1
|
Su Z, Zhang K, Kappel K, Li S, Palo MZ, Pintilie GD, Rangan R, Luo B, Wei Y, Das R, Chiu W. Cryo-EM structures of full-length Tetrahymena ribozyme at 3.1 Å resolution. Nature 2021; 596:603-607. [PMID: 34381213 PMCID: PMC8405103 DOI: 10.1038/s41586-021-03803-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Single-particle cryogenic electron microscopy (cryo-EM) has become a standard technique for determining protein structures at atomic resolution1-3. However, cryo-EM studies of protein-free RNA are in their early days. The Tetrahymena thermophila group I self-splicing intron was the first ribozyme to be discovered and has been a prominent model system for the study of RNA catalysis and structure-function relationships4, but its full structure remains unknown. Here we report cryo-EM structures of the full-length Tetrahymena ribozyme in substrate-free and bound states at a resolution of 3.1 Å. Newly resolved peripheral regions form two coaxially stacked helices; these are interconnected by two kissing loop pseudoknots that wrap around the catalytic core and include two previously unforeseen (to our knowledge) tertiary interactions. The global architecture is nearly identical in both states; only the internal guide sequence and guanosine binding site undergo a large conformational change and a localized shift, respectively, upon binding of RNA substrates. These results provide a long-sought structural view of a paradigmatic RNA enzyme and signal a new era for the cryo-EM-based study of structure-function relationships in ribozymes.
Collapse
Affiliation(s)
- Zhaoming Su
- The State Key Laboratory of Biotherapy and Cancer Center, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, USA.
| | - Kaiming Zhang
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, USA
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Kalli Kappel
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Shanshan Li
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, USA
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Michael Z Palo
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Grigore D Pintilie
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, USA
| | - Ramya Rangan
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Bingnan Luo
- The State Key Laboratory of Biotherapy and Cancer Center, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- The State Key Laboratory of Biotherapy and Cancer Center, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Rhiju Das
- Biophysics Program, Stanford University, Stanford, CA, USA.
- Department of Biochemistry and Department of Physics, Stanford University, Stanford, CA, USA.
| | - Wah Chiu
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, USA.
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| |
Collapse
|
2
|
Zakrevsky P, Calkins E, Kao YL, Singh G, Keleshian VL, Baudrey S, Jaeger L. In vitro selected GUAA tetraloop-binding receptors with structural plasticity and evolvability towards natural RNA structural modules. Nucleic Acids Res 2021; 49:2289-2305. [PMID: 33524109 PMCID: PMC7913685 DOI: 10.1093/nar/gkab021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/05/2021] [Accepted: 01/26/2021] [Indexed: 11/24/2022] Open
Abstract
GNRA tetraloop-binding receptor interactions are key components in the macromolecular assembly of a variety of functional RNAs. In nature, there is an apparent bias for GAAA/11nt receptor and GYRA/helix interactions, with the former interaction being thermodynamically more stable than the latter. While past in vitro selections allowed isolation of novel GGAA and GUGA receptors, we report herein an in vitro selection that revealed several novel classes of specific GUAA receptors with binding affinities comparable to those from natural GAAA/11nt interactions. These GUAA receptors have structural homology with double-locked bulge RNA modules naturally occurring in ribosomal RNAs. They display mutational robustness that enables exploration of the sequence/phenotypic space associated to GNRA/receptor interactions through epistasis. Their thermodynamic self-assembly fitness landscape is characterized by a rugged neutral network with possible evolutionary trajectories toward natural GNRA/receptor interactions. High throughput sequencing analysis revealed synergetic mutations located away from the tertiary interactions that positively contribute to assembly fitness. Our study suggests that the repertoire of GNRA/receptor interactions is much larger than initially thought from the analysis of natural stable RNA molecules and also provides clues for their evolution towards natural GNRA/receptors.
Collapse
Affiliation(s)
- Paul Zakrevsky
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Erin Calkins
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Yi-Ling Kao
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Gurkeerat Singh
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Vasken L Keleshian
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Stephanie Baudrey
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| |
Collapse
|
3
|
Rahman MS, Matsumura S, Ikawa Y. Effects of external molecular factors on adaptation of bacterial RNase P ribozymes to thermophilic conditions. Biochem Biophys Res Commun 2020; 523:342-347. [DOI: 10.1016/j.bbrc.2019.12.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
|
4
|
Matsumura S, Ito T, Tanaka T, Furuta H, Ikawa Y. Modulation of group I ribozyme activity by cationic porphyrins. BIOLOGY 2015; 4:251-63. [PMID: 25811638 PMCID: PMC4498298 DOI: 10.3390/biology4020251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/03/2015] [Indexed: 11/16/2022]
Abstract
The effects of cationic porphyrins on the catalytic activities of four group I ribozymes were investigated. A cationic porphyrin possessing four pyridinium moieties (pPyP) inhibited two group IC3 ribozymes (Syn Rz and Azo Rz) and a group IC1 ribozyme (Tet Rz). In the case of a group IA2 ribozyme (Td Rz), however, pPyP served not only as an inhibitor but also as an activator, and the effects of pPyP were dependent on its concentration. To analyze the structural and electronic factors determining the effects of pPyP on group I ribozymes, three cationic porphyrins (pPyNCP, pPyF4P, and TMPyP) were also examined. As interactions between small organic molecules and nucleic acids are attractive and important issues in biochemistry and biotechnology, this study contributes to the development of porphyrin-based molecules that can modulate functions of structured RNA molecules.
Collapse
Affiliation(s)
- Shigeyoshi Matsumura
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| | - Tatsunobu Ito
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Takahiro Tanaka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan.
- Center for Molecular Systems, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yoshiya Ikawa
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| |
Collapse
|
5
|
Gleitsman KR, Herschlag DH. A kinetic and thermodynamic framework for the Azoarcus group I ribozyme reaction. RNA (NEW YORK, N.Y.) 2014; 20:1732-1746. [PMID: 25246656 PMCID: PMC4201826 DOI: 10.1261/rna.044362.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/15/2014] [Indexed: 06/01/2023]
Abstract
Determination of quantitative thermodynamic and kinetic frameworks for ribozymes derived from the Azoarcus group I intron and comparisons to their well-studied analogs from the Tetrahymena group I intron reveal similarities and differences between these RNAs. The guanosine (G) substrate binds to the Azoarcus and Tetrahymena ribozymes with similar equilibrium binding constants and similar very slow association rate constants. These and additional literature observations support a model in which the free ribozyme is not conformationally competent to bind G and in which the probability of assuming the binding-competent state is determined by tertiary interactions of peripheral elements. As proposed previously, the slow binding of guanosine may play a role in the specificity of group I intron self-splicing, and slow binding may be used analogously in other biological processes. The internal equilibrium between ribozyme-bound substrates and products is similar for these ribozymes, but the Azoarcus ribozyme does not display the coupling in the binding of substrates that is observed with the Tetrahymena ribozyme, suggesting that local preorganization of the active site and rearrangements within the active site upon substrate binding are different for these ribozymes. Our results also confirm the much greater tertiary binding energy of the 5'-splice site analog with the Azoarcus ribozyme, binding energy that presumably compensates for the fewer base-pairing interactions to allow the 5'-exon intermediate in self splicing to remain bound subsequent to 5'-exon cleavage and prior to exon ligation. Most generally, these frameworks provide a foundation for design and interpretation of experiments investigating fundamental properties of these and other structured RNAs.
Collapse
Affiliation(s)
- Kristin R Gleitsman
- Department of Biochemistry, Stanford University, Stanford, California 94305-5307, USA
| | - Daniel H Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305-5307, USA
| |
Collapse
|
6
|
Hausner G, Hafez M, Edgell DR. Bacterial group I introns: mobile RNA catalysts. Mob DNA 2014; 5:8. [PMID: 24612670 PMCID: PMC3984707 DOI: 10.1186/1759-8753-5-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/24/2014] [Indexed: 12/02/2022] Open
Abstract
Group I introns are intervening sequences that have invaded tRNA, rRNA and protein coding genes in bacteria and their phages. The ability of group I introns to self-splice from their host transcripts, by acting as ribozymes, potentially renders their insertion into genes phenotypically neutral. Some group I introns are mobile genetic elements due to encoded homing endonuclease genes that function in DNA-based mobility pathways to promote spread to intronless alleles. Group I introns have a limited distribution among bacteria and the current assumption is that they are benign selfish elements, although some introns and homing endonucleases are a source of genetic novelty as they have been co-opted by host genomes to provide regulatory functions. Questions regarding the origin and maintenance of group I introns among the bacteria and phages are also addressed.
Collapse
Affiliation(s)
- Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2 N2, Canada
| | - Mohamed Hafez
- Department of Biochemistry, Faculty of Medicine, University of Montreal, Montréal, QC H3C 3 J7, Canada
- Department of Botany, Faculty of Science, Suez University, Suez, Egypt
| | - David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
7
|
Behrouzi R, Roh JH, Kilburn D, Briber RM, Woodson SA. Cooperative tertiary interaction network guides RNA folding. Cell 2012; 149:348-57. [PMID: 22500801 DOI: 10.1016/j.cell.2012.01.057] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/02/2011] [Accepted: 01/26/2012] [Indexed: 01/06/2023]
Abstract
Noncoding RNAs form unique 3D structures, which perform many regulatory functions. To understand how RNAs fold uniquely despite a small number of tertiary interaction motifs, we mutated the major tertiary interactions in a group I ribozyme by single-base substitutions. The resulting perturbations to the folding energy landscape were measured using SAXS, ribozyme activity, hydroxyl radical footprinting, and native PAGE. Double- and triple-mutant cycles show that most tertiary interactions have a small effect on the stability of the native state. Instead, the formation of core and peripheral structural motifs is cooperatively linked in near-native folding intermediates, and this cooperativity depends on the native helix orientation. The emergence of a cooperative interaction network at an early stage of folding suppresses nonnative structures and guides the search for the native state. We suggest that cooperativity in noncoding RNAs arose from natural selection of architectures conducive to forming a unique, stable fold.
Collapse
Affiliation(s)
- Reza Behrouzi
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
8
|
Ishikawa J, Matsumura S, Jaeger L, Inoue T, Furuta H, Ikawa Y. Rational optimization of the DSL ligase ribozyme with GNRA/receptor interacting modules. Arch Biochem Biophys 2009; 490:163-70. [PMID: 19728985 PMCID: PMC2826975 DOI: 10.1016/j.abb.2009.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/26/2009] [Accepted: 08/26/2009] [Indexed: 12/28/2022]
Abstract
The DSL ribozyme is a class of artificial ligase ribozymes with a highly modular architecture, which catalyzes template-directed RNA ligation on a helical substrate module that can be either covalently connected (cis-DSL) or physically separated (trans-DSL) from the catalytic module. Substrate recognition by the catalytic module is promoted by one or two sets of GNRA/receptor interactions acting as clamps in the cis or trans configurations, respectively. In this study, we have rationally designed and analyzed the catalytic and self-assembly properties of several trans-DSL ribozymes with different sets of natural and artificial GNRA-receptor clamps. Two variants newly designed in this study showed significantly enhanced catalytic properties with respect of the original trans-DSL construct. While this work allows dissection of the turnover and catalytic properties of the trans-DSL ribozyme, it also emphasizes the remarkable modularity of RNA tertiary structure for nano-construction of complex functions.
Collapse
Affiliation(s)
- Junya Ishikawa
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Shigeyoshi Matsumura
- Institut de Science et d'Ingenierie Supramoleculaires (ISIS), Université Louis Pasteur, 8 Allée Gaspard Monge, B. P. 70028, 67083 Strasbourg Cedex, France
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | - Tan Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- ICORP, Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshiya Ikawa
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
- PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan
| |
Collapse
|
9
|
Vaidya N, Lehman N. One RNA plays three roles to provide catalytic activity to a group I intron lacking an endogenous internal guide sequence. Nucleic Acids Res 2009; 37:3981-9. [PMID: 19406926 PMCID: PMC2709566 DOI: 10.1093/nar/gkp271] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/31/2009] [Accepted: 04/10/2009] [Indexed: 11/26/2022] Open
Abstract
Catalytic RNA molecules possess simultaneously a genotype and a phenotype. However, a single RNA genotype has the potential to adopt two or perhaps more distinct phenotypes as a result of differential folding and/or catalytic activity. Such multifunctionality would be particularly significant if the phenotypes were functionally inter-related in a common biochemical pathway. Here, this phenomenon is demonstrated by the ability of the Azoarcus group I ribozyme to function when its canonical internal guide sequence (GUG) has been removed from the 5' end of the molecule, and added back exogenously in trans. The presence of GUG triplets in non-covalent fragments of the ribozyme allow trans-splicing to occur in both a reverse splicing assay and a covalent self-assembly assay in which the internal guide sequence (IGS)-less ribozyme can put itself together from two of its component pieces. Analysis of these reactions indicates that a single RNA fragment can perform up to three distinct roles in a reaction: behaving as a portion of a catalyst, behaving as a substrate, and providing an exogenous IGS. This property of RNA to be multifunctional in a single reaction pathway bolsters the probability that a system of self-replicating molecules could have existed in an RNA world during the origins of life on the Earth.
Collapse
Affiliation(s)
| | - Niles Lehman
- Department of Chemistry, Portland State University, PO Box 751, Portland, OR 97207, USA
| |
Collapse
|
10
|
Chauhan S, Woodson SA. Tertiary interactions determine the accuracy of RNA folding. J Am Chem Soc 2008; 130:1296-303. [PMID: 18179212 DOI: 10.1021/ja076166i] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNAs must fold into unique three-dimensional structures to function in the cell, but how each polynucleotide finds its native structure is not understood. To investigate whether the stability of the tertiary structure determines the speed and accuracy of RNA folding, docking of a tetraloop with its receptor in a bacterial group I ribozyme was perturbed by site-directed mutagenesis. Disruption of the tetraloop or its receptor destabilizes tertiary interactions throughout the ribozyme by 2-3 kcal/mol, demonstrating that tertiary interactions form cooperatively in the transition from a native-like intermediate to the native state. Nondenaturing PAGE and RNase T1 digestion showed that base pairs form less homogeneously in the mutant RNAs during the transition from the unfolded state to the intermediate. Thus, tertiary interactions between helices bias the ensemble of secondary structures toward native-like conformations. Time-resolved hydroxyl radical footprinting showed that the wild-type ribozyme folds completely within 5-20 ms. By contrast, only 40-60% of a tetraloop mutant ribozyme folds in 30-40 ms, with the remainder folding in 30-200 s via nonnative intermediates. Therefore, destabilization of tetraloop-receptor docking introduces an alternate folding pathway in the otherwise smooth energy landscape of the wild-type ribozyme. Our results show that stable tertiary structure increases the flux through folding pathways that lead directly and rapidly to the native structure.
Collapse
Affiliation(s)
- Seema Chauhan
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
11
|
Geary C, Baudrey S, Jaeger L. Comprehensive features of natural and in vitro selected GNRA tetraloop-binding receptors. Nucleic Acids Res 2007; 36:1138-52. [PMID: 18158305 PMCID: PMC2275092 DOI: 10.1093/nar/gkm1048] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Specific recognitions of GNRA tetraloops by small helical receptors are among the most widespread long-range packing interactions in large ribozymes. However, in contrast to GYRA and GAAA tetraloops, very few GNRA/receptor interactions have yet been identified to involve GGAA tetraloops in nature. A novel in vitro selection scheme based on a rigid self-assembling tectoRNA scaffold designed for isolation of intermolecular interactions with A-minor motifs has yielded new GGAA tetraloop-binding receptors with affinity in the nanomolar range. One of the selected receptors is a novel 12 nt RNA motif, (CCUGUG … AUCUGG), that recognizes GGAA tetraloop hairpin with a remarkable specificity and affinity. Its physical and chemical characteristics are comparable to those of the well-studied ‘11nt’ GAAA tetraloop receptor motif. A second less specific motif (CCCAGCCC … GAUAGGG) binds GGRA tetraloops and appears to be related to group IC3 tetraloop receptors. Mutational, thermodynamic and comparative structural analysis suggests that natural and in vitro selected GNRA receptors can essentially be grouped in two major classes of GNRA binders. New insights about the evolution, recognition and structural modularity of GNRA and A-minor RNA–RNA interactions are proposed.
Collapse
Affiliation(s)
- Cody Geary
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | | | | |
Collapse
|
12
|
Haugen P, Runge HJ, Bhattacharya D. Long-term evolution of the S788 fungal nuclear small subunit rRNA group I introns. RNA (NEW YORK, N.Y.) 2004; 10:1084-96. [PMID: 15208444 PMCID: PMC1370599 DOI: 10.1261/rna.5202704] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
More than 1000 group I introns have been identified in fungal rDNA. Little is known, however, of the splicing and secondary structure evolution of these ribozymes. Here, we use a combination of comparative and biochemical methods to address the evolution and splicing of a vertically inherited group I intron found at position 788 in the fungal small subunit (S) rRNA. The ancestral state of the S788 intron contains a highly conserved core and an extended P5 domain typical of IC1 introns. In contrast, the more derived introns have lost most of P5, and have an accelerated divergence rate within the core region with three functionally important substitutions that unambiguously separate them from the ancestral pool. Of 14 S788 group I introns that were tested for splicing, five, all of the ancestral type, were able to self-splice and produced intron RNA circles in vitro. The more derived S788 introns did not self-splice, and potentially rely on fungal-specific factors to facilitate splicing. In summary, we demonstrate one possible fate of vertically inherited group I introns, the loss of secondary structure elements, lessened selective constraints in the intron core, and ultimately, dependence on host-mediated splicing.
Collapse
Affiliation(s)
- Peik Haugen
- Department of Biological Sciences and Center for Comparative Genomics, University of Iowa, 210 Biology Building, Iowa City, IA 52242-1324, USA
| | | | | |
Collapse
|
13
|
Haugen P, Andreassen M, Birgisdottir AB, Johansen S. Hydrolytic cleavage by a group I intron ribozyme is dependent on RNA structures not important for splicing. ACTA ACUST UNITED AC 2004; 271:1015-24. [PMID: 15009213 DOI: 10.1111/j.1432-1033.2004.04003.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DiGIR2 is the group I splicing-ribozyme of the mobile twin-ribozyme intron Dir.S956-1, present in Didymium nuclear ribosomal DNA. DiGIR2 is responsible for intron excision, exon ligation, 3'-splice site hydrolysis, and full-length intron RNA circle formation. We recently reported that DiGIR2 splicing (intron excision and exon ligation) competes with hydrolysis and subsequent full-length intron circularization. Here we present experimental evidence that hydrolysis at the 3'-splice site in DiGIR2 is dependent on structural elements within the P9 subdomain not involved in splicing. Whereas the GCGA tetra-loop in P9b was found to be important in hydrolytic cleavage, probably due to tertiary RNA-RNA interactions, the P9.2 hairpin structure was found to be essential for hydrolysis. The most important positions in P9.2 include three adenosines in the terminal loop (L9.2) and a consensus kink-turn motif in the proximal stem. We suggest that the L9.2 adenosines and the kink-motif represent key regulatory elements in the splicing and hydrolytic reaction pathways.
Collapse
Affiliation(s)
- Peik Haugen
- Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, Norway
| | | | | | | |
Collapse
|
14
|
Ikawa Y, Yoshimura T, Hara H, Shiraishi H, Inoue T. Two conserved structural components, A-rich bulge and P4 XJ6/7 base-triples, in activating the group I ribozymes. Genes Cells 2002; 7:1205-15. [PMID: 12485161 DOI: 10.1046/j.1365-2443.2002.00601.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The A-rich bulge of the group I intron ribozyme, a highly conserved structural element in its P5 peripheral region, plays a significant role in activating the ribozyme. The bulge has been known to interact with the P4 stem forming P4 XJ6/7 base-triples in the conserved core. The base-triples by themselves have also been identified as a distinctive element responsible for enhancing the activity of the ribozyme. RESULTS A weakly active variant of the Tetrahymena ribozyme lacking the P5 extension was dramatically activated by the addition of an A-rich bulge at the peripheral region, or by replacement of the original P4 XJ6/7 base-triples in the core structure with more stabilized isosteric ones. Biochemical analyses showed that the two methods of activation affect the ribozyme differently. CONCLUSIONS The long-range interaction between the A-rich bulge and P4 or additionally stabilized P4 XJ6/7 base-triples can contribute dramatically to activation of the Tetrahymena ribozyme. Both improve the kcat value, which represents the rate of the limiting step of the ribozyme reaction when its binding site is saturated with GTP. However, the bulge or the modified base-triples gave a moderate reduction or considerable increase, respectively, to the Km(GTP) value.
Collapse
Affiliation(s)
- Yoshiya Ikawa
- Graduate School of Biostudies, Kyoto University, Japan
| | | | | | | | | |
Collapse
|