of Pediatrics, Pediatric Endocrinology Unit, Istanbul, Turkey
| |
Collapse
|
7
|
Zhang HJ, Yang J, Zhang MN, Zhang W, Liu JM, Wang WQ, Ning G, Li XY. Variations in the promoter of CYP21A2 gene identified in a Chinese patient with simple virilizing form of 21-hydroxylase deficiency. Clin Endocrinol (Oxf) 2009; 70:201-7. [PMID: 18702679 DOI: 10.1111/j.1365-2265.2008.03356.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The variations in the transcriptional regulatory regions of CYP21A2 were rarely investigated in patients with 21-hydroxylase deficiency (21-OHD). The present study aims to verify that the variations in the promoter of CYP21A2 relate to the classical form of 21OHD. PATIENTS AND METHODS CYP21A2 was screened for mutations in 20 patients with the simple virilizing form of 21OHD, including the promoter region. The transcriptional activities of the variants in the promoter were investigated using a dual-reporter luciferase assay system and electromobility gel shift assays. RESULTS The heterozygous variants -447 A > G, -443InsA, -306G > C, -295T > C, -294 A > C, -283 A > G, -281T > G, -210T > C, -199C > T, -196 A > T, -126C > T, -113G > A, -110T > C, -103 A > G and -4C > T in the promoter of CYP21A2 gene were identified in a patient with simple virilizing form of 21OHD. The transcriptional activities of the promoter with the variants were reduced to 50% of the wild type. CONCLUSION We speculated that the 15 variants in the promoter of CYP21A2 combined with a compound heterozygous mutation Q318X lead to a simple virilizing form of 21OHD.
Collapse
Affiliation(s)
- Hui-Jie Zhang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory of Endocrine Tumor, Shanghai Institute of Endocrinology and Metabolism, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Araújo RS, Mendonca BB, Barbosa AS, Lin CJ, Marcondes JAM, Billerbeck AEC, Bachega TASS. Microconversion between CYP21A2 and CYP21A1P promoter regions causes the nonclassical form of 21-hydroxylase deficiency. J Clin Endocrinol Metab 2007; 92:4028-34. [PMID: 17666484 DOI: 10.1210/jc.2006-2163] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONTEXT Most mutations causing 21-hydroxylase deficiency originate from microconversions between CYP21 pseudogenes and active genes. However, around 20% of the alleles in the nonclassical form (NC-21OHD) remain without identified mutations, suggesting the involvement of regulatory regions. The pseudogene promoter is 80% less active than the CYP21A2 due to the presence of -126C>T, -113G>A, -110T>C, and -103A>G mutations. Additionally, mutations in the steroidogenic factor-1 binding sites of the CYP21 distal regulatory region, located at 4676 bases upstream from the cap site of the CYP21A2 gene, decrease its transcription to 35%. OBJECTIVE The objective of the study was to investigate the CYP21A2 promoter/regulatory regions in NC-21OHD patients with undetermined genotype. SUBJECTS The study included 17 NC-21OHD patients and 50 controls. METHODS Promoter/regulatory regions were sequenced from peripheral leukocytes' genomic DNA. The identified substitutions were evaluated through EMSA using -132/-97 wild-type and mutant probes and nuclear extracts from NCI-H295A cells. Transcriptional activity studies were performed with wild-type and mutant constructions transfected in NCI-H295A cells. RESULTS No mutations were identified in the distal regulatory regions. The -126C>T, -113G>A, -110T>C promoter mutations were found in compound heterozygosity with the V281L mutation in one patient and the -126C>T mutation in compound heterozygosity with the I2 splice in another. The -126T mutation decreases the transcriptional activity to 52%, compatible with the patient's nonclassical phenotype. EMSA demonstrated that the -132/-121 region is important for the DNA interaction with the specificity protein-1 transcription factor. CONCLUSION Microconversions between CYP21A2 and CYP21A1P promoters could be involved in the nonclassical phenotype. Therefore CYP21A2 promoter analysis should be included in genetic studies of 21OHD.
Collapse
Affiliation(s)
- Rogério S Araújo
- Unidade de Endocrinologia do Desenvolvimento e Laboratorio de Hormonios e Genetica Molecular, Disciplina de Endocrinologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, SP 05403-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
9
|
Araujo RS, Billerbeck AEC, Madureira G, Mendonca BB, Bachega TASS. Substitutions in the CYP21A2 promoter explain the simple-virilizing form of 21-hydroxylase deficiency in patients harbouring a P30L mutation. Clin Endocrinol (Oxf) 2005; 62:132-6. [PMID: 15670187 DOI: 10.1111/j.1365-2265.2005.02184.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The classical and nonclassical phenotypes of 21-hydroxylase deficiency represent a continuous spectrum of the impairment of 21-hydroxylase activity due to mutations between the CYP21A2 gene. These mutations occur mainly by microconversion in the homologous nonfunctional CYP21A1P gene. The P30L mutation is associated with the nonclassical form, and it reduces the activity to 30-40% of the normal enzyme. We have described three female patients exhibiting a simple virilizing phenotype and bearing the P30L mutation in compound heterozygosis with a severe mutation. To identify additional mutations causing this phenotype, the promoter region was sequenced and four mutations were identified: -126C --> T, -113G --> A, -110T --> C and -103 A --> G. These substitutions are normally present in the promoter region of the pseudogene and in vitro studies demonstrated that they reduced the transcriptional activity fivefold. They might have been converted to the CYP21A2 promoter together with the P30L mutation in these patients. Therefore, these substitutions in synergism with the P30L mutation might decrease the enzyme activity resulting in a more severe phenotype, and a DNA sequence of -167 bases of the CYP21A2 gene should be performed in patients with 21-hydroxylase deficiency in whom the phenotype is more severe than predicted by the genotype.
Collapse
Affiliation(s)
- Rogério S Araujo
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular-LIM/42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Pitarque M, von Richter O, Rodríguez-Antona C, Wang J, Oscarson M, Ingelman-Sundberg M. A nicotine C-oxidase gene (CYP2A6) polymorphism important for promoter activity. Hum Mutat 2004; 23:258-66. [PMID: 14974084 DOI: 10.1002/humu.20002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In humans, several polymorphic variants have been described for the gene encoding the major nicotine C-oxidase, cytochrome P450 2A6 (CYP2A6), which is to a great extent responsible for the large interindividual differences seen at the enzymatic and activity levels. Hitherto, mainly polymorphic variants in the open reading frame have been identified. In the present study, we identified a novel single nucleotide polymorphism (SNP) located in the 5' flanking region of the CYP2A6 gene. Sequencing of 1.4 kb of the 5'-upstream region of the CYP2A6 gene from eight individuals revealed a c.-1013A>G polymorphism defining two new alleles, CYP2A6*1D and CYP2A6*1E, lacking or having also the CYP2A7 3'-UTR. Analysis of genomic DNA from 32 Swedish and 109 Turkish subjects by dynamic allele-specific hybridization (DASH) showed that, in both groups, the variants carrying the c.-1013A>G SNP represent approximately 70% of the total number of alleles. Transfection of HepG2 cells with luciferase reporter constructs containing 1019 bp of the CYP2A6 5'-regulatory sequence showed that the region between c.-1005 and c.-1019 elicited a strong enhancer effect and that the CYP2A6*1D promoter had significantly reduced expression as compared to CYP2A6*1A carrying c.-1013A. Electrophoretic mobility shift assays (EMSA) showed that nuclear proteins from HepG2 and B16A2 cells exhibited a higher binding affinity to the probe harboring c.-1013A as compared to the c.-1013G probe, although the transcription factor(s) responsible for this binding could not be identified. In conclusion, our results indicate the presence of a strong enhancer or promoter responsive element between c.-1005 and c.-1019 in the CYP2A6 gene and that a c.-1013A>G polymorphism in this region affects CYP2A6 transcription.
Collapse
MESH Headings
- 5' Flanking Region/genetics
- Alleles
- Aryl Hydrocarbon Hydroxylases/genetics
- Carcinoma, Hepatocellular/chemistry
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cytochrome P-450 CYP2A6
- DNA/genetics
- DNA, Neoplasm/genetics
- Electrophoretic Mobility Shift Assay/methods
- Genotype
- Haplotypes/genetics
- Humans
- Liver/chemistry
- Liver/metabolism
- Liver Neoplasms/chemistry
- Liver Neoplasms/pathology
- Mixed Function Oxygenases/genetics
- Nucleic Acid Hybridization/methods
- Polymorphism, Single Nucleotide/genetics
- Polymorphism, Single Nucleotide/physiology
- Promoter Regions, Genetic/genetics
- Promoter Regions, Genetic/physiology
- Protein Binding/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Marià Pitarque
- Institute of Environmental Medicine, Division of Molecular Toxicology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
More than 90% of cases of congenital adrenal hyperplasia (CAH, the inherited inability to synthesize cortisol) are caused by 21-hydroxylase deficiency. Females with severe, classic 21-hydroxylase deficiency are exposed to excess androgens prenatally and are born with virilized external genitalia. Most patients cannot synthesize sufficient aldosterone to maintain sodium balance and may develop potentially fatal "salt wasting" crises if not treated. The disease is caused by mutations in the CYP21 gene encoding the steroid 21-hydroxylase enzyme. More than 90% of these mutations result from intergenic recombinations between CYP21 and the closely linked CYP21P pseudogene. Approximately 20% are gene deletions due to unequal crossing over during meiosis, whereas the remainder are gene conversions--transfers to CYP21 of deleterious mutations normally present in CYP21P. The degree to which each mutation compromises enzymatic activity is strongly correlated with the clinical severity of the disease in patients carrying it. Prenatal diagnosis by direct mutation detection permits prenatal treatment of affected females to minimize genital virilization. Neonatal screening by hormonal methods identifies affected children before salt wasting crises develop, reducing mortality from this condition. Glucocorticoid and mineralocorticoid replacement are the mainstays of treatment, but more rational dosing and additional therapies are being developed.
Collapse
Affiliation(s)
- P C White
- Division of Pediatric Endocrinology, University of Texas Southwestern Medical Center, Dallas 75390-9063, USA.
| | | |
Collapse
|
13
|
Krone N, Braun A, Roscher AA, Knorr D, Schwarz HP. Predicting phenotype in steroid 21-hydroxylase deficiency? Comprehensive genotyping in 155 unrelated, well defined patients from southern Germany. J Clin Endocrinol Metab 2000; 85:1059-65. [PMID: 10720040 DOI: 10.1210/jcem.85.3.6441] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders. CAH is most often caused by deficiency of steroid 21-hydroxylase. The frequency of CYP21-inactivating mutations and the genotype-phenotype relationship were characterized in 155 well defined unrelated CAH patients. We were able to elucidate 306 of 310 disease-causing alleles (diagnostic sensitivity, 98.7%). The most frequent mutation was the intron 2 splice site mutation (30.3%), followed by gene deletions (20.3%), the I172N mutation (19.7%) and large gene conversions (7.1%). Five point mutations were detected that have not been described in other CAH cohorts. Genotypes were categorized in 4 mutation groups (null, A, B, and C) according to their predicted functional consequences and compared to the clinical phenotype. The positive predictive value for null mutations (ppv(null)) was 100%, as all patients with these mutations had a salt-wasting phenotype. In mutation group A (intron 2 splice site mutation in homozygous or heterozygous form with a null mutation), the ppv(A) to manifest with salt-wasting CAH was 90%. In group B predicted to result in simple virilizing CAH (I172N in homozygous or compound heterozygous form with a more severe mutation), ppv(B) was 74%. In group C (P30L, V281L, P453S in homozygous or compound heterozygous form with a more severe mutation), ppv(C) was 64.7% to exhibit the nonclassical form of CAH, but 90% when excluding the P30L mutation. Thus, in general, a good genotype-phenotype relationship is shown in patients with either the severest or the mildest mutations. A considerable degree of divergence is observed within mutation groups of intermediate severity. As yet undefined factors modifying 21-hydroxylase gene expression and steroid hormone action are likely to account for these differences in phenotypic expression.
Collapse
Affiliation(s)
- N Krone
- University Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | | | | | | | | |
Collapse
|
14
|
Chang SF, Cheng CL. The suppression effect of DNA sequences within the C4A region on the transcription activity of human CYP21. Endocr Res 1998; 24:625-30. [PMID: 9888550 DOI: 10.3109/07435809809032659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Two CYP21 genes, the active CYP21 and the pseudogene, CYP21P, also pairs of duplicated genes including the XA, XB, XB-S; YA, YB; and ZA, ZB are arranged in tandem next to the serum complement C4 genes (C4A and C4B). In this report, we have analyzed the influence of some DNA sequences within the C4A/CYP21P region on the transcription activity of the human CYP21. After transiently transfecting the plasmid constructs into mouse adrenocarcinoma Y1 cells, mouse testis Leydig tumor MA10 cells and human liver tumor HepG2 cells, our results showed that sequences located within the -13943/-13174 and -3278/-2586 regions upstream from the CYP21P had suppression effects on the promoter activity of human CYP21. However, the short sequences spanning from -8415/-8373 and -4511/-4140 upstream from the CYP21P did not alter the basal transcription activity of the CYP21 gene. Our results indicated that specific sequences within the C4A region might function as suppressor-like elements for the transcription of human CYP21.
Collapse
Affiliation(s)
- S F Chang
- Graduate Institute of Cell and Molecular Biology, Taipei Medical College, Taiwan, Republic of China
| | | |
Collapse
|