1
|
Jin T, Zhang J, Li G, Li S, Yang B, Chen C, Cai L. TP53 and RPA3 Gene Variations Were Associated with Risk of Glioma in a Chinese Han Population. Cancer Biother Radiopharm 2013; 28:248-53. [PMID: 23573956 DOI: 10.1089/cbr.2012.1291] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Tianbo Jin
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Jiayi Zhang
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Gang Li
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Shanqu Li
- Medical Center of Tangdu Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Bo Yang
- Medical Center of Tangdu Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Chao Chen
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Linbo Cai
- Department of Neuro-Oncology, Guangdong 999 Brain Hospital, Guangzhou, People's Republic of China
| |
Collapse
|
2
|
Kusumoto-Matsuo R, Kanda T, Kukimoto I. Rolling circle replication of human papillomavirus type 16 DNA in epithelial cell extracts. Genes Cells 2010; 16:23-33. [PMID: 21059156 DOI: 10.1111/j.1365-2443.2010.01458.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replication of human papillomavirus (HPV) genomes requires an origin of replication and two viral proteins: the DNA helicase E1 and the auxiliary factor E2. To dissect the profile of HPV replication in the epithelium, we analyzed replication of an HPV16 origin-containing plasmid in human epithelial cell extracts supplemented with purified E1 and E2. We found that in addition to well-defined circular replication products, high-molecular-weight DNA was synthesized in a manner that depended on the origin, E1 and E2. The high-molecular-weight DNA was converted to a unit-length linear DNA by treatment with restriction enzymes that cleave the plasmid once, implying that a concatemeric DNA was generated by rolling circle replication. Nicking or relaxing the template plasmid enhanced the level of HPV rolling circle replication. In contrast, the addition of an extract from non-epithelial cells diminished the generation of the rolling circle replication product in the epithelial cell extract, indicating factors that counteract HPV rolling circle replication. These results suggest a rolling circle replication mechanism for the HPV genome in cervical epithelial cells, which may have physiological implications for generation of the tandem-repeated HPV genomes occasionally found integrated into the chromosome of cervical cancer cells.
Collapse
Affiliation(s)
- Rika Kusumoto-Matsuo
- Pathogen Genomics Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | | | | |
Collapse
|
3
|
Mason AC, Roy R, Simmons DT, Wold MS. Functions of alternative replication protein A in initiation and elongation. Biochemistry 2010; 49:5919-28. [PMID: 20545304 DOI: 10.1021/bi100380n] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Replication protein A (RPA) is a single-stranded DNA-binding complex that is essential for DNA replication, repair, and recombination in eukaryotic cells. In addition to this canonical complex, we have recently characterized an alternative replication protein A complex (aRPA) that is unique to primates. aRPA is composed of three subunits: RPA1 and RPA3, also present in canonical RPA, and a primate-specific subunit RPA4, homologous to canonical RPA2. aRPA has biochemical properties similar to those of the canonical RPA complex but does not support DNA replication. We describe studies that aimed to identify what properties of aRPA prevent it from functioning in DNA replication. We show aRPA has weakened interaction with DNA polymerase alpha (pol alpha) and that aRPA is not able to efficiently stimulate DNA synthesis by pol alpha on aRPA-coated DNA. Additionally, we show that aRPA is unable to support de novo priming by pol alpha. Because pol alpha activity is essential for both initiation and Okazaki strand synthesis, we conclude that the inability of aRPA to support pol alpha loading causes aRPA to be defective in DNA replication. We also show that aRPA stimulates synthesis by DNA polymerase alpha in the presence of PCNA and RFC. This indicates that aRPA can support extension of DNA strands by DNA polymerase partial differential. This finding along with the previous observation that aRPA supports early steps of nucleotide excision repair and recombination indicates that aRPA can support DNA repair synthesis that requires polymerase delta, PCNA, and RFC and support a role for aRPA in DNA repair.
Collapse
Affiliation(s)
- Aaron C Mason
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
4
|
Mason AC, Haring SJ, Pryor JM, Staloch CA, Gan TF, Wold MS. An alternative form of replication protein a prevents viral replication in vitro. J Biol Chem 2008; 284:5324-31. [PMID: 19116208 DOI: 10.1074/jbc.m808963200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Replication protein A (RPA), the eukaryotic single-stranded DNA-binding complex, is essential for multiple processes in cellular DNA metabolism. The "canonical" RPA is composed of three subunits (RPA1, RPA2, and RPA3); however, there is a human homolog to the RPA2 subunit, called RPA4, that can substitute for RPA2 in complex formation. We demonstrate that the resulting "alternative" RPA (aRPA) complex has solution and DNA binding properties indistinguishable from the canonical RPA complex; however, aRPA is unable to support DNA replication and inhibits canonical RPA function. Two regions of RPA4, the putative L34 loop and the C terminus, are responsible for inhibiting SV40 DNA replication. Given that aRPA inhibits canonical RPA function in vitro and is found in nonproliferative tissues, these studies indicate that RPA4 expression may prevent cellular proliferation via replication inhibition while playing a role in maintaining the viability of quiescent cells.
Collapse
Affiliation(s)
- Aaron C Mason
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
5
|
Masuda Y, Suzuki M, Piao J, Gu Y, Tsurimoto T, Kamiya K. Dynamics of human replication factors in the elongation phase of DNA replication. Nucleic Acids Res 2007; 35:6904-16. [PMID: 17932049 PMCID: PMC2175312 DOI: 10.1093/nar/gkm822] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In eukaryotic cells, DNA replication is carried out by coordinated actions of many proteins, including DNA polymerase δ (pol δ), replication factor C (RFC), proliferating cell nuclear antigen (PCNA) and replication protein A. Here we describe dynamic properties of these proteins in the elongation step on a single-stranded M13 template, providing evidence that pol δ has a distributive nature over the 7 kb of the M13 template, repeating a frequent dissociation–association cycle at growing 3′-hydroxyl ends. Some PCNA could remain at the primer terminus during this cycle, while the remainder slides out of the primer terminus or is unloaded once pol δ has dissociated. RFC remains around the primer terminus through the elongation phase, and could probably hold PCNA from which pol δ has detached, or reload PCNA from solution to restart DNA synthesis. Furthermore, we suggest that a subunit of pol δ, POLD3, plays a crucial role in the efficient recycling of PCNA during dissociation–association cycles of pol δ. Based on these observations, we propose a model for dynamic processes in elongation complexes.
Collapse
Affiliation(s)
- Yuji Masuda
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan.
| | | | | | | | | | | |
Collapse
|
6
|
Teixeira ARL, Nascimento RJ, Sturm NR. Evolution and pathology in chagas disease--a review. Mem Inst Oswaldo Cruz 2007; 101:463-91. [PMID: 17072450 DOI: 10.1590/s0074-02762006000500001] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 06/07/2006] [Indexed: 02/04/2023] Open
Abstract
Trypanosoma cruzi acute infections often go unperceived, but one third of chronically infected individuals die of Chagas disease, showing diverse manifestations affecting the heart, intestines, and nervous systems. A common denominator of pathology in Chagas disease is the minimal rejection unit, whereby parasite-free target host cells are destroyed by immune system mononuclear effectors cells infiltrates. Another key feature stemming from T. cruzi infection is the integration of kDNA minicircles into the vertebrate host genome; horizontal transfer of the parasite DNA can undergo vertical transmission to the progeny of mammals and birds. kDNA integration-induced mutations can enter multiple loci in diverse chromosomes, generating new genes, pseudo genes and knock-outs, and resulting in genomic shuffling and remodeling over time. As a result of the juxtaposition of kDNA insertions with host open reading frames, novel chimeric products may be generated. Germ line transmission of kDNA-mutations determined the appearance of lesions in birds that are indistinguishable from those seen in Chagas disease patients. The production of tissue lesions showing typical minimal rejection units in birds' refractory to T. cruzi infection is consistent with the hypothesis that autoimmunity, likely triggered by integration-induced phenotypic alterations, plays a major role in the pathogenesis of Chagas disease.
Collapse
Affiliation(s)
- Antonio R L Teixeira
- Laboratório de Pesquisa Multidisciplinar em Doença de Chagas, Faculdade de Medicina, Universidade de Brasilia, Caixa Postal 04536, 70919-970 Brasilia,-DF, Brasil.
| | | | | |
Collapse
|
7
|
Romanova LY, Willers H, Blagosklonny MV, Powell SN. The interaction of p53 with replication protein A mediates suppression of homologous recombination. Oncogene 2005; 23:9025-33. [PMID: 15489903 DOI: 10.1038/sj.onc.1207982] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tumor suppressor protein p53 is emerging as a central regulator of homologous recombination (HR) processes and DNA replication. P53 may downregulate HR through multiple mechanisms including the reported associations with the Rad51 and Rad54 recombinases, and the BLM and WRN helicases. Here, we investigated whether the interaction of p53 with human replication protein A (RPA) is necessary for the regulation of HR. By employing a plasmid-based HR assay in p53-null H1299 lung carcinoma cells, we studied the HR-suppressing properties of a panel of p53 mutants, which varied in their ability to interact with RPA. Both wild-type p53 and a transactivation-deficient p53 mutant (L22Q/W23S) suppressed HR and prevented RPA binding to ssDNA in vitro and in vivo. Conversely, p53 mutations that specifically disrupt the RPA-binding domain, while not compromising p53 transactivation function (D48H/D49H and W53S/F54S), did not affect HR. Suppression of HR was also not seen with missense mutations in the p53 core domain (His175 and His273), which retained the ability to interact with RPA, suggesting that the disruption of additional binding interactions of p53, for example, with Rad51 or recombination intermediates, also impacts on HR. We hypothesize that sequestration of RPA by p53 at the sites of recombination is one means by which p53 can inhibit HR processes. Our data support and extend the previously formulated 'dual model' of p53's role as guardian of the genome.
Collapse
Affiliation(s)
- Larisa Y Romanova
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
8
|
Binz SK, Sheehan AM, Wold MS. Replication Protein A phosphorylation and the cellular response to DNA damage. DNA Repair (Amst) 2004; 3:1015-24. [PMID: 15279788 DOI: 10.1016/j.dnarep.2004.03.028] [Citation(s) in RCA: 229] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Defects in cellular DNA metabolism have a direct role in many human disease processes. Impaired responses to DNA damage and basal DNA repair have been implicated as causal factors in diseases with DNA instability like cancer, Fragile X and Huntington's. Replication protein A (RPA) is essential for multiple processes in DNA metabolism including DNA replication, recombination and DNA repair pathways (including nucleotide excision, base excision and double-strand break repair). RPA is a single-stranded DNA-binding protein composed of subunits of 70-, 32- and 14-kDa. RPA binds ssDNA with high affinity and interacts specifically with multiple proteins. Cellular DNA damage causes the N-terminus of the 32-kDa subunit of human RPA to become hyper-phosphorylated. Current data indicates that hyper-phosphorylation causes a change in RPA conformation that down-regulates activity in DNA replication but does not affect DNA repair processes. This suggests that the role of RPA phosphorylation in the cellular response to DNA damage is to help regulate DNA metabolism and promote DNA repair.
Collapse
Affiliation(s)
- Sara K Binz
- Department of Biochemistry, University of Iowa Carver College of Medicine, 3107 MERF, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
9
|
Ott RD, Rehfuess C, Podust VN, Clark JE, Fanning E. Role of the p68 subunit of human DNA polymerase alpha-primase in simian virus 40 DNA replication. Mol Cell Biol 2002; 22:5669-78. [PMID: 12138179 PMCID: PMC133971 DOI: 10.1128/mcb.22.16.5669-5678.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA polymerase alpha-primase (pol-prim) is a heterotetramer with DNA polymerase and primase activities. The polymerase (p180) and primase (p48 and p58) subunits synthesize primers and extend them, but the function of the remaining subunit (p68) is poorly understood. Genetic studies in yeast suggested an essential role for the p68 ortholog in early S phase prior to the hydroxyurea-sensitive step, possibly a regulatory role in initiation of DNA replication, but found no evidence for an essential function of p68 later in S phase. To investigate whether the human p68 subunit has an essential role in DNA replication, we examined the ability of a purified trimeric human pol-prim lacking p68 to initiate simian virus 40 DNA replication in vitro and to synthesize and elongate primers on single-stranded DNA in the presence of T antigen and replication protein A (RPA). Both activities of trimeric pol-prim were defective, but activity was recovered upon addition of separately purified p68. Phosphorylation of p68 by cyclin A-dependent protein kinase also inhibited both activities of pol-prim. The data strongly suggest that the p68 subunit is required for priming activity of pol-prim in the presence of RPA and T antigen, both during initiation at the origin and during lagging strand replication.
Collapse
Affiliation(s)
- Robert D Ott
- Department of Biological Sciences and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
10
|
Grandi P, Eltsov M, Nielsen I, Raska I. DNA double-strand breaks induce formation of RP-A/Ku foci on in vitro reconstituted Xenopus sperm nuclei. J Cell Sci 2001; 114:3345-57. [PMID: 11591822 DOI: 10.1242/jcs.114.18.3345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication protein A (RP-A) is involved in DNA replication, repair and recombination. It has been demonstrated that RP-A clusters in foci prior to DNA replication and redistributes over chromatin during S-phase. Here, we show that RP-A foci also form in response to DNA double-strand (ds) breaks produced on Xenopus laevis sperm nuclei by restriction enzymes and then reconstituted with Xenopus egg high-speed extracts. Ku86 co-localizes with RP-A in the same foci. An unscheduled RP-A-dependent DNA synthesis takes place overlapping with RP-A and Ku86 foci. Immunoelectron-microscopy analysis reveals that these foci correspond to spherical bodies up to 300 nm in diameter, which contain RP-A, Ku86 and DNA. In an independent in vitro assay, we incubated linear dsDNA bound to magnetic beads with Xenopus egg extracts. Here, also RP-A and Ku cluster in foci as seen through immunofluorescence. Both proteins appear to enrich themselves in sequences near the ends of the DNA molecules and influence ligation efficiency of ds linear DNA to these ends. Thus, the Xenopus in vitro system allows for the generation of specific DNA ds breaks, RP-A and Ku can be used as markers for these lesions and the repair of this type of DNA damage can be studied under conditions of a normal nuclear environment.
Collapse
Affiliation(s)
- P Grandi
- Department of Biochemistry and Molecular Biology, University of Geneva, CH1211-Geneva 4, Switzerland
| | | | | | | |
Collapse
|
11
|
Mass G, Nethanel T, Lavrik OI, Wold MS, Kaufmann G. Replication protein A modulates its interface with the primed DNA template during RNA-DNA primer elongation in replicating SV40 chromosomes. Nucleic Acids Res 2001; 29:3892-9. [PMID: 11557822 PMCID: PMC55912 DOI: 10.1093/nar/29.18.3892] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The eukaryal single-stranded DNA binding protein replication protein A (RPA) binds short oligonucleotides with high affinity but exhibits low cooperativity in binding longer templates, opposite to prokaryal counterparts. This discrepancy could reflect the smaller size of the replicative template portion availed to RPA. According to current models, this portion accommodates an RNA-DNA primer (RDP) of <40 nt (nested discontinuity) or a several-fold longer Okazaki fragment (initiation zone). Previous in situ UV-crosslinking revealed that RPA also interacts with nascent DNA, especially growing RDPs. Here we compare nascent SV40 DNA chains UV-crosslinked to the middle and large RPA subunits and use the data to re-examine the two models. The middle subunit interacted with the nascent chains after a few DNA residues were added to the RNA primer while the large subunit became accessible after extension by several more. Upon RDP maturation, the middle subunit disengaged while the large subunit remained accessible during further limited extension. A corresponding shift in preference in favor of the large subunit has been reported for purified RPA and synthetic gapped duplexes upon reduction of the gap from 19 to 9 nt. Combined, these facts support the proposal that the mature RDP faces downstream a correspondingly small gap, possibly created by removal of the RNA primer moiety from an adjacent, previously synthesized RDP (nested discontinuity) but insufficient for continuous elongation of the RDP into an Okazaki fragment (initiation zone).
Collapse
Affiliation(s)
- G Mass
- Department of Biochemistry, Tel Aviv University, Ramat Aviv, 69978 Israel
| | | | | | | | | |
Collapse
|
12
|
Maga G, Frouin I, Spadari S, Hubscher U. Replication protein A as a "fidelity clamp" for DNA polymerase alpha. J Biol Chem 2001; 276:18235-42. [PMID: 11278525 DOI: 10.1074/jbc.m009599200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The current view of DNA replication in eukaryotes predicts that DNA polymerase alpha (pol alpha)-primase synthesizes the first 10-ribonucleotide-long RNA primer on the leading strand and at the beginning of each Okazaki fragment on the lagging strand. Subsequently, pol alpha elongates such an RNA primer by incorporating about 20 deoxynucleotides. pol alpha displays a low processivity and, because of the lack of an intrinsic or associated 3'--> 5' exonuclease activity, it is more error-prone than other replicative pols. Synthesis of the RNA/DNA primer catalyzed by pol alpha-primase is a critical step in the initiation of DNA synthesis, but little is known about the role of the DNA replication accessory proteins in its regulation. In this paper we provide evidences that the single-stranded DNA-binding protein, replication protein A (RP-A), acts as an auxiliary factor for pol alpha playing a dual role: (i) it stabilizes the pol alpha/primer complex, thus acting as a pol clamp; and (ii) it significantly reduces the misincorporation efficiency by pol alpha. Based on these results, we propose a hypothetical model in which RP-A is involved in the regulation of the early events of DNA synthesis by acting as a "fidelity clamp" for pol alpha.
Collapse
Affiliation(s)
- G Maga
- Istituto di Genetica Biochimica ed Evoluzionistica-Consiglio Nazionale delle Ricerche, I-27100 Pavia, Italy
| | | | | | | |
Collapse
|
13
|
Affiliation(s)
- D T Simmons
- Department of Biological Sciences, University of Delaware, Newark 19716, USA
| |
Collapse
|
14
|
Weisshart K, Förster H, Kremmer E, Schlott B, Grosse F, Nasheuer HP. Protein-protein interactions of the primase subunits p58 and p48 with simian virus 40 T antigen are required for efficient primer synthesis in a cell-free system. J Biol Chem 2000; 275:17328-37. [PMID: 10747950 DOI: 10.1074/jbc.m000717200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase alpha-primase (pol-prim, consisting of p180-p68-p58-p48), and primase p58-p48 (prim(2)) synthesize short RNA primers on single-stranded DNA. In the SV40 DNA replication system, only pol-prim is able to start leading strand DNA replication that needs unwinding of double-stranded (ds) DNA prior to primer synthesis. At high concentrations, pol-prim and prim(2) indistinguishably reduce the unwinding of dsDNA by SV40 T antigen (Tag). RNA primer synthesis on ssDNA in the presence of replication protein A (RPA) and Tag has served as a model system to study the initiation of Okazaki fragments on the lagging strand in vitro. On ssDNA, Tag stimulates whereas RPA inhibits the initiation reaction of both enzymes. Tag reverses and even overcompensates the inhibition of primase by RPA. Physical binding of Tag to the primase subunits and RPA, respectively, is required for these activities. Each subunit of the primase complex, p58 and p48, performs physical contacts with Tag and RPA independently of p180 and p68. Using surface plasmon resonance, the dissociation constants of the Tag/pol-prim and Tag/primase interactions were 1.2 x 10(-8) m and 1.3 x 10(-8) m, respectively.
Collapse
Affiliation(s)
- K Weisshart
- Institut für Molekulare Biotechnologie e.V., Abteilung Biochemie, Beutenbergstrasse 11, D-07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Human aging is a complex process that leads to the gradual deterioration of body functions with time. Various models to approach the study of aging have been launched over the years such as the genetic analysis of life span in the yeast S. cerevisiae, the worm C. elegans, the fruitfly, and mouse, among others. In human models, there have been extensive efforts using replicative senescence, the study of centenerians, comparisons of young versus old at the organismal, cellular, and molecular levels, and the study of premature aging syndromes to understand the mechanisms leading to aging. One good model for studying human aging is a rare autosomal recessive disorder known as the Werner syndrome (WS), which is characterized by accelerated aging in vivo and in vitro. A genetic defect implicated in WS was mapped to the WRN locus. Mutations in this gene are believed to be associated, early in adulthood, with clinical symptoms normally found in old individuals. WRN functions as a DNA helicase, and recent evidence, summarized in this review, suggests specific biochemical roles for this multifaceted protein. The interaction of WRN protein with RPA (replication protein A) and p53 will undoubtedly direct efforts to further dissect the genetic pathway(s) in which WRN protein functions in DNA metabolism and will help to unravel its contribution to the human aging process.
Collapse
Affiliation(s)
- J O Nehlin
- Laboratory of Molecular Gerontology and Dermatology, Copenhagen University Hospital, Denmark.
| | | | | |
Collapse
|
16
|
Dimitrova DS, Gilbert DM. Stability and nuclear distribution of mammalian replication protein A heterotrimeric complex. Exp Cell Res 2000; 254:321-7. [PMID: 10640430 DOI: 10.1006/excr.1999.4770] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Replication protein A (RPA), a stable complex of three polypeptides, is the single-stranded DNA-binding protein essential for DNA replication in eukaryotic cells. Previous studies of the subcellular distribution and stability of the RPA heterotrimer during the mammalian cell cycle have produced conflicting results. Here, we present evidence that these inconsistencies can be accounted for by the presence of an extractable pool of soluble RPA within the nucleus. Indirect immunofluorescence experiments in both CHO and HeLa cells showed that all three RPA subunits associated specifically with sites of ongoing DNA synthesis, similar to the replication fork protein proliferating cell nuclear antigen. Furthermore, we found no evidence for disassembly of the chromatin-bound heterotrimeric RPA complex in vivo. Our results are consistent with a role for RPA in the initiation and elongation steps of replication, as previously defined in the viral in vitro replication systems.
Collapse
Affiliation(s)
- D S Dimitrova
- Department of Biochemistry and Molecular Biology, State University of New York Health Sciences Center, 750 East Adams Street, Syracuse, New York 13210, USA.
| | | |
Collapse
|
17
|
Lebel M, Spillare EA, Harris CC, Leder P. The Werner syndrome gene product co-purifies with the DNA replication complex and interacts with PCNA and topoisomerase I. J Biol Chem 1999; 274:37795-9. [PMID: 10608841 DOI: 10.1074/jbc.274.53.37795] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Werner syndrome (WS) is a recessive disorder characterized by genomic instability and by the premature onset of a number of age-related diseases. To understand the molecular basis of this disease, we deleted a segment of the murine Wrn gene and created Wrn-deficient embryonic stem (ES) cells. At the molecular level, wild type-but not mutant-WS protein co-purifies through a series of centrifugation, chromatography, and sucrose gradient steps with the well characterized 17 S multiprotein DNA replication complex. Furthermore, wild type WS protein co-immunoprecipitates with a prominent component of the multiprotein replication complex, proliferating cell nuclear antigen (PCNA). In vitro studies also indicate that PCNA binds to a region in the N terminus portion of the WS protein containing a potential 3'-5' exonuclease domain. Finally, human WS protein also co-immunoprecipitates with both PCNA and topoisomerase I. These results suggest that the WS protein interacts with several components of the DNA replication fork.
Collapse
Affiliation(s)
- M Lebel
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|