1
|
Toro N, Martínez-Abarca F, Molina-Sánchez MD, García-Rodríguez FM, Nisa-Martínez R. Contribution of Mobile Group II Introns to Sinorhizobium meliloti Genome Evolution. Front Microbiol 2018; 9:627. [PMID: 29670598 PMCID: PMC5894124 DOI: 10.3389/fmicb.2018.00627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/19/2018] [Indexed: 12/26/2022] Open
Abstract
Mobile group II introns are ribozymes and retroelements that probably originate from bacteria. Sinorhizobium meliloti, the nitrogen-fixing endosymbiont of legumes of genus Medicago, harbors a large number of these retroelements. One of these elements, RmInt1, has been particularly successful at colonizing this multipartite genome. Many studies have improved our understanding of RmInt1 and phylogenetically related group II introns, their mobility mechanisms, spread and dynamics within S. meliloti and closely related species. Although RmInt1 conserves the ancient retroelement behavior, its evolutionary history suggests that this group II intron has played a role in the short- and long-term evolution of the S. meliloti genome. We will discuss its proposed role in genome evolution by controlling the spread and coexistence of potentially harmful mobile genetic elements, by ectopic transposition to different genetic loci as a source of early genomic variation and by generating sequence variation after a very slow degradation process, through intron remnants that may have continued to evolve, contributing to bacterial speciation.
Collapse
Affiliation(s)
- Nicolás Toro
- Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Department of Soil Microbiology and Symbiotic Systems, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada, Spain
| | - Francisco Martínez-Abarca
- Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Department of Soil Microbiology and Symbiotic Systems, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada, Spain
| | - María D Molina-Sánchez
- Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Department of Soil Microbiology and Symbiotic Systems, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada, Spain
| | - Fernando M García-Rodríguez
- Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Department of Soil Microbiology and Symbiotic Systems, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada, Spain
| | - Rafael Nisa-Martínez
- Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Department of Soil Microbiology and Symbiotic Systems, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada, Spain
| |
Collapse
|
2
|
Abstract
This review focuses on recent developments in our understanding of group II intron function, the relationships of these introns to retrotransposons and spliceosomes, and how their common features have informed thinking about bacterial group II introns as key elements in eukaryotic evolution. Reverse transcriptase-mediated and host factor-aided intron retrohoming pathways are considered along with retrotransposition mechanisms to novel sites in bacteria, where group II introns are thought to have originated. DNA target recognition and movement by target-primed reverse transcription infer an evolutionary relationship among group II introns, non-LTR retrotransposons, such as LINE elements, and telomerase. Additionally, group II introns are almost certainly the progenitors of spliceosomal introns. Their profound similarities include splicing chemistry extending to RNA catalysis, reaction stereochemistry, and the position of two divalent metals that perform catalysis at the RNA active site. There are also sequence and structural similarities between group II introns and the spliceosome's small nuclear RNAs (snRNAs) and between a highly conserved core spliceosomal protein Prp8 and a group II intron-like reverse transcriptase. It has been proposed that group II introns entered eukaryotes during bacterial endosymbiosis or bacterial-archaeal fusion, proliferated within the nuclear genome, necessitating evolution of the nuclear envelope, and fragmented giving rise to spliceosomal introns. Thus, these bacterial self-splicing mobile elements have fundamentally impacted the composition of extant eukaryotic genomes, including the human genome, most of which is derived from close relatives of mobile group II introns.
Collapse
|
3
|
McNeil BA, Semper C, Zimmerly S. Group II introns: versatile ribozymes and retroelements. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:341-55. [PMID: 26876278 DOI: 10.1002/wrna.1339] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/10/2015] [Accepted: 12/22/2015] [Indexed: 01/10/2023]
Abstract
Group II introns are catalytic RNAs (ribozymes) and retroelements found in the genomes of bacteria, archaebacteria, and organelles of some eukaryotes. The prototypical retroelement form consists of a structurally conserved RNA and a multidomain reverse transcriptase protein, which interact with each other to mediate splicing and mobility reactions. A wealth of biochemical, cross-linking, and X-ray crystal structure studies have helped to reveal how the two components cooperate to carry out the splicing and mobility reactions. In addition to the standard retroelement form, group II introns have evolved into derivative forms by either losing specific splicing or mobility characteristics, or becoming functionally specialized. Of particular interest are the eukaryotic derivatives-the spliceosome, spliceosomal introns, and non-LTR retroelements-which together make up approximately half of the human genome. On a practical level, the properties of group II introns have been exploited to develop group II intron-based biotechnological tools. WIREs RNA 2016, 7:341-355. doi: 10.1002/wrna.1339 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Bonnie A McNeil
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Cameron Semper
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Steven Zimmerly
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| |
Collapse
|
4
|
Inactivation of group II intron RmInt1 in the Sinorhizobium meliloti genome. Sci Rep 2015; 5:12036. [PMID: 26156864 PMCID: PMC4496777 DOI: 10.1038/srep12036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 06/15/2015] [Indexed: 11/10/2022] Open
Abstract
Group II introns are self-splicing catalytic RNAs that probably originated in bacteria and act as mobile retroelements. The dispersal and dynamics of group II intron spread within a bacterial genome are thought to follow a selection-driven extinction model. Likewise, various studies on the evolution of group II introns have suggested that they are evolving toward an inactive form by fragmentation, with the loss of the intron 3′-terminus, but with some intron fragments remaining and continuing to evolve in the genome. RmInt1 is a mobile group II intron that is widespread in natural populations of Sinorhizobium meliloti, but some strains of this species have no RmInt1 introns. We studied the splicing ability and mobility of the three full-length RmInt1 copies harbored by S. meliloti 1021, and obtained evidence suggesting that specific mutations may lead to the impairment of intron splicing and retrohoming. Our data suggest that the RmInt1 copies in this strain are undergoing a process of inactivation.
Collapse
|
5
|
Biondi EG, Toro N, Bazzicalupo M, Martínez-Abarca F. Spread of the group II intron RmInt1 and its insertion sequence target sites in the plant endosymbiont Sinorhizobium meliloti. Mob Genet Elements 2014; 1:2-7. [PMID: 22016840 DOI: 10.4161/mge.1.1.15316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 02/22/2011] [Indexed: 11/19/2022] Open
Abstract
RmInt1 is a mobile group II intron from Sinorhizobium meliloti that is exceptionally abundant in this bacterial species. We compared the presence of RmInt1 and two of its insertion sequence homing sites (ISRm2011-2 and ISRm10-2) in two phylogenetic clusters (I and II) identified by AFLP analysis in a collection of S. meliloti field isolates from Italy. Both clusters contained several copies of the ISRm2011-2 element, which is present at high copy number in almost all S. meliloti isolates. By contrast, isolates from cluster I harbored no copies of ISRm10-2 and only a truncated copy of RmInt1, despite the absence of constraints on intron mobility in this genetic background, whereas cluster II strains harbored several copies of this intron. The absence of ISRm10-2 from one of the strains of this cluster suggests that this element was acquired more recently than the other two elements. Furthermore, studies of insertional polymorphisms in cluster II strains revealed the acquisition of ISRm10-2 and subsequent retrohoming of RmInt1 to this homing site. These results highlight the role of intron homing sites (ISs) in facilitating intron dispersal and the dynamic and ongoing nature of the spread of the group II intron RmInt1 in S. meliloti.
Collapse
Affiliation(s)
- Emanuele G Biondi
- Department of Evolutionary Biology; University of Florence; Florence, Italy
| | | | | | | |
Collapse
|
6
|
Martínez-Rodríguez L, García-Rodríguez FM, Molina-Sánchez MD, Toro N, Martínez-Abarca F. Insights into the strategies used by related group II introns to adapt successfully for the colonisation of a bacterial genome. RNA Biol 2014; 11:1061-71. [PMID: 25482895 PMCID: PMC4615759 DOI: 10.4161/rna.32092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Group II introns are self-splicing RNAs and site-specific mobile retroelements found in bacterial and organellar genomes. The group II intron RmInt1 is present at high copy number in Sinorhizobium meliloti species, and has a multifunctional intron-encoded protein (IEP) with reverse transcriptase/maturase activities, but lacking the DNA-binding and endonuclease domains. We characterized two RmInt1-related group II introns RmInt2 from S. meliloti strain GR4 and Sr.md.I1 from S. medicae strain WSM419 in terms of splicing and mobility activities. We used both wild-type and engineered intron-donor constructs based on ribozyme ΔORF-coding sequence derivatives, and we determined the DNA target requirements for RmInt2, the element most distantly related to RmInt1. The excision and mobility patterns of intron-donor constructs expressing different combinations of IEP and intron RNA provided experimental evidence for the co-operation of IEPs and intron RNAs from related elements in intron splicing and, in some cases, in intron homing. We were also able to identify the DNA target regions recognized by these IEPs lacking the DNA endonuclease domain. Our results provide new insight into the versatility of related group II introns and the possible co-operation between these elements to facilitate the colonization of bacterial genomes.
Collapse
Affiliation(s)
- Laura Martínez-Rodríguez
- a Grupo de Ecología Genética; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas ; Granada , Spain
| | | | | | | | | |
Collapse
|
7
|
McNeil BA, Simon DM, Zimmerly S. Alternative splicing of a group II intron in a surface layer protein gene in Clostridium tetani. Nucleic Acids Res 2013; 42:1959-69. [PMID: 24214997 PMCID: PMC3919590 DOI: 10.1093/nar/gkt1053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Group II introns are ribozymes and retroelements found in bacteria, and are thought to have been the ancestors of nuclear pre-mRNA introns. Whereas nuclear introns undergo prolific alternative splicing in some species, group II introns are not known to carry out equivalent reactions. Here we report a group II intron in the human pathogen Clostridium tetani, which undergoes four alternative splicing reactions in vivo. Together with unspliced transcript, five mRNAs are produced, each encoding a distinct surface layer protein isoform. Correct fusion of exon reading frames requires a shifted 5′ splice site located 8 nt upstream of the canonical boundary motif. The shifted junction is accomplished by an altered IBS1-EBS1 pairing between the intron and 5′ exon. Growth of C. tetani under a variety of conditions did not result in large changes in alternative splicing levels, raising the possibility that alternative splicing is constitutive. This work demonstrates a novel type of gene organization and regulation in bacteria, and provides an additional parallel between group II and nuclear pre-mRNA introns.
Collapse
Affiliation(s)
- Bonnie A McNeil
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
8
|
Leclercq S, Cordaux R. Selection-driven extinction dynamics for group II introns in Enterobacteriales. PLoS One 2012; 7:e52268. [PMID: 23251705 PMCID: PMC3522654 DOI: 10.1371/journal.pone.0052268] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/12/2012] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs) are one of the major driving forces of genome evolution, raising the question of the long-term dynamics underlying their evolutionary success. Some TEs were proposed to evolve under a pattern of periodic extinctions-recolonizations, in which elements recurrently invade and quickly proliferate within their host genomes, then start to disappear until total extinction. Depending on the model, TE extinction is assumed to be driven by purifying selection against colonized host genomes (Sel-DE model) or by saturation of host genomes (Sat-DE model). Bacterial group II introns are suspected to follow an extinction-recolonization model of evolution, but whether they follow Sel-DE or Sat-DE dynamics is not known. Our analysis of almost 200 group II intron copies from 90 sequenced Enterobacteriales genomes confirms their extinction-recolonization dynamics: patchy element distributions among genera and even among strains within genera, acquisition of new group II introns through plasmids or other mobile genetic elements, and evidence for recent proliferations in some genomes. Distributions of recent and past proliferations and of their respective homing sites further provide strong support for the Sel-DE model, suggesting that group II introns are deleterious to their hosts. Overall, our observations emphasize the critical impact of host properties on TE dynamics.
Collapse
Affiliation(s)
- Sébastien Leclercq
- Université de Poitiers, CNRS UMR 7267 Ecologie et Biologie des Interactions, Poitiers, France
| | - Richard Cordaux
- Université de Poitiers, CNRS UMR 7267 Ecologie et Biologie des Interactions, Poitiers, France
- * E-mail:
| |
Collapse
|
9
|
Lambowitz AM, Zimmerly S. Group II introns: mobile ribozymes that invade DNA. Cold Spring Harb Perspect Biol 2011; 3:a003616. [PMID: 20463000 DOI: 10.1101/cshperspect.a003616] [Citation(s) in RCA: 306] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Group II introns are mobile ribozymes that self-splice from precursor RNAs to yield excised intron lariat RNAs, which then invade new genomic DNA sites by reverse splicing. The introns encode a reverse transcriptase that stabilizes the catalytically active RNA structure for forward and reverse splicing, and afterwards converts the integrated intron RNA back into DNA. The characteristics of group II introns suggest that they or their close relatives were evolutionary ancestors of spliceosomal introns, the spliceosome, and retrotransposons in eukaryotes. Further, their ribozyme-based DNA integration mechanism enabled the development of group II introns into gene targeting vectors ("targetrons"), which have the unique feature of readily programmable DNA target specificity.
Collapse
Affiliation(s)
- Alan M Lambowitz
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | | |
Collapse
|
10
|
Chillón I, Martínez-Abarca F, Toro N. Splicing of the Sinorhizobium meliloti RmInt1 group II intron provides evidence of retroelement behavior. Nucleic Acids Res 2010; 39:1095-104. [PMID: 20876688 PMCID: PMC3035460 DOI: 10.1093/nar/gkq847] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Group II introns act as both large catalytic RNAs and mobile retroelements. They are found in organelle and bacterial genomes and are spliced via a lariat intermediate, in a mechanism similar to that of spliceosomal introns. However, their distribution and insertion patterns, particularly for bacterial group II introns, suggest that they function and behave more like retroelements than organelle introns. RmInt1 is an efficient mobile intron found within the ISRm2011-2 insertion sequence in the symbiotic bacterium Sinorhizobium meliloti. This group II intron is excised, in vivo and in vitro, as intron lariats. However, the complete splicing reaction in vivo remains to be elucidated. A lacZ reporter gene system, northern blotting and real-time reverse transcription were carried out to investigate RmInt1 splicing activity. Splicing efficiency of 0.07 ± 0.02% was recorded. These findings suggest that bacterial group II introns function more like retroelements than spliceosomal introns. Their location is consistent with a role for these introns in preventing the spread of other potentially harmful mobile elements in bacteria.
Collapse
Affiliation(s)
- Isabel Chillón
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Calle Profesor Albareda 1, 18008 Granada, Spain
| | | | | |
Collapse
|
11
|
Leclercq S, Giraud I, Cordaux R. Remarkable abundance and evolution of mobile group II introns in Wolbachia bacterial endosymbionts. Mol Biol Evol 2010; 28:685-97. [PMID: 20819906 DOI: 10.1093/molbev/msq238] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The streamlined genomes of ancient obligate endosymbionts generally lack transposable elements, as a consequence of their intracellular confinement. Yet, the genomes of Wolbachia, one of the most abundant bacterial endosymbionts on Earth, are littered with transposable elements, in particular insertion sequences (ISs). This paradox raises the question of whether or not such a mobile DNA proliferation reflects a special feature of ISs. In this study, we focused on another class of transposable elements, group II introns, and conducted an in-depth analysis of their content and the microevolutionary processes responsible for their dynamics within Wolbachia genomes. We report an exceptionally high intron abundance and striking differences in copy numbers between Wolbachia strains as well as between intron families. Our bioinformatics and experimental results provide strong evidence that intron diversity is mainly caused by recent (and perhaps ongoing) mobility and horizontal transfers. Our data also support several temporally independent intron invasions during Wolbachia evolution. Furthermore, group II intron spread in some Wolbachia strains may be regulated through gene conversion-mediated inactivation of intron copies. Finally, we found introns to be involved in numerous genomic rearrangements. This underscores the high recombinogenic potential of group II introns, contrary to general expectations. Overall, our study represents the first comprehensive analysis of group II intron evolutionary dynamics in obligate intracellular bacteria. Our results show that bacterial endosymbionts with reduced genomes can sustain high loads of mobile group II introns, as hypothesized for the endosymbiont ancestor of mitochondria during early eukaryote evolution.
Collapse
Affiliation(s)
- Sébastien Leclercq
- Centre National de la Recherche Scientifique UMR 6556 Ecologie, Evolution, Symbiose, Université de Poitiers, Poitiers, France
| | | | | |
Collapse
|
12
|
Beauregard A, Curcio MJ, Belfort M. The take and give between retrotransposable elements and their hosts. Annu Rev Genet 2009; 42:587-617. [PMID: 18680436 DOI: 10.1146/annurev.genet.42.110807.091549] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Retrotransposons mobilize via RNA intermediates and usually carry with them the agent of their mobility, reverse transcriptase. Retrotransposons are streamlined, and therefore rely on host factors to proliferate. However, retrotransposons are exposed to cellular forces that block their paths. For this review, we have selected for our focus elements from among target-primed (TP) retrotransposons, also called non-LTR retrotransposons, and extrachromosomally-primed (EP) retrotransposons, also called LTR retrotransposons. The TP retrotransposons considered here are group II introns, LINEs and SINEs, whereas the EP elements considered are the Ty and Tf retrotransposons, with a brief comparison to retroviruses. Recurring themes for these elements, in hosts ranging from bacteria to humans, are tie-ins of the retrotransposons to RNA metabolism, DNA replication and repair, and cellular stress. Likewise, there are parallels among host-cell defenses to combat rampant retrotransposon spread. The interactions between the retrotransposon and the host, and their coevolution to balance the tension between retrotransposon proliferation and host survival, form the basis of this review.
Collapse
Affiliation(s)
- Arthur Beauregard
- New York State Department of Health, Center for Medical Sciences, Albany, New York 12208, 12201-2002, USA.
| | | | | |
Collapse
|
13
|
Simon DM, Clarke NAC, McNeil BA, Johnson I, Pantuso D, Dai L, Chai D, Zimmerly S. Group II introns in eubacteria and archaea: ORF-less introns and new varieties. RNA (NEW YORK, N.Y.) 2008; 14:1704-13. [PMID: 18676618 PMCID: PMC2525955 DOI: 10.1261/rna.1056108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Group II introns are a major class of ribozymes found in bacteria, mitochondria, and plastids. Many introns contain reverse transcriptase open reading frames (ORFs) that confer mobility to the introns and allow them to persist as selfish DNAs. Here, we report an updated compilation of group II introns in Eubacteria and Archaea comprising 234 introns. One new phylogenetic class is identified, as well as several specialized lineages. In addition, we undertake a detailed search for ORF-less group II introns in bacterial genomes in order to find undiscovered introns that either entirely lack an ORF or encode a novel ORF. Unlike organellar group II introns, we find only a handful of ORF-less introns in bacteria, suggesting that if a substantial number exist, they must be divergent from known introns. Together, these results highlight the retroelement character of bacterial group II introns, and suggest that their long-term survival is dependent upon retromobility.
Collapse
Affiliation(s)
- Dawn M Simon
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Group II introns are both catalytic RNAs (ribozymes) and mobile retroelements that were discovered almost 14 years ago. It has been suggested that eukaryotic mRNA introns might have originated from the group II introns present in the alphaproteobacterial progenitor of the mitochondria. Bacterial group II introns are of considerable interest not only because of their evolutionary significance, but also because they could potentially be used as tools for genetic manipulation in biotechnology and for gene therapy. This review summarizes what is known about the splicing mechanisms and mobility of bacterial group II introns, and describes the recent development of group II intron-based gene-targetting methods. Bacterial group II intron diversity, evolutionary relationships, and behaviour in bacteria are also discussed.
Collapse
Affiliation(s)
- Nicolás Toro
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| | | | | |
Collapse
|
15
|
Nisa-Martínez R, Jiménez-Zurdo JI, Martínez-Abarca F, Muñoz-Adelantado E, Toro N. Dispersion of the RmInt1 group II intron in the Sinorhizobium meliloti genome upon acquisition by conjugative transfer. Nucleic Acids Res 2006; 35:214-22. [PMID: 17158161 PMCID: PMC1802570 DOI: 10.1093/nar/gkl1072] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
RmInt1 is a self-splicing and mobile group II intron initially identified in the bacterium Sinorhizobium meliloti, which encodes a reverse transcriptase–maturase (Intron Encoded Protein, IEP) lacking the C-terminal DNA binding (D) and DNA endonuclease domains (En). RmInt1 invades cognate intronless homing sites (ISRm2011-2) by a mechanism known as retrohoming. This work describes how the RmInt1 intron spreads in the S.meliloti genome upon acquisition by conjugation. This process was revealed by using the wild-type intron RmInt1 and engineered intron-donor constructs based on ribozyme coding sequence (ΔORF)-derivatives with higher homing efficiency than the wild-type intron. The data demonstrate that RmInt1 propagates into the S.meliloti genome primarily by retrohoming with a strand bias related to replication of the chromosome and symbiotic megaplasmids. Moreover, we show that when expressed in trans from a separate plasmid, the IEP is able to mobilize genomic ΔORF ribozymes that afterward displayed wild-type levels of retrohoming. Our results contribute to get further understanding of how group II introns spread into bacterial genomes in nature.
Collapse
Affiliation(s)
| | | | | | | | - Nicolás Toro
- To whom correspondence should be addressed. Tel: +3 495 818 1600; Fax: +3 495 812 9600;
| |
Collapse
|
16
|
Smith D, Zhong J, Matsuura M, Lambowitz AM, Belfort M. Recruitment of host functions suggests a repair pathway for late steps in group II intron retrohoming. Genes Dev 2005; 19:2477-87. [PMID: 16230535 PMCID: PMC1257402 DOI: 10.1101/gad.1345105] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Retrohoming of group II introns occurs by a mechanism in which the intron RNA reverse splices directly into one strand of a DNA target site and is then reverse transcribed by the associated intron-encoded protein. Host repair enzymes are predicted to complete this process. Here, we screened a battery of Escherichia coli mutants defective in host functions that are potentially involved in retrohoming of the Lactococcus lactis Ll.LtrB intron. We found strong (greater than threefold) effects for several enzymes, including nucleases directed against RNA and DNA, replicative and repair polymerases, and DNA ligase. A model including the presumptive roles of these enzymes in resection of DNA, degradation of the intron RNA template, traversion of RNA-DNA junctions, and second-strand DNA synthesis is described. The completion of retrohoming is viewed as a DNA repair process, with features that may be shared by other non-LTR retroelements.
Collapse
Affiliation(s)
- Dorie Smith
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health and School of Public Health, State University of New York at Albany, Albany, New York 12201, USA
| | | | | | | | | |
Collapse
|
17
|
Robart AR, Zimmerly S. Group II intron retroelements: function and diversity. Cytogenet Genome Res 2005; 110:589-97. [PMID: 16093712 DOI: 10.1159/000084992] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Accepted: 12/08/2003] [Indexed: 11/19/2022] Open
Abstract
Group II introns are a class of retroelements capable of carrying out both self-splicing and retromobility reactions. In recent years, the number of known group II introns has increased dramatically, particularly in bacteria, and the new information is altering our understanding of these intriguing elements. Here we review the basic properties of group II introns, and summarize the differences between the organellar and bacterial introns with regard to structures, insertion patterns and inferred behaviors. We also discuss the evolution of group II introns, as they are the putative ancestors of spliceosomal introns and possibly non-LTR retroelements, and may have played an important role in the development of eukaryote genomes.
Collapse
Affiliation(s)
- A R Robart
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
18
|
Fernández-López M, Muñoz-Adelantado E, Gillis M, Willems A, Toro N. Dispersal and evolution of the Sinorhizobium meliloti group II RmInt1 intron in bacteria that interact with plants. Mol Biol Evol 2005; 22:1518-28. [PMID: 15814827 DOI: 10.1093/molbev/msi144] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Group II introns are both self-splicing RNAs and mobile retroelements found in bacterial and archaeal genomes and in organelles of eukaryotes. They are thought to be the ancestors of eukaryote spliceosomal introns and non-long terminal repeat retrotransposons. We show here that RmInt1, a bacterial group II intron first described in the nitrogen-fixing symbiont of alfalfa (Medicago sativa) Sinorhizobium meliloti, is also present in other Sinorhizobium and Rhizobium species. The intron-homing sites in these species are IS elements of the ISRm2011-2 group as in S. meliloti, but ectopic insertion is also observed. We present evidence that these related bacteria have acquired RmInt1 by vertical inheritance from a common ancestor and by independent horizontal transfer events. We also show that RmInt1 is mobile in related taxa of bacteria that interact with plants and tends to evolve toward an inactive form by fragmentation, with loss of the 3' terminus including the intron-encoded protein. Our results provide an overview of the evolution and dispersion of a bacterial group II intron.
Collapse
Affiliation(s)
- Manuel Fernández-López
- Grupo de Ecología Genética, Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, calle Profesor Albareda 1, Granada, Spain
| | | | | | | | | |
Collapse
|
19
|
Abstract
Mobile group II introns, found in bacterial and organellar genomes, are both catalytic RNAs and retrotransposable elements. They use an extraordinary mobility mechanism in which the excised intron RNA reverse splices directly into a DNA target site and is then reverse transcribed by the intron-encoded protein. After DNA insertion, the introns remove themselves by protein-assisted, autocatalytic RNA splicing, thereby minimizing host damage. Here we discuss the experimental basis for our current understanding of group II intron mobility mechanisms, beginning with genetic observations in yeast mitochondria, and culminating with a detailed understanding of molecular mechanisms shared by organellar and bacterial group II introns. We also discuss recently discovered links between group II intron mobility and DNA replication, new insights into group II intron evolution arising from bacterial genome sequencing, and the evolutionary relationship between group II introns and both eukaryotic spliceosomal introns and non-LTR-retrotransposons. Finally, we describe the development of mobile group II introns into gene-targeting vectors, "targetrons," which have programmable target specificity.
Collapse
Affiliation(s)
- Alan M Lambowitz
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, Section of Molecular Genetics and Microbiology, University of Texas at Austin, Texas 78712, USA.
| | | |
Collapse
|
20
|
Belhocine K, Plante I, Cousineau B. Conjugation mediates transfer of the Ll.LtrB group II intron between different bacterial species. Mol Microbiol 2004; 51:1459-69. [PMID: 14982638 DOI: 10.1111/j.1365-2958.2004.03923.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Some self-splicing group II introns (ribozymes) are mobile retroelements. These retroelements, which can insert themselves into cognate intronless alleles or ectopic sites by reverse splicing, are thought to be the evolutionary progenitors of the widely distributed eukaryotic spliceosomal introns. Lateral or horizontal transmission of introns (i.e. between species), although never experimentally demonstrated, is a well-accepted model for intron dispersal and evolution. Horizontal transfer of the ancestral bacterial group II introns may have contributed to the dispersal and wide distribution of spliceosomal introns present in modern eukaryotic genomes. Here, the Ll.LtrB group II intron from the Gram-positive bacterium Lactococcus lactis was used as a model system to address the dissemination of introns in the bacterial kingdom. We report the first experimental demonstration of horizontal transfer of a group II intron. We show that the Ll.LtrB group II intron, originally discovered on an L. lactis conjugative plasmid (pRS01) and within a chromosomally located sex factor in L. lactis 712, invades new sites using both retrohoming and retrotransposition pathways after its transfer by conjugation. Ll.LtrB lateral transfer is shown among different L. lactis strains (intraspecies) (retrohoming and retrotransposition) and between L. lactis and Enterococcus faecalis (interspecies) (retrohoming). These results shed light on long-standing questions about intron evolution and propagation, and demonstrate that conjugation is one of the mechanisms by which group II introns are, and probably were, broadly disseminated between widely diverged organisms.
Collapse
Affiliation(s)
- Kamila Belhocine
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada H3A 2B4
| | | | | |
Collapse
|
21
|
Martínez-Abarca F, Barrientos-Durán A, Fernández-López M, Toro N. The RmInt1 group II intron has two different retrohoming pathways for mobility using predominantly the nascent lagging strand at DNA replication forks for priming. Nucleic Acids Res 2004; 32:2880-8. [PMID: 15155857 PMCID: PMC419616 DOI: 10.1093/nar/gkh616] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sinorhizobium meliloti RmInt1 is an efficient mobile group II intron that uses an unknown reverse transcriptase priming mechanism as the intron ribonucleoprotein complex can reverse splice into DNA target substrates but cannot carry out site-specific second strand cleavage due to the lack of a C-terminal DNA endonuclease domain. We show here that, like other mobile group II introns, RmInt1 moves around by an efficient RNA-based retrohoming mechanism. We found evidence of two distinct RmInt1 retrohoming pathways for mobility depending on the orientation of the target site relative to the direction of DNA replication. The preferred retrohoming pathway is consistent with reverse splicing of the intron RNA into single-stranded DNA at a replication fork, using a nascent lagging DNA strand as the primer for reverse transcription. This strand bias is the opposite of that reported for mobility of the lactococcal Ll.ltrB intron in the absence of second strand cleavage. The mobility mechanism found here for RmInt1 may be used for dissemination by many bacterial group II introns encoding proteins lacking the DNA endonuclease domain.
Collapse
Affiliation(s)
- Francisco Martínez-Abarca
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, 18008 Granada, Spain
| | | | | | | |
Collapse
|
22
|
Ferat JL, Le Gouar M, Michel F. A group II intron has invaded the genus Azotobacter and is inserted within the termination codon of the essential groEL gene. Mol Microbiol 2003; 49:1407-23. [PMID: 12940996 DOI: 10.1046/j.1365-2958.2003.03649.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A group II intron that was previously identified within Azotobacter vinelandii by polymerase chain reac-tion with consensus primers has been completely sequenced, together with its flanking exons. In contrast to other bacterial members of group II, which are associated with mobile or other presumably non-essential DNA, the A. vinelandii intron is inserted within the termination codon of the groEL coding sequence, which it changes from UAA to UAG. Both the host gene and the intron appear to be functional as (i) the ribozyme component of the intron self-splices in vitro and (ii) both intron-carrying and intronless versions of the single-copy groEL gene from A. vinelandii complement groEL mutations in Escherichia coli. Moreover, analysis of nucleotide substitutions within and around a closely related intron sequence that is present at the same site in Azotobacter chroococcum provides indirect evidence of intron transposition posterior to the divergence of the two Azotobacter taxa. Somewhat surprisingly, however, analyses of RNA extracted from cells that had or had not undergone a heat shock show that the bulk of groEL transcripts end within the first 140 nucleotides of the intron. These findings are discussed in the light of our current knowledge of the biochemistry of group II introns.
Collapse
MESH Headings
- Azotobacter vinelandii/genetics
- Azotobacter vinelandii/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Chaperonin 60/genetics
- Chaperonin 60/metabolism
- Codon, Terminator
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial
- Genetic Complementation Test
- Introns/genetics
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- Pseudomonadaceae/genetics
- Pseudomonadaceae/metabolism
- RNA Splice Sites
- RNA Splicing
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- Sequence Homology
- Terminator Regions, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- Jean-Luc Ferat
- Centre de Génétique Moléculaire du CNRS, 91190 Gif-sur-Yvette, France.
| | | | | |
Collapse
|
23
|
Zhong J, Lambowitz AM. Group II intron mobility using nascent strands at DNA replication forks to prime reverse transcription. EMBO J 2003; 22:4555-65. [PMID: 12941706 PMCID: PMC202375 DOI: 10.1093/emboj/cdg433] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Lactococcus lactis Ll.LtrB group II intron uses a major retrohoming mechanism in which the excised intron RNA reverse splices into one strand of a DNA target site, while the intron-encoded protein uses a C-terminal DNA endonuclease domain to cleave the opposite strand and then uses the cleaved 3' end as a primer for reverse transcription of the inserted intron RNA. Here, experiments with mutant introns and target sites indicate that Ll.LtrB can retrohome without second-strand cleavage by using a nascent strand at a DNA replication fork as the primer for reverse transcription. This mechanism connecting intron mobility to target DNA replication may be used by group II intron species that encode proteins lacking the C-terminal DNA endonuclease domain and for group II intron retrotransposition to ectopic sites.
Collapse
Affiliation(s)
- Jin Zhong
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, and Section of Molecular, Genetics and Microbiology, School of Biological Sciences, University ofTexas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
24
|
Luan SL, Granlund M, Norgren M. An inserted DNA fragment with plasmid features is uniquely associated with the presence of the GBSi1 group II intron in Streptococcus agalactiae. Gene 2003; 312:305-12. [PMID: 12909368 DOI: 10.1016/s0378-1119(03)00634-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The group II intron (GBSi1) identified downstream of the C5a-peptidase gene (scpB) in a subpopulation of Streptococcus agalactiae isolates is a suggested marker for a separate genetic lineage of serotype III isolates. In the present study two additional copies of GBSi1, one of which not previously described, were identified among serotype III isolates. All intron copies shared a common target site motif. A single copy of GBSi1 was found in a subgroup of serotype II and V isolates. In these isolates, the intron had inserted downstream of scpB, which suggests that this is the primary insertion site for GBSi1. Most bacterial group II introns described to date reside in transposable elements. The scpB locus was found to be flanked by insertion sequences similar to what has been described in an intronless serotype Ia isolate. However, this region contained an additional 2.1 kb DNA fragment present only in intron carrying isolates. This DNA fragment contained a partial transposase and putative plasmid related proteins. This may suggest that GBSi1 once was brought into the S. agalactiae genome by an integrated plasmid.
Collapse
Affiliation(s)
- Shi-Lu Luan
- Department of Biomedical Laboratory Science, Umeå University, S-901 87, Umeå, Sweden
| | | | | |
Collapse
|
25
|
Pettinari JM, Chaneton L, Vazquez G, Steinbüchel A, Méndez BS. Insertion sequence-like elements associated with putative polyhydroxybutyrate regulatory genes in Azotobacter sp. FA8. Plasmid 2003; 50:36-44. [PMID: 12826056 DOI: 10.1016/s0147-619x(03)00009-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The genes phaR, phaP, and phaF, encoding putative regulatory proteins, were found in the poly (3-hydroxybutyrate) (PHB) gene cluster of the free nitrogen-fixing bacteria Azotobacter sp. FA8. These genes were flanked by the insertion sequence ISAzsp1, belonging to the IS3 family, and a region highly homologous to insertion sequences of the IS630 family. These are the first site-specific recombination elements to be described in association with genes involved in the metabolism of polyhydroxyalkanoates (PHAs). A possible role for ISs in the assembly of pha genes is presented.
Collapse
Affiliation(s)
- Julia M Pettinari
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
26
|
Muñoz-Adelantado E, San Filippo J, Martínez-Abarca F, García-Rodríguez FM, Lambowitz AM, Toro N. Mobility of the Sinorhizobium meliloti group II intron RmInt1 occurs by reverse splicing into DNA, but requires an unknown reverse transcriptase priming mechanism. J Mol Biol 2003; 327:931-43. [PMID: 12662921 DOI: 10.1016/s0022-2836(03)00208-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mobile group II introns characterized to date encode ribonucleoprotein complexes that promote mobility by a major retrohoming mechanism in which the intron RNA reverse splices directly into the sense strand of a double-stranded DNA target site, while the intron-encoded reverse transcriptase/maturase cleaves the antisense strand and uses it as primer for reverse transcription of the inserted intron RNA. Here, we show that the Sinorhizobium meliloti group II intron RmInt1, which encodes a protein lacking a DNA endonuclease domain, similarly uses both the intron RNA and an intron-encoded protein with reverse transcriptase and maturase activities for mobility. However, while RmInt1 reverse splices into both single-stranded and double-stranded DNA target sites, it is unable to carry out site-specific antisense-strand cleavage due to the lack of a DNA endonuclease domain. Our results suggest that RmInt1 mobility involves reverse splicing into double-stranded or single-stranded DNA target sites, but due to the lack of DNA endonuclease function, it requires an alternate means of procuring a primer for target DNA-primed reverse transcription.
Collapse
Affiliation(s)
- Estefanía Muñoz-Adelantado
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Calle Profesor Albareda 1, 18008, Granada, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Toro N. Bacteria and Archaea Group II introns: additional mobile genetic elements in the environment. Environ Microbiol 2003; 5:143-51. [PMID: 12588294 DOI: 10.1046/j.1462-2920.2003.00398.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Self-splicing group II introns are present in the organelles of lower eukaryotes, plants and Bacteria and have been found recently in Archaea. It is generally accepted that group II introns originated in bacteria before spreading to mitochondria and chloroplasts. These introns are thought to be related to the progenitors of spliceosomal introns. Group II introns are also mobile genetic elements. In bacteria, they appear to spread using either other mobile genetic elements or low-expression regions as target sites. Bacteria and Archaea genome sequence annotations have revealed the diversity of group II intron classes and that they are involved in vertical and horizontal inheritance.
Collapse
Affiliation(s)
- Nicolás Toro
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008, Granada, Spain.
| |
Collapse
|
28
|
Jiménez-Zurdo JI, García-Rodríguez FM, Barrientos-Durán A, Toro N. DNA target site requirements for homing in vivo of a bacterial group II intron encoding a protein lacking the DNA endonuclease domain. J Mol Biol 2003; 326:413-23. [PMID: 12559910 DOI: 10.1016/s0022-2836(02)01380-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Group II intron-encoded proteins (IEPs), which have maturase and reverse transcriptase activities, form a ribonucleoprotein (RNP) complex with the intron RNA. Some IEPs also have a C-terminal DNA-binding region and conserved DNA endonuclease domain involved in the recognition and cleavage of specific DNA target sites used for intron homing. RmInt1 is a mobile group II intron of Sinorhizobium meliloti, the IEP of which lacks the endonuclease domain, as do over half of their bacterial counterparts. Here, we analyzed the DNA target sequence requirements for homing in vivo of intron RmInt1 and compared these requirements to those established for the Lactococcus lactis Ll.LtrB intron, a representative of mobile subgroup IIA introns encoding proteins with functional C-terminal DNA endonuclease domains. As for Ll.LtrB, RmInt1 homing requires modifiable base-pairing interactions between the intron RNA and the DNA target, involving 13 nucleotides. However, instead of the delta-delta' interaction, typical of subgroup IIA introns, we demonstrate that RmInt1 recognizes the first nucleotide within the 3' exon of the target site by a new EBS3/IBS3 pairing predicted for subgroup IIB self-splicing introns. Unlike Ll.LtrB, there are less stringent requirements for RmInt1 recognition of distal 5' and 3' exon regions, where only single nucleotide positions are fixed constraints for intron homing. Our results predict differences in the DNA target-site requirements among group II introns, which may have mechanistic and evolutionary implications.
Collapse
Affiliation(s)
- José I Jiménez-Zurdo
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Calle Profesor Albareda 1, 18008 Granada, Spain
| | | | | | | |
Collapse
|
29
|
Toro N, Martínez-Abarca F, Fernández-López M, Muñoz-Adelantado E. Diversity of group II introns in the genome of Sinorhizobium meliloti strain 1021: splicing and mobility of RmInt1. Mol Genet Genomics 2003; 268:628-36. [PMID: 12589437 DOI: 10.1007/s00438-002-0778-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2002] [Accepted: 10/25/2002] [Indexed: 10/25/2022]
Abstract
The number and diversity of known group II introns in eubacteria are continually increasing with the addition of new data from sequencing projects, but the significance of these introns in the evolution of bacterial genomes is unknown. We analyzed the main features of the group II introns present in the genome of the soil microorganism Sinorhizobium meliloti (strain 1021), the nitrogen-fixing symbiont of alfalfa, the DNA sequence of which was recently determined. Strain 1021 harbors three different classes of group II introns: RmInt1, of bacterial class D; SMb2147/SMb21167, which cluster within bacterial class C; and SMa1875, the phylogenetic class of which is uncertain. The group II introns SMb2147/SMb21167 and SMa1875 are widely distributed in S. meliloti, but are present in lower copy numbers than RmInt1. Strain 1021 harbors three copies of RmInt1, which is pSym-specific. Although RmInt1 is spliced in strain 1021, mobility assays suggested that, in contrast to other S. meliloti strains, the genetic background of strain 1021 does not support intron homing events.
Collapse
Affiliation(s)
- N Toro
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Calle Profesor Albareda 1, 18008, Granada, Spain.
| | | | | | | |
Collapse
|
30
|
San Filippo J, Lambowitz AM. Characterization of the C-terminal DNA-binding/DNA endonuclease region of a group II intron-encoded protein. J Mol Biol 2002; 324:933-51. [PMID: 12470950 DOI: 10.1016/s0022-2836(02)01147-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Group II intron retrohoming occurs by a mechanism in which the intron RNA reverse splices directly into one strand of a double-stranded DNA target site, while the intron-encoded reverse transcriptase uses a C-terminal DNA endonuclease activity to cleave the opposite strand and then uses the cleaved 3' end as a primer for reverse transcription of the inserted intron RNA. Here, we characterized the C-terminal DNA-binding/DNA endonuclease region of the LtrA protein encoded by the Lactococcus lactis Ll.LtrB intron. This C-terminal region consists of an upstream segment that contributes to DNA binding, followed by a DNA endonuclease domain that contains conserved sequence motifs characteristic of H-N-H DNA endonucleases, interspersed with two pairs of conserved cysteine residues. Atomic emission spectroscopy of wild-type and mutant LtrA proteins showed that the DNA endonuclease domain contains a single tightly bound Mg(2+) ion at the H-N-H active site. Although the conserved cysteine residue pairs could potentially bind Zn(2+), the purified LtrA protein is active despite the presence of only sub-stoichiometric amounts of Zn(2+), and the addition of exogenous Zn(2+) inhibits the DNA endonuclease activity. Multiple sequence alignments identified features of the DNA-binding region and DNA endonuclease domain that are conserved in LtrA and related group II intron proteins, and their functional importance was demonstrated by unigenic evolution analysis and biochemical assays of mutant LtrA protein with alterations in key amino acid residues. Notably, deletion of the DNA endonuclease domain or mutations in its conserved sequence motifs strongly inhibit reverse transcriptase activity, as well as bottom-strand cleavage, while retaining other activities of the LtrA protein. A UV-cross-linking assay showed that these DNA endonuclease domain mutations do not block DNA primer binding and thus likely inhibit reverse transcriptase activity either by affecting the positioning of the primer or the conformation of the reverse transcriptase domain.
Collapse
Affiliation(s)
- Joseph San Filippo
- Department of Chemistry and Biochemistry, and Section of Molecular, Genetics and Microbiology, School of Biological Sciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, MBB2. 234BA, 2500 Speedway, Austin, TX 78712, USA
| | | |
Collapse
|
31
|
Ichiyanagi K, Beauregard A, Lawrence S, Smith D, Cousineau B, Belfort M. Retrotransposition of the Ll.LtrB group II intron proceeds predominantly via reverse splicing into DNA targets. Mol Microbiol 2002; 46:1259-72. [PMID: 12453213 DOI: 10.1046/j.1365-2958.2002.03226.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Catalytic group II introns are mobile retroelements that invade cognate intronless genes via retrohoming, where the introns reverse splice into double-stranded DNA (dsDNA) targets. They can also retrotranspose to ectopic sites at low frequencies. Whereas our previous studies with a bacterial intron, Ll.LtrB, supported frequent use of RNA targets during retrotransposition, recent experiments with a retrotransposition indicator gene indicate that DNA, rather than RNA, is a prominent target, with both dsDNA and single-stranded DNA (ssDNA) as possibilities. Thus retrotransposition occurs in both transcriptional sense and antisense orientations of target genes, and is largely independent of homologous DNA recombination and of the endonuclease function of the intron-encoded protein, LtrA. Models based on both dsDNA and ssDNA targeting are presented. Interestingly, retrotransposition is biased toward the template for lagging-strand DNA synthesis, which suggests the possibility of the replication folk as a source of ssDNA. Consistent with some use of ssDNA targets, many retrotransposition sites lack nucleotides critical for the unwinding of target duplex DNA. Moreover, in vitro the intron reverse spliced into ssDNA more efficiently than dsDNA substrates for some of the retrotransposition sites. Furthermore, many bacterial group II introns reside on the lagging-strand template, hinting at a role for DNA replication in intron dispersal in nature.
Collapse
Affiliation(s)
- Kenji Ichiyanagi
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, Albany, NY 12201-2002, USA
| | | | | | | | | | | |
Collapse
|
32
|
Dai L, Zimmerly S. Compilation and analysis of group II intron insertions in bacterial genomes: evidence for retroelement behavior. Nucleic Acids Res 2002; 30:1091-102. [PMID: 11861899 PMCID: PMC101233 DOI: 10.1093/nar/30.5.1091] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Group II introns are novel genetic elements that have properties of both catalytic RNAs and retroelements. Initially identified in organellar genomes of plants and lower eukaryotes, group II introns are now being discovered in increasing numbers in bacterial genomes. Few of the newly sequenced bacterial introns are correctly identified or annotated by those who sequenced them. Here we have compiled and thoroughly analyzed group II introns and their fragments in bacterial DNA sequences reported to GenBank. Intron distribution in bacterial genomes differs markedly from the distribution in organellar genomes. Bacterial introns are not inserted into conserved genes, are often inserted outside of genes altogether and are frequently fragmented, suggesting a high rate of intron gain and loss. Some introns have multiple natural homing sites while others insert after transcriptional terminators. All bacterial group II introns identified to date encode reverse transcriptase open reading frames and are either active retroelements or derivatives of retroelements. Together, these observations suggest that group II introns in bacteria behave primarily as retroelements rather than as introns, and that the strategy for group II intron survival in bacteria is fundamentally different from intron survival in organelles.
Collapse
Affiliation(s)
- Lixin Dai
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | | |
Collapse
|
33
|
Dickson L, Huang HR, Liu L, Matsuura M, Lambowitz AM, Perlman PS. Retrotransposition of a yeast group II intron occurs by reverse splicing directly into ectopic DNA sites. Proc Natl Acad Sci U S A 2001; 98:13207-12. [PMID: 11687644 PMCID: PMC60849 DOI: 10.1073/pnas.231494498] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Group II introns, the presumed ancestors of nuclear pre-mRNA introns, are site-specific retroelements. In addition to "homing" to unoccupied sites in intronless alleles, group II introns transpose at low frequency to ectopic sites that resemble the normal homing site. Two general mechanisms have been proposed for group II intron transposition, one involving reverse splicing of the intron RNA directly into an ectopic DNA site, and the other involving reverse splicing into a site in RNA followed by reverse transcription and integration of the resulting cDNA by homologous recombination. Here, by using an "inverted-site" strategy, we show that the yeast mtDNA group II intron aI1 retrotransposes by reverse splicing directly into an ectopic DNA site. This same mechanism could account for other previously described ectopic transposition events in fungi and bacteria and may have contributed to the dispersal of group II introns into different genes.
Collapse
Affiliation(s)
- L Dickson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | | | | | | | | | |
Collapse
|
34
|
Muñoz E, Villadas PJ, Toro N. Ectopic transposition of a group II intron in natural bacterial populations. Mol Microbiol 2001; 41:645-52. [PMID: 11532132 DOI: 10.1046/j.1365-2958.2001.02540.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Self-splicing group II introns are thought to be the evolutionary progenitors of eukaryotic spliceosomal introns. The invasion of novel (ectopic) sites by group II introns is considered to be a key mechanism by which spliceosomal introns may have become widely dispersed. However, the dynamics of these events in populations are unknown. In bacteria, only two group II introns have been shown to splice and to be mobile in vivo. One of these introns, RmInt1 from Sinorhizobium meliloti, which encodes a protein with no endonuclease domain, has been shown to invade the ectopic oxi1 site independently of recombinase. In this study, we analysed ectopic transposition of the RmInt1 intron in a natural population of S. meliloti. We characterized S. meliloti isolates by polymerase chain reaction amplification of a gene, dapB, which is found only on the pRmeGR4b plasmid diagnostic of GR4-type strains. The diversity within this specific field population of bacteria was analysed by restriction fragment length polymorphism using ISRm2011-2 (homing site of RmInt1) and RmInt1 as probes. We found that ectopic transposition of RmInt1 to the oxi1 site occurred in this natural bacterial population. This ectopic transposition was also the most frequent genetic event observed. This work provides further evidence that the ectopic transposition of group II introns is an important mechanism for their spread in natural bacterial populations.
Collapse
Affiliation(s)
- E Muñoz
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Calle Profesor Albareda 1, 18008 Granada, Spain
| | | | | |
Collapse
|
35
|
Singh NN, Lambowitz AM. Interaction of a group II intron ribonucleoprotein endonuclease with its DNA target site investigated by DNA footprinting and modification interference. J Mol Biol 2001; 309:361-86. [PMID: 11371159 DOI: 10.1006/jmbi.2001.4658] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Group II intron mobility occurs by a target DNA-primed reverse transcription mechanism in which the intron RNA reverse splices directly into one strand of a double-stranded DNA target site, while the intron-encoded protein cleaves the opposite strand and uses it as a primer to reverse transcribe the inserted intron RNA. The group II intron endonuclease, which mediates this process, is an RNP particle that contains the intron-encoded protein and the excised intron RNA and uses both cooperatively to recognize DNA target sequences. Here, we analyzed the interaction of the Lactococcus lactis Ll.LtrB group II intron endonuclease with its DNA target site by DNA footprinting and modification-interference approaches. In agreement with previous mutagenesis experiments showing a relatively large target site, DNase I protection extends from position -25 to +19 from the intron-insertion site on the top strand and from -28 to +16 on the bottom strand. Our results suggest that the protein first recognizes a small number of specific bases in the distal 5'-exon region of the DNA target site via major-groove interactions. These base interactions together with additional phosphodiester-backbone interactions along one face of the helix promote DNA unwinding, enabling the intron RNA to base-pair to DNA top-strand positions -12 to +3 for reverse splicing. Notably, DNA unwinding extends to at least position +6, somewhat beyond the region that base-pairs with the intron RNA, but is not dependent on interaction of the conserved endonuclease domain with the 3' exon. Bottom-strand cleavage occurs after reverse splicing and requires recognition of a small number of additional bases in the 3' exon, the most critical being T+5 in the now single-stranded downstream region of the target site. Our results provide the first detailed view of the interaction of a group II intron endonuclease with its DNA target site.
Collapse
Affiliation(s)
- N N Singh
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
36
|
Abstract
Group II introns are widely believed to have been ancestors of spliceosomal introns, yet little is known about their own evolutionary history. In order to address the evolution of mobile group II introns, we have compiled 71 open reading frames (ORFs) related to group II intron reverse transcriptases and subjected their derived amino acid sequences to phylogenetic analysis. The phylogenetic tree was rooted with reverse transcriptases (RTs) of non-long terminal repeat retroelements, and the inferred phylogeny reveals two major clusters which we term the mitochondrial and chloroplast-like lineages. Bacterial ORFs are mainly positioned at the bases of the two lineages but with weak bootstrap support. The data give an overview of an apparently high degree of horizontal transfer of group II intron ORFs, mostly among related organisms but also between organelles and bacteria. The Zn domain (nuclease) and YADD motif (RT active site) were lost multiple times during evolution. Differences in domain structures suggest that the oldest ORFs were concise, while the ORF in the mitochondrial lineage subsequently expanded in three locations. The data are consistent with a bacterial origin for mobile group II introns.
Collapse
Affiliation(s)
- S Zimmerly
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| | | |
Collapse
|