1
|
Middendorf L, Ravi Iyengar B, Eicholt LA. Sequence, Structure, and Functional Space of Drosophila De Novo Proteins. Genome Biol Evol 2024; 16:evae176. [PMID: 39212966 PMCID: PMC11363682 DOI: 10.1093/gbe/evae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
During de novo emergence, new protein coding genes emerge from previously nongenic sequences. The de novo proteins they encode are dissimilar in composition and predicted biochemical properties to conserved proteins. However, functional de novo proteins indeed exist. Both identification of functional de novo proteins and their structural characterization are experimentally laborious. To identify functional and structured de novo proteins in silico, we applied recently developed machine learning based tools and found that most de novo proteins are indeed different from conserved proteins both in their structure and sequence. However, some de novo proteins are predicted to adopt known protein folds, participate in cellular reactions, and to form biomolecular condensates. Apart from broadening our understanding of de novo protein evolution, our study also provides a large set of testable hypotheses for focused experimental studies on structure and function of de novo proteins in Drosophila.
Collapse
Affiliation(s)
- Lasse Middendorf
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstrasse 1, 48149 Muenster, Germany
| | - Bharat Ravi Iyengar
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstrasse 1, 48149 Muenster, Germany
| | - Lars A Eicholt
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstrasse 1, 48149 Muenster, Germany
| |
Collapse
|
2
|
Liu S, Du P, Sun H, Yu HY, Wang ZG. Bioinspired Supramolecular Catalysts from Designed Self-Assembly of DNA or Peptides. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03753] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Siyuan Liu
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Nanlu, Wuhu, Anhui 241002, China
| | - Peidong Du
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao Sun
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
| | - Hai-Yin Yu
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Nanlu, Wuhu, Anhui 241002, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
An XJ, Deng ZY, Wang T. OsSpo11-4, a rice homologue of the archaeal TopVIA protein, mediates double-strand DNA cleavage and interacts with OsTopVIB. PLoS One 2011; 6:e20327. [PMID: 21637817 PMCID: PMC3102714 DOI: 10.1371/journal.pone.0020327] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 04/21/2011] [Indexed: 11/17/2022] Open
Abstract
DNA topoisomerase VI from Archaea, a heterotetrameric complex composed of two TopVIA and two TopVIB subunits, is involved in altering DNA topology during replication, transcription and chromosome segregation by catalyzing DNA strand transfer through transient double-strand breaks. The sequenced yeast and animal genomes encode only one homologue of the archaeal TopVIA subunit, namely Spo11, and no homologue of the archaeal TopVIB subunit. In yeast, Spo11 is essential for initiating meiotic recombination and this function appears conserved among other eukaryotes. In contrast to yeast and animals, studies in Arabidopsis and rice have identified three Spo11/TopVIA homologues and one TopVIB homologue in plants. Here, we further identified two novel Spo11/TopVIA homologues (named OsSpo11-4 and OsSpo11-5, respectively) that exist just in the monocot model plant Oryza sativa, indicating that at least five Spo11/TopVIA homologues are present in the rice genome. To reveal the biochemical function of the two novel Spo11/TopVIA homologues, we first examined the interactions among OsSpo11-1, OsSpo11-4, OsSpo11-5, and OsTopVIB by yeast two-hybrid assay. The results showed that OsSpo11-4 and OsTopVIB can self-interact strongly and among the 3 examined OsSpo11 proteins, only OsSpo11-4 interacted with OsTopVIB. Pull-down assay confirmed the interaction between OsSpo11-4 and OsTopVIB, which indicates that OsSpo11-4 may interact with OsTopVIB in vivo. Further in vitro enzymatic analysis revealed that among the above 4 proteins, only OsSpo11-4 exhibited double-strand DNA cleavage activity and its enzymatic activity appears dependent on Mg2+ and independent of OsTopVIB, despite its interaction with OsTopVIB. We further analyzed the biological function of OsSpo11-4 by RNA interference and found that down-regulated expression of OsSpo11-4 led to defects in male meiosis, indicating OsSpo11-4 is required for meiosis.
Collapse
Affiliation(s)
- Xiao Jing An
- Research Center of Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
4
|
Gilroy KL, Austin CA. The impact of the C-terminal domain on the interaction of human DNA topoisomerase II α and β with DNA. PLoS One 2011; 6:e14693. [PMID: 21358820 PMCID: PMC3040172 DOI: 10.1371/journal.pone.0014693] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 01/19/2011] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND Type II DNA topoisomerases are essential, ubiquitous enzymes that act to relieve topological problems arising in DNA from normal cellular activity. Their mechanism of action involves the ATP-dependent transport of one DNA duplex through a transient break in a second DNA duplex; metal ions are essential for strand passage. Humans have two isoforms, topoisomerase IIα and topoisomerase IIβ, that have distinct roles in the cell. The C-terminal domain has been linked to isoform specific differences in activity and DNA interaction. METHODOLOGY/PRINCIPAL FINDINGS We have investigated the role of the C-terminal domain in the binding of human topoisomerase IIα and topoisomerase IIβ to DNA in fluorescence anisotropy assays using full length and C-terminally truncated enzymes. We find that the C-terminal domain of topoisomerase IIβ but not topoisomerase IIα affects the binding of the enzyme to the DNA. The presence of metal ions has no effect on DNA binding. Additionally, we have examined strand passage of the full length and truncated enzymes in the presence of a number of supporting metal ions and find that there is no difference in relative decatenation between isoforms. We find that calcium and manganese, in addition to magnesium, can support strand passage by the human topoisomerase II enzymes. CONCLUSIONS/SIGNIFICANCE The C-terminal domain of topoisomerase IIβ, but not that of topoisomerase IIα, alters the enzyme's K(D) for DNA binding. This is consistent with previous data and may be related to the differential modes of action of the two isoforms in vivo. We also show strand passage with different supporting metal ions for human topoisomerase IIα or topoisomerase IIβ, either full length or C-terminally truncated. They all show the same preferences, whereby Mg > Ca > Mn.
Collapse
Affiliation(s)
- Kathryn L. Gilroy
- Institute for Cell and Molecular Biosciences, University of Newcastle Upon Tyne, Newcastle upon Tyne, United Kingdom
| | - Caroline A. Austin
- Institute for Cell and Molecular Biosciences, University of Newcastle Upon Tyne, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Remmert M, Biegert A, Linke D, Lupas AN, Söding J. Evolution of outer membrane beta-barrels from an ancestral beta beta hairpin. Mol Biol Evol 2010; 27:1348-58. [PMID: 20106904 DOI: 10.1093/molbev/msq017] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Outer membrane beta-barrels (OMBBs) are the major class of outer membrane proteins from Gram-negative bacteria, mitochondria, and plastids. Their transmembrane domains consist of 8-24 beta-strands forming a closed, barrel-shaped beta-sheet around a central pore. Despite their obvious structural regularity, evidence for an origin by duplication or for a common ancestry has not been found. We use three complementary approaches to show that all OMBBs from Gram-negative bacteria evolved from a single, ancestral beta beta hairpin. First, we link almost all families of known single-chain bacterial OMBBs with each other through transitive profile searches. Second, we identify a clear repeat signature in the sequences of many OMBBs in which the repeating sequence unit coincides with the structural beta beta hairpin repeat. Third, we show that the observed sequence similarity between OMBB hairpins cannot be explained by structural or membrane constraints on their sequences. The third approach addresses a longstanding problem in protein evolution: how to distinguish between a very remotely homologous relationship and the opposing scenario of "sequence convergence." The origin of a diverse group of proteins from a single hairpin module supports the hypothesis that, around the time of transition from the RNA to the protein world, proteins arose by amplification and recombination of short peptide modules that had previously evolved as cofactors of RNAs.
Collapse
Affiliation(s)
- M Remmert
- Department of Biochemistry, Gene Center Munich and Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universtät München, Munich, Germany
| | | | | | | | | |
Collapse
|
6
|
Abstract
DNA topoisomerases are a diverse set of essential enzymes responsible for maintaining chromosomes in an appropriate topological state. Although they vary considerably in structure and mechanism, the partnership between topoisomerases and DNA has engendered commonalities in how these enzymes engage nucleic acid substrates and control DNA strand manipulations. All topoisomerases can harness the free energy stored in supercoiled DNA to drive their reactions; some further use the energy of ATP to alter the topology of DNA away from an enzyme-free equilibrium ground state. In the cell, topoisomerases regulate DNA supercoiling and unlink tangled nucleic acid strands to actively maintain chromosomes in a topological state commensurate with particular replicative and transcriptional needs. To carry out these reactions, topoisomerases rely on dynamic macromolecular contacts that alternate between associated and dissociated states throughout the catalytic cycle. In this review, we describe how structural and biochemical studies have furthered our understanding of DNA topoisomerases, with an emphasis on how these complex molecular machines use interfacial interactions to harness and constrain the energy required to manage DNA topology.
Collapse
|
7
|
Balaji S, Aravind L. The RAGNYA fold: a novel fold with multiple topological variants found in functionally diverse nucleic acid, nucleotide and peptide-binding proteins. Nucleic Acids Res 2007; 35:5658-71. [PMID: 17715145 PMCID: PMC2034487 DOI: 10.1093/nar/gkm558] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Using sensitive structure similarity searches, we identify a shared α+β fold, RAGNYA, principally involved in nucleic acid, nucleotide or peptide interactions in a diverse group of proteins. These include the Ribosomal proteins L3 and L1, ATP-grasp modules, the GYF domain, DNA-recombination proteins of the NinB family from caudate bacteriophages, the C-terminal DNA-interacting domain of the Y-family DNA polymerases, the uncharacterized enzyme AMMECR1, the siRNA silencing repressor of tombusviruses, tRNA Wybutosine biosynthesis enzyme Tyw3p, DNA/RNA ligases and related nucleotidyltransferases and the Enhancer of rudimentary proteins. This fold exhibits three distinct circularly permuted versions and is composed of an internal repeat of a unit with two-strands and a helix. We show that despite considerable structural diversity in the fold, its representatives show a common mode of nucleic acid or nucleotide interaction via the exposed face of the sheet. Using this information and sensitive profile-based sequence searches: (1) we predict the active site, and mode of substrate interaction of the Wybutosine biosynthesis enzyme, Tyw3p, and a potential catalytic role for AMMECR1. (2) We provide insights regarding the mode of nucleic acid interaction of the NinB proteins, and the evolution of the active site of classical ATP-grasp enzymes and DNA/RNA ligases. (3) We also present evidence for a bacterial origin of the GYF domain and propose how this version of the fold might have been utilized in peptide interactions in the context of nucleoprotein complexes.
Collapse
Affiliation(s)
| | - L. Aravind
- *To whom correspondence should be addressed.
| |
Collapse
|
8
|
Martínez A, Bengoechea JA, Cuttitta F. Molecular evolution of proadrenomedullin N-terminal 20 peptide (PAMP): evidence for gene co-option. Endocrinology 2006; 147:3457-61. [PMID: 16574790 DOI: 10.1210/en.2006-0105] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Posttranslational processing of proadrenomedullin generates two biologically active peptides, adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP). Sequence comparison of homologous proadrenomedullin genes in vertebrate evolution shows a high degree of stability in the reading frame for AM, whereas PAMP sequence changes rapidly. Here we investigate the functional significance of PAMP phylogenetic variation studying two of PAMP's better characterized physiological activities, angiogenic potential and antimicrobial capability, with synthetic peptides carrying the predicted sequence for human, mouse, chicken, and fish PAMP. All tested peptides induced angiogenesis when compared with untreated controls, but chicken and fish PAMP, which lack terminal amidation, were apparently less angiogenic than their human and mouse homologs. Confirming the role of amidation in angiogenesis, Gly-extended and free acid variants of human PAMP produced responses similar to the natural nonamidated peptides. In contrast, antimicrobial activity was restricted to human PAMP, indicating that this function may have been acquired at a late time during the evolution of PAMP. Interestingly, free acid human PAMP retained antimicrobial activity whereas the Gly-extended form did not. This fact may reflect the need for maintaining a tightly defined structural conformation in the pore-forming mechanism proposed for these antimicrobial agents. The evolution of PAMP provides an example of an angiogenic peptide that developed antimicrobial capabilities without losing its original function.
Collapse
Affiliation(s)
- Alfredo Martínez
- Department of Neuroanatomy and Cell Biology, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avenida Doctor Arce 37, 28002 Madrid, Spain.
| | | | | |
Collapse
|
9
|
Nagy Z, Szabó M, Chandler M, Olasz F. Analysis of the N-terminal DNA binding domain of the IS30 transposase. Mol Microbiol 2005; 54:478-88. [PMID: 15469518 DOI: 10.1111/j.1365-2958.2004.04279.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
IS30 is the founding member of a large family of widely spread bacterial insertion sequences with closely related transposases. The N-terminal end of the IS30 transposase had been shown to retain sequence-specific DNA binding activity and to protect the IS30 terminal inverted repeats. Structural predictions revealed the presence of a helix-helix-turn-helix motif (H-HTH2) which, in the case of IS30, is preceded by an additional helix-turn-helix motif (HTH1). Analysis of deletion and point mutants in this region revealed that both motifs are important for IS30 transposition. IS30 exhibits two types of insertion specificity preferring either a 24 bp palindromic hot-spot (GOHS) or sequences resembling its ends [left and right terminal inverted repeat (IRL and IRR)]. Results are presented suggesting that the HTH1 region is required for GOHS targeting and interferes with the inverted repeat (IR) targeting. On the other hand, H-HTH2 appears to be required for both. The binding activities of the mutant proteins to the terminal IS30 IRs as measured by gel retardation correlated well with these results. Furthermore, close inspection of the H-HTH2 region revealed significant amino acid identity with a similar predicted secondary structure carried by the transcriptional regulator FixJ of Sinorhizobium meliloti and involved in FixJ binding to its target sequence. This suggests that FixJ and IS30 transposase share similar sequence-specific DNA binding mechanisms.
Collapse
Affiliation(s)
- Zita Nagy
- Laboratoire de Microbiologie et de Génétique Moléculaire, 118 route de Narbonne, F-31062 Toulouse Cedex, France
| | | | | | | |
Collapse
|
10
|
Anantharaman V, Aravind L. The SHS2 module is a common structural theme in functionally diverse protein groups, like Rpb7p, FtsA, GyrI, and MTH1598/TM1083 superfamilies. Proteins 2004; 56:795-807. [PMID: 15281131 DOI: 10.1002/prot.20140] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Using structural comparisons, we identified a novel domain with a simple fold in the bacterial cell division ATPase FtsA, the archaeo-eukaryotic RNA polymerase subunit Rpb7p, the GyrI superfamily, and the uncharacterized MTH1598/Tm1083-like proteins. The fold contains a core of 3 strands, forming a curved sheet, and a single helix in a strand-helix-strand-strand (SHS2) configuration. The SHS2 domain may exist either in single or duplicate copies within the same polypeptide. The single-copy versions of the domain in FtsA and Rbp7p are most closely related, and appear to mediate protein-protein interactions by means of strand 1, and the loop between strand 2 and strand 3 of the domain. We predict that the interactions between FtsA and its functional partners in bacterial cell division are likely to be similar to the interactions of Rbp7p in the archaeo-eukaryotic RNA polymerase complex. The dimeric versions typified by the GyrI superfamily appear to have been adapted for small-molecule binding. Sequence profiles searches helped us to identify several new versions of the GyrI superfamily, including a family of secreted forms that is found only in animals and the bacterial pathogen Leptospira. Through sequence-structure comparisons, we predict the positions that are likely to be important for ligand specificity in the GyrI superfamily. In the MTH1598/Tm1083-like proteins, a SHS2 domain is inserted into the loop between strand 1 and helix 1 of another SHS2 domain. This has resulted in a structure that has convergent similarities with the Hsp33 and green fluorescent protein folds. The sequence conservation pattern and its phyletic profile suggest that it might function as an enzyme in some conserved aspect of nucleic acid metabolism. Thus, the SHS2 domain is an example of a simple module that has been adapted to perform an entire spectrum of functions ranging from protein-protein interactions to small-molecule recognition and catalysis.
Collapse
Affiliation(s)
- V Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | | |
Collapse
|
11
|
Jayaram M, Mehta S, Uzri D, Voziyanov Y, Velmurugan S. Site-specific recombination and partitioning systems in the stable high copy propagation of the 2-micron yeast plasmid. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 77:127-72. [PMID: 15196892 DOI: 10.1016/s0079-6603(04)77004-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Makkuni Jayaram
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
12
|
Chen Y, Rice PA. New insight into site-specific recombination from Flp recombinase-DNA structures. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2003; 32:135-59. [PMID: 12598365 DOI: 10.1146/annurev.biophys.32.110601.141732] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The lamba integrase, or tyrosine-based family of site-specific recombinases, plays an important role in a variety of biological processes by inserting, excising, and inverting DNA segments. Flp, encoded by the yeast 2-mum plasmid, is the best-characterized eukaryotic member of this family and is responsible for maintaining the copy number of this plasmid. Over the past several years, structural and biochemical studies have shed light on the details of a common catalytic scheme utilized by these enzymes with interesting variations under different biological contexts. The emergence of new Flp structures and solution data provides insights not only into its unique mechanism of active site assembly and activity regulation but also into the specific contributions of certain protein residues to catalysis.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
13
|
Chen Y, Rice PA. The role of the conserved Trp330 in Flp-mediated recombination. Functional and structural analysis. J Biol Chem 2003; 278:24800-7. [PMID: 12716882 DOI: 10.1074/jbc.m300853200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The active site of Flp contains, in addition to a transdonated nucleophilic tyrosine, five other residues that are highly conserved within the lambda-integrase family of site-specific recombinases and the type IB topoisomerases. We have used site-directed mutagenesis and x-ray crystallography to investigate the roles of two such residues, Lys223 and Trp330. Our findings agree with studies on related enzymes showing the importance of Lys223 in catalysis but demonstrate that in Flp-mediated recombination the primary role of Trp330 is architectural rather than catalytic. Eliminating the hydrogen bonding potential of Trp330 by phenylalanine substitution results in surprisingly small changes in reaction rates, compared with dramatic decreases in the activities of W330A, W330H, and W330Q. The structure of a W330F mutant-DNA complex reveals an active site nearly identical to that of the wild type. The phenylalanine side chain preserves most of the van der Waals interactions Trp330 forms with the Tyr343-containing trans helix, which may be particularly important for the docking of this helix. Our studies of Trp330 provide the first detailed examination of this conserved residue in the lambda-integrase family, suggesting that the relative importance of active site residues may differ among Flp and related enzymes.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biochemistry and Molecular Biology, the University of Chicago, Illinois 60637, USA
| | | |
Collapse
|
14
|
Subramaniam S, Tewari AK, Nunes-Duby SE, Foster MP. Dynamics and DNA substrate recognition by the catalytic domain of lambda integrase. J Mol Biol 2003; 329:423-39. [PMID: 12767827 DOI: 10.1016/s0022-2836(03)00469-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bacteriophage lambda integrase (lambda-Int) is the prototypical member of a large family of enzymes that catalyze site-specific DNA recombination via the formation of a Holliday junction intermediate. DNA strand cleavage by lambda-Int is mediated by nucleophilic attack on the scissile phosphate by a conserved tyrosine residue, forming an intermediate with the enzyme covalently attached to the 3'-end of the cleaved strand via a phosphotyrosine linkage. The crystal structure of the catalytic domain of lambda-Int (C170) obtained in the absence of DNA revealed the tyrosine nucleophile at the protein's C terminus to be located on a beta-hairpin far from the other conserved catalytic residues and adjacent to a disordered loop. This observation suggested that a conformational change in the C terminus of the protein was required to generate the active site in cis, or alternatively, that the active site could be completed in trans by donation of the tyrosine nucleophile from a neighboring molecule in the recombining synapse. We used NMR spectroscopy together with limited proteolysis to examine the dynamics of the lambda-Int catalytic domain in the presence and absence of DNA half-site substrates with the goal of characterizing the expected conformational change. Although the C terminus is indeed flexible in the absence of DNA, we find that conformational changes in the tyrosine-containing beta-hairpin are not coupled to DNA binding. To gain structural insights into C170/DNA complexes, we took advantage of mechanistic conservation with Cre and Flp recombinases to model C170 in half-site and tetrameric Holliday junction complexes. Although the models do not reveal the nature of the conformational change required for cis cleavage, they are consistent with much of the available experimental data and provide new insights into the how trans complementation could be accommodated.
Collapse
|
15
|
Bankhead TM, Etzel BJ, Wolven F, Bordenave S, Boldt JL, Larsen TA, Segall AM. Mutations at residues 282, 286, and 293 of phage lambda integrase exert pathway-specific effects on synapsis and catalysis in recombination. J Bacteriol 2003; 185:2653-66. [PMID: 12670991 PMCID: PMC152606 DOI: 10.1128/jb.185.8.2653-2666.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage lambda integrase (Int) catalyzes site-specific recombination between pairs of attachment (att) sites. The att sites contain weak Int-binding sites called core-type sites that are separated by a 7-bp overlap region, where cleavage and strand exchange occur. We have characterized a number of mutant Int proteins with substitutions at positions S282 (S282A, S282F, and S282T), S286 (S286A, S286L, and S286T), and R293 (R293E, R293K, and R293Q). We investigated the core- and arm-binding properties and cooperativity of the mutant proteins, their ability to catalyze cleavage, and their ability to form and resolve Holliday junctions. Our kinetic analyses have identified synapsis as the rate-limiting step in excisive recombination. The IntS282 and IntS286 mutants show defects in synapsis in the bent-L and excisive pathways, respectively, while the IntR293 mutants exhibit synapsis defects in both the excision and bent-L pathways. The results of our study support earlier findings that the catalytic domain also serves a role in binding to core-type sites, that the core contacts made by this domain are important for both synapsis and catalysis, and that Int contacts core-type sites differently among the four recombination pathways. We speculate that these residues are important for the proper positioning of the catalytic residues involved in the recombination reaction and that their positions differ in the distinct nucleoprotein architectures formed during each pathway. Finally, we found that not all catalytic events in excision follow synapsis: the attL site probably undergoes several rounds of cleavage and ligation before it synapses and exchanges DNA with attR.
Collapse
Affiliation(s)
- Troy M Bankhead
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182-4614, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Todd AE, Orengo CA, Thornton JM. Sequence and structural differences between enzyme and nonenzyme homologs. Structure 2002; 10:1435-51. [PMID: 12377129 DOI: 10.1016/s0969-2126(02)00861-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To improve our understanding of the evolution of novel functions, we performed a sequence, structural, and functional analysis of homologous enzymes and nonenzymes of known three-dimensional structure. In most examples identified, the nonenzyme is derived from an ancestral catalytic precursor (as opposed to the reverse evolutionary scenario, nonenzyme to enzyme), and the active site pocket has been disrupted in some way, owing to the substitution of critical catalytic residues and/or steric interactions that impede substrate binding and catalysis. Pairwise sequence identity is typically insignificant, and almost one-half of the enzyme and nonenzyme pairs do not share any similarity in function. Heterooligomeric enzymes comprising homologous subunits in which one chain is catalytically inactive and enzyme polypeptides that contain internal catalytic and noncatalytic duplications of an ancient enzyme domain are also discussed.
Collapse
Affiliation(s)
- Annabel E Todd
- Biochemistry and Molecular Biology Department, University College London, United Kingdom
| | | | | |
Collapse
|
17
|
Todd AE, Orengo CA, Thornton JM. Evolution of function in protein superfamilies, from a structural perspective. J Mol Biol 2001; 307:1113-43. [PMID: 11286560 DOI: 10.1006/jmbi.2001.4513] [Citation(s) in RCA: 459] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The recent growth in protein databases has revealed the functional diversity of many protein superfamilies. We have assessed the functional variation of homologous enzyme superfamilies containing two or more enzymes, as defined by the CATH protein structure classification, by way of the Enzyme Commission (EC) scheme. Combining sequence and structure information to identify relatives, the majority of superfamilies display variation in enzyme function, with 25 % of superfamilies in the PDB having members of different enzyme types. We determined the extent of functional similarity at different levels of sequence identity for 486,000 homologous pairs (enzyme/enzyme and enzyme/non-enzyme), with structural and sequence relatives included. For single and multi-domain proteins, variation in EC number is rare above 40 % sequence identity, and above 30 %, the first three digits may be predicted with an accuracy of at least 90 %. For more distantly related proteins sharing less than 30 % sequence identity, functional variation is significant, and below this threshold, structural data are essential for understanding the molecular basis of observed functional differences. To explore the mechanisms for generating functional diversity during evolution, we have studied in detail 31 diverse structural enzyme superfamilies for which structural data are available. A large number of variations and peculiarities are observed, at the atomic level through to gross structural rearrangements. Almost all superfamilies exhibit functional diversity generated by local sequence variation and domain shuffling. Commonly, substrate specificity is diverse across a superfamily, whilst the reaction chemistry is maintained. In many superfamilies, the position of catalytic residues may vary despite playing equivalent functional roles in related proteins. The implications of functional diversity within supefamilies for the structural genomics projects are discussed. More detailed information on these superfamilies is available at http://www.biochem.ucl.ac.uk/bsm/FAM-EC/.
Collapse
Affiliation(s)
- A E Todd
- Biochemistry and Molecular Biology Department, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | |
Collapse
|
18
|
Abstract
The AraC family of bacterial transcriptional activators regulate diverse genetic systems. Recent X-ray diffraction studies show that the monomeric MarA and Rob activators bind to their asymmetric degenerate DNA sites via two different helix-turn-helix elements. Activation by MarA, SoxS or Rob requires a particular orientation of the asymmetric binding sequence (and hence the activator), depending on its distance from the -10 RNAP signal. Genetic studies are beginning to clarify how the activators interact with RNAP. Growing evidence suggests that for the sugar metabolism activators, multiple binding sites upstream of the promoter anchor the activator in a repressing or nonactivating configuration. By interaction with the sugar and/or CRP, the activator is allosterically altered so it can bind a new set of sites that enable it to activate the promoter. Surprisingly, the virulence activator, Rns, must bind to both upstream and downstream sites in order to activate the rns promoter.
Collapse
Affiliation(s)
- R G Martin
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0560, USA.
| | | |
Collapse
|