1
|
Benner C, Konovalov S, Mackintosh C, Hutt KR, Stunnenberg R, Garcia-Bassets I. Decoding a signature-based model of transcription cofactor recruitment dictated by cardinal cis-regulatory elements in proximal promoter regions. PLoS Genet 2013; 9:e1003906. [PMID: 24244184 PMCID: PMC3820735 DOI: 10.1371/journal.pgen.1003906] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 09/10/2013] [Indexed: 11/19/2022] Open
Abstract
Genome-wide maps of DNase I hypersensitive sites (DHSs) reveal that most human promoters contain perpetually active cis-regulatory elements between −150 bp and +50 bp (−150/+50 bp) relative to the transcription start site (TSS). Transcription factors (TFs) recruit cofactors (chromatin remodelers, histone/protein-modifying enzymes, and scaffold proteins) to these elements in order to organize the local chromatin structure and coordinate the balance of post-translational modifications nearby, contributing to the overall regulation of transcription. However, the rules of TF-mediated cofactor recruitment to the −150/+50 bp promoter regions remain poorly understood. Here, we provide evidence for a general model in which a series of cis-regulatory elements (here termed ‘cardinal’ motifs) prefer acting individually, rather than in fixed combinations, within the −150/+50 bp regions to recruit TFs that dictate cofactor signatures distinctive of specific promoter subsets. Subsequently, human promoters can be subclassified based on the presence of cardinal elements and their associated cofactor signatures. In this study, furthermore, we have focused on promoters containing the nuclear respiratory factor 1 (NRF1) motif as the cardinal cis-regulatory element and have identified the pervasive association of NRF1 with the cofactor lysine-specific demethylase 1 (LSD1/KDM1A). This signature might be distinctive of promoters regulating nuclear-encoded mitochondrial and other particular genes in at least some cells. Together, we propose that decoding a signature-based, expanded model of control at proximal promoter regions should lead to a better understanding of coordinated regulation of gene transcription. Human cells exploit different mechanisms to coordinate the expression of both protein-coding and non-coding RNAs. Elucidating these mechanisms is essential to understanding normal physiology and disease. In our attempt to identify new regulatory layers acting particularly at proximal promoters, we have computationally analyzed the genomic sequences located from −150 bp to +50 bp relative to the transcriptional start site (TSS), which are often at the center of ‘open’ chromatin regions in human promoters. We have confirmed the presence of a series of cis-regulatory elements (here referred to as ‘cardinal’ motifs) that show a strong preference for these short regions. Interestingly, these elements tend to act independently rather than in fixed combinations. Therefore, we propose that they confer unique regulatory features to the human promoter subsets that contain each of these particular elements. In agreement with this model, we have identified a large repertoire of preferential partnerships between transcription factors recognizing cardinal motifs and their associated proteins (cofactors), thus decoding a signature-based model that distinguishes distinctive regulatory types of promoters based on cardinal motifs. These signatures may underlie a new layer of transcriptional regulation to orchestrate coordinated gene expression in human promoters.
Collapse
Affiliation(s)
- Christopher Benner
- The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Sergiy Konovalov
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Carlos Mackintosh
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Kasey R. Hutt
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Rieka Stunnenberg
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Ivan Garcia-Bassets
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
2
|
Sharma S. Non-B DNA Secondary Structures and Their Resolution by RecQ Helicases. J Nucleic Acids 2011; 2011:724215. [PMID: 21977309 PMCID: PMC3185257 DOI: 10.4061/2011/724215] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/25/2011] [Indexed: 01/14/2023] Open
Abstract
In addition to the canonical B-form structure first described by Watson and Crick, DNA can adopt a number of alternative structures. These non-B-form DNA secondary structures form spontaneously on tracts of repeat sequences that are abundant in genomes. In addition, structured forms of DNA with intrastrand pairing may arise on single-stranded DNA produced transiently during various cellular processes. Such secondary structures have a range of biological functions but also induce genetic instability. Increasing evidence suggests that genomic instabilities induced by non-B DNA secondary structures result in predisposition to diseases. Secondary DNA structures also represent a new class of molecular targets for DNA-interactive compounds that might be useful for targeting telomeres and transcriptional control. The equilibrium between the duplex DNA and formation of multistranded non-B-form structures is partly dependent upon the helicases that unwind (resolve) these alternate DNA structures. With special focus on tetraplex, triplex, and cruciform, this paper summarizes the incidence of non-B DNA structures and their association with genomic instability and emphasizes the roles of RecQ-like DNA helicases in genome maintenance by resolution of DNA secondary structures. In future, RecQ helicases are anticipated to be additional molecular targets for cancer chemotherapeutics.
Collapse
Affiliation(s)
- Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Suite 3424A, Washington, DC 20059, USA
| |
Collapse
|
3
|
Abstract
The i-motif is a four-stranded structure built by intercalation in head-to-tail orientation of two parallel duplexes associated by hemi-protonated C.C(+) pairs. Using NMR methods, we investigated the structure, the base-pair opening kinetics and the internal motions of three i-motif tetramers: [d(5mCCTCnTCC)](4) (n=1, 2, 3). These tetramers cannot accommodate the intercalation of two T.T pairs in face-to-face orientation. They are built by intercalation of two symmetrical duplexes whose contacting T3/TM thymidine bases (M=5, 6, 7) are either base-paired or unstacked. The arrangement of the unstacked/paired thymidine bases of the two T/T groups results in the formation of two different conformations. One, fully symmetric, whose thymidine bases T3 and TM are unstacked and base-paired respectively. The other is the asymmetric assembly of two duplexes: one where both thymidine bases are unstacked and the other with two T.T pairs. The proportion of the symmetric conformer increases from a value beyond the detection threshold for n=1, to 19% for n=2 and up to more than 95% for n=3. The exchange cross-peaks connecting together the intercalated duplexes of [d(5mCCTCTCC)](4) and [d(5mCCTCCTCC)](4) reveal a structural interconversion induced by the simultaneous opening/closing of the contacting T3/TM thymidine bases. In [d(5mCCTCCTCC)](4) the motion of the T3/T6 groups triggers the interconversion of the symmetric and asymmetric conformations. In [d(5mCCTCTCC)](4) the intercalated duplexes exchange their structures in an apparently concerted motion, suggesting the simultaneous opening/closing of two distant T3/T5* and T5/T3* switching groups. The spectrum of [d(5mCCTCCCTCC)](4) is fully symmetric and, for this reason, its spectrum gives no indication for duplex interconversion. Nevertheless, the imino proton exchange kinetics argues for a switching motion of the T3/T7 group. Duplex interconversion is not detectable in that case, due to the tetramer symmetry. The origin of the structural conflict hindering the intercalation of two T.T pairs into the i-motif is discussed.
Collapse
Affiliation(s)
- Jean Louis Leroy
- Laboratoire de RMN à Haut Champ, Centre National de la Recherche Scientifique, Institut de Chimie des Substances Naturelles, Ave de la Terrasse Bat 27, 91198 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Bandiera A, Tell G, Marsich E, Scaloni A, Pocsfalvi G, Akintunde Akindahunsi A, Cesaratto L, Manzini G. Cytosine-block telomeric type DNA-binding activity of hnRNP proteins from human cell lines. Arch Biochem Biophys 2003; 409:305-14. [PMID: 12504897 DOI: 10.1016/s0003-9861(02)00413-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Following the observation of the presence in mammalian nuclear extracts of a DNA binding activity quite specific for the single-stranded C-rich telomeric motif, we have isolated from the K562 human cell line by affinity chromatography and identified by mass spectrometry a number of proteins able to bind to this sequence. All of them belong to different heterogeneous nuclear ribonucleoprotein subgroups (hnRNP). Whereas many of them, namely hnRNP K, two isoforms of hnRNP I, and the factor JKTBP, appear to bind to this sequence with limited specificity after isolation, an isoform of hnRNP D (alias AUF1) and particularly hnRNP E1 (alias PCBP-1) show a remarkable specificity for the (CCCTAA)n repeated motif. Both have been obtained also as recombinant proteins expressed in Escherichia coli and have been shown to retain their binding specificity toward the C-block repeated sequence. In the light of the current knowledge about these proteins, their possible involvement in telomere functioning is discussed.
Collapse
Affiliation(s)
- Antonella Bandiera
- Department of Biochemistry, Biophysics, and Macromolecular Chemistry, University of Trieste, via L. Giorgieri 1, 34127, Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Costain WJ, Mishra RK. PLG regulates hnRNP-L expression in the rat striatum and pre-frontal cortex: identification by ddPCR. Peptides 2003; 24:137-46. [PMID: 12576095 DOI: 10.1016/s0196-9781(02)00286-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Central dopaminergic systems are implicated in schizophrenia and Parkinson's disease, and are known to be modulated by the endogenous tripeptide Pro-Leu-Gly-NH(2) (PLG or MIF-1, melanocyte-stimulating hormone release inhibiting factor-1). Differential display polymerase chain reaction (ddPCR) was utilized to identify genes that are regulated by protracted PLG treatment (20 mg/kg, i.p. for 28 days) in male Sprague-Dawley rats. A total of 2400 genes were screened and 3 down-regulated bands were identified in the PLG-treated samples. Sequencing analysis revealed a total of six unique cDNA species. One fragment possessed a high degree of homology with Mus musculus hnRNP-L (protein L) mRNA (GenBank #AB009392) (termed PRG1: PLG regulated gene 1). Elongation of the PRG1 cDNA, by RACE-PCR, provided an 835 bp sequence with 95% homology to AB009392 over a 743 bp span. Open reading frame analysis provided a putative amino acid sequence consistent with the identity of PRG1 as rat hnRNP-L. Northern hybridization experiments with PRG1 revealed a 2.3 kb mRNA species that was decreased by 65% in the PLG-treated tissue. Western blot analysis revealed significantly decreased hnRNP-L levels in the striatum and pre-frontal cortex (but not the nucleus accumbens) by 71 and 61%, respectively of PLG-treated animals. The identification of altered expression of hnRNP-L following PLG treatment provides insight into the long-term effects of PLG and may provide insight into its molecular mechanism of action.
Collapse
Affiliation(s)
- Willard J Costain
- Department of Pharmacology, Faculty of Medicine, Sir Charles Tupper Medical Building, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7.
| | | |
Collapse
|
6
|
Alvarez de la Rosa D, Avila J, Martín-Vasallo P. Chromatin structure analysis of the rat Na, K-ATPase beta2 gene 5'-flanking region. Int J Biochem Cell Biol 2002; 34:632-44. [PMID: 11943594 DOI: 10.1016/s1357-2725(02)00006-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Na, K-ATPase is formed by two major subunits (alpha and beta) encoded by a gene family of at least four alpha and three beta isoforms. These genes show distinctive expression patterns involving complex tissue-specific and developmental regulation, although the control mechanisms are not well understood. Here we study the role of chromatin structure in the tissue-specific expression of rat Na, K-ATPase beta2 isoform, which is mainly found in the central nervous system. We have examined the presence and characteristics of nuclease hypersensitive sites and the cytosine methylation patterns in the 5'-flanking region of the beta2 isoform gene from various nuclear preparations. Our results show that in this 5'-flanking region there is only one nuclease hypersensitive site. It is located upstream of the transcription initiation site and shows tissue-specific characteristics. Digestion with deoxyribonuclease I (DNase I), S1 nuclease and micrococcal nuclease yield patterns consistent with a triple-helix structure present only in the active state of the promoter. We also demonstrate that the 5'-flanking region of the beta2 gene co-localizes with a CpG island free of methylation in every tissue tested. The results presented here support a role for specific chromatin remodeling events in the regulation of the Na, K-ATPase beta2 gene expression. They also provide the basis for future studies of the transcription factors involved in the regulation of this gene.
Collapse
Affiliation(s)
- Diego Alvarez de la Rosa
- Laboratorio de Biología del Desarrollo, Departamento de Bioquímica y Biología Molecular, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain.
| | | | | |
Collapse
|
7
|
Li G, Tolstonog GV, Traub P. Interaction in vitro of type III intermediate filament proteins with triplex DNA. DNA Cell Biol 2002; 21:163-88. [PMID: 12015895 DOI: 10.1089/10445490252925422] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
As previously shown, type III intermediate filaments (IFs) select from a mixture of linear mouse genomic DNA fragments mobile and repetitive, recombinogenic sequences that have also been identified in SDS-stable crosslinkage products of vimentin and DNA isolated from intact fibroblasts. Because these sequences also included homopurine.homopyrimidine (Pu.Py) tracts known to adopt triple-helical conformation under superhelical tension, and because IF proteins are single-stranded (ss) and supercoiled DNA-binding proteins, it was of interest whether they have a particular affinity for triplex DNA. To substantiate this, IF-selected DNA fragments harboring a (Pu.Py) segment and synthetic d(GA)(n) microsatellites were inserted into a vector plasmid and the constructs analyzed for their capacity to interact with IF proteins. Band shift assays revealed a substantially higher affinity of the IF proteins for the insert-containing plasmids than for the empty vector, with an activity decreasing in the order of vimentin > glial fibrillary acidic protein > desmin. In addition, footprint analyses performed with S1 nuclease, KMnO(4), and OsO(4)/bipyridine showed that the (Pu.Py) inserts had adopted triplex conformation under the superhelical strain of the plasmids, and that the IF proteins protected the triple-helical insert sequences from nucleolytic cleavage and chemical modification. All these activities were largely reduced in extent when analyzed on linearized plasmid DNAs. Because intramolecular triplexes (H-DNA) expose single-stranded loops, and the prokaryotic ssDNA-binding proteins g5p and g32p also protected at least the Pu-strand of the (Pu.Py) inserts from nucleolytic degradation, it seemed likely that the IF proteins take advantage of their ssDNA-binding activity in interacting with H-DNA. However, in contrast to g5p and E. coli SSB, they produced no clear band shifts with single-stranded d(GA)(20) and d(TC)(20), so that the interactions rather appear to occur via the duplex-triplex and triplex-loop junctions of H-DNA. On the other hand, the IF proteins, and also g32p, promoted the formation of intermolecular triplexes from the duplex d[A(GA)(20).(TC)(20)T] and d(GA)(20) and d(TC)(20) single strands, with preference of the Py (Pu.Py) triplex motif, substantiating an affinity of the proteins for the triplex structure as such. This triplex-stabilizing effect of IF proteins also applies to the H-DNA of (Pu.Py) insert-containing plasmids, as demonstrated by the preservation of intramolecular triplex-vimentin complexes upon linearization of their constituent supercoiled DNAs, in contrast to poor complex formation from free, linearized plasmid DNA and vimentin. Considering that (Pu.Py) sequences are found near MAR/replication origins, in upstream enhancer and promoter regions of genes, and in recombination hot spots, these results might point to roles of IF proteins in DNA replication, transcription, recombination, and repair.
Collapse
Affiliation(s)
- Guohong Li
- Max-Planck-Institut für Zellbiologie, Rosenhof, 68526 Ladenburg, Germany
| | | | | |
Collapse
|
8
|
Makeyev AV, Liebhaber SA. The poly(C)-binding proteins: a multiplicity of functions and a search for mechanisms. RNA (NEW YORK, N.Y.) 2002; 8:265-78. [PMID: 12003487 PMCID: PMC1370249 DOI: 10.1017/s1355838202024627] [Citation(s) in RCA: 360] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The poly(C) binding proteins (PCBPs) are encoded at five dispersed loci in the mouse and human genomes. These proteins, which can be divided into two groups, hnRNPs K/J and the alphaCPs (alphaCP1-4), are linked by a common evolutionary history, a shared triple KH domain configuration, and by their poly(C) binding specificity. Given these conserved characteristics it is remarkable to find a substantial diversity in PCBP functions. The roles of these proteins in mRNA stabilization, translational activation, and translational silencing suggest a complex and diverse set of post-transcriptional control pathways. Their additional putative functions in transcriptional control and as structural components of important DNA-protein complexes further support their remarkable structural and functional versatility. Clearly the identification of additional binding targets and delineation of corresponding control mechanisms and effector pathways will establish highly informative models for further exploration.
Collapse
Affiliation(s)
- Aleksandr V Makeyev
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA
| | | |
Collapse
|
9
|
Guillonneau F, Guieysse AL, Le Caer JP, Rossier J, Praseuth D. Selection and identification of proteins bound to DNA triple-helical structures by combination of 2D-electrophoresis and MALDI-TOF mass spectrometry. Nucleic Acids Res 2001; 29:2427-36. [PMID: 11376162 PMCID: PMC55697 DOI: 10.1093/nar/29.11.2427] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Identification of proteins binding specifically to peculiar nucleic acid structures can lead to comprehension of their role in vivo and contribute to the discovery of structure-related gene regulation. This work was devoted to establishing a reliable procedure to select proteins on the basis of their interaction with a nucleic acid probe chosen to fold into a given structure. 2D-electrophoresis and mass spectrometry were combined for protein identification. We applied this procedure to select and identify triplex-binding activities in HeLa nuclear extracts. To achieve this, we used a panel of deoxyribonucleic probes adopting intramolecular triple-helices, varying in their primary sequence, structure or triple-helix motif. A limited number of spots was reproducibly revealed by South-western blotting. Spots of interest were localised among a complex population of (35)S-labelled proteins according to their (32)P-specific emission. Position of the same spots was extrapolated on a preparative gel coloured with Coomassie blue, allowing excision and purification of the corresponding proteins. The material was subjected to mass spectrometry upon trypsin digestion and MALDI-TOF peptide fingerprinting was used for research in databases: five of them were identified and found to belong to the hnRNP family (K, L, A2/B1, E1 and I). The identities of several of them were confirmed by comparing western and South-western blots on the same membrane using specific antibodies. The recognition specificity of most of these proteins is large, according to previous reports and our own experiments. It includes pyrimidine-rich DNA sequences in different contexts: single strand to a small extent, triplex and possibly other higher-order structures.
Collapse
Affiliation(s)
- F Guillonneau
- Laboratoire de Biophysique, INSERM U201, CNRS UMR 8646, Muséum National d'Histoire Naturelle, 43 rue Cuvier, 75231 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
10
|
Brosh RM, Majumdar A, Desai S, Hickson ID, Bohr VA, Seidman MM. Unwinding of a DNA triple helix by the Werner and Bloom syndrome helicases. J Biol Chem 2001; 276:3024-30. [PMID: 11110789 DOI: 10.1074/jbc.m006784200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bloom syndrome and Werner syndrome are genome instability disorders, which result from mutations in two different genes encoding helicases. Both enzymes are members of the RecQ family of helicases, have a 3' --> 5' polarity, and require a 3' single strand tail. In addition to their activity in unwinding duplex substrates, recent studies show that the two enzymes are able to unwind G2 and G4 tetraplexes, prompting speculation that failure to resolve these structures in Bloom syndrome and Werner syndrome cells may contribute to genome instability. The triple helix is another alternate DNA structure that can be formed by sequences that are widely distributed throughout the human genome. Here we show that purified Bloom and Werner helicases can unwind a DNA triple helix. The reactions are dependent on nucleoside triphosphate hydrolysis and require a free 3' tail attached to the third strand. The two enzymes unwound triplexes without requirement for a duplex extension that would form a fork at the junction of the tail and the triplex. In contrast, a duplex formed by the third strand and a complement to the triplex region was a poor substrate for both enzymes. However, the same duplex was readily unwound when a noncomplementary 5' tail was added to form a forked structure. It seems likely that structural features of the triplex mimic those of a fork and thus support efficient unwinding by the two helicases.
Collapse
Affiliation(s)
- R M Brosh
- Laboratory of Molecular Genetics, NIA, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|
11
|
Marsich E, Bandiera A, Tell G, Scaloni A, Manzini G. A chicken hnRNP of the A/B family recognizes the single-stranded d(CCCTAA)(n) telomeric repeated motif. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:139-48. [PMID: 11121114 DOI: 10.1046/j.1432-1327.2001.01860.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
With the aim of identifying proteins able to interact with the C-rich single-stranded telomeric repeated motif, three nuclear polypeptides, CBNP alpha, CBNP beta and CBNP gamma, with apparent mobilities in SDS/PAGE of 38, 44 and 55 kDa, respectively, were isolated from mature chicken erythrocytes by affinity chromatography. In situ UV-cross-linking experiments demonstrated that CBNP alpha and CBNP gamma interact directly with the telomeric d(CCCTAA)n repeat, whereas CBNP beta does not. Moreover, they provided information on the protein components responsible for each electrophoretic mobility-shift assay signal. Ion spray and matrix-assisted laser desorption ionization MS allowed us to identify CBNP alpha with single-stranded D-box-binding factor (ssDBF), a protein previously characterized as a transcription factor belonging to the A/B family of heterogeneous nuclear ribonucleoproteins, and CBNP beta with an isoform of this protein containing an extra exon. Similarly, CBNP gamma was shown to be probably the chicken homolog of hnRNP K, a ribonuclear protein able to bind to polyC oligonucleotides. The relation of CBNP alpha (i.e. ssDBF), CBNP beta and CBNP gamma to a number of similar proteins in the protein and nucleotide sequence databank is discussed. A rather diversified spectrum of functional roles has been assigned to some of these proteins despite the strong sequence homology among them.
Collapse
Affiliation(s)
- E Marsich
- Department of Biochemistry, Biophysics, and Macromolecular Chemistry, University of Trieste, Italy
| | | | | | | | | |
Collapse
|
12
|
Lacroix L, Liénard H, Labourier E, Djavaheri-Mergny M, Lacoste J, Leffers H, Tazi J, Hélène C, Mergny JL. Identification of two human nuclear proteins that recognise the cytosine-rich strand of human telomeres in vitro. Nucleic Acids Res 2000; 28:1564-75. [PMID: 10710423 PMCID: PMC102786 DOI: 10.1093/nar/28.7.1564] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/1999] [Revised: 02/09/2000] [Accepted: 02/09/2000] [Indexed: 11/14/2022] Open
Abstract
Most studies on the structure of DNA in telomeres have been dedicated to the double-stranded region or the guanosine-rich strand and consequently little is known about the factors that may bind to the telomere cytosine-rich (C-rich) strand. This led us to investigate whether proteins exist that can recognise C-rich sequences. We have isolated several nuclear factors from human cell extracts that specifically bind the C-rich strand of vertebrate telomeres [namely a d(CCCTAA)(n)repeat] with high affinity and bind double-stranded telomeric DNA with a 100xreduced affinity. A biochemical assay allowed us to characterise four proteins of apparent molecular weights 66-64, 45 and 35 kDa, respectively. To identify these polypeptides we screened alambdagt11-based cDNA expression library, obtained from human HeLa cells using a radiolabelled telomeric oligonucleotide as a probe. Two clones were purified and sequenced: the first corresponded to the hnRNP K protein and the second to the ASF/SF2 splicing factor. Confirmation of the screening results was obtained with recombinant proteins, both of which bind to the human telomeric C-rich strand in vitro.
Collapse
Affiliation(s)
- L Lacroix
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, INSERM U 201, CNRS UMR 8646, 43 rue Cuvier, 75005 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|