1
|
Gowri G, Sheng K, Yin P. Scalable design of orthogonal DNA barcode libraries. NATURE COMPUTATIONAL SCIENCE 2024; 4:423-428. [PMID: 38849559 PMCID: PMC11208133 DOI: 10.1038/s43588-024-00646-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
Orthogonal DNA barcode library design is an essential task in bioengineering. Here we present seqwalk, an efficient method for designing barcode libraries that satisfy a sequence symmetry minimization (SSM) heuristic for orthogonality, with theoretical guarantees of maximal or near-maximal library size under certain design constraints. Seqwalk encodes SSM constraints in a de Bruijn graph representation of sequence space, enabling the application of recent advances in discrete mathematics1 to the problem of orthogonal sequence design. We demonstrate the scalability of seqwalk by designing a library of >106 SSM-satisfying barcode sequences in less than 20 s on a standard laptop.
Collapse
Affiliation(s)
- Gokul Gowri
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
| | - Kuanwei Sheng
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Peng Yin
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
| |
Collapse
|
2
|
Shu HY, Zhao L, Jia Y, Liu FF, Chen J, Chang CM, Jin T, Yang J, Shu WS. CyanoStrainChip: A Novel DNA Microarray Tool for High-Throughput Detection of Environmental Cyanobacteria at the Strain Level. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5024-5034. [PMID: 38454313 PMCID: PMC10956431 DOI: 10.1021/acs.est.3c11096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Detecting cyanobacteria in environments is an important concern due to their crucial roles in ecosystems, and they can form blooms with the potential to harm humans and nonhuman entities. However, the most widely used methods for high-throughput detection of environmental cyanobacteria, such as 16S rRNA sequencing, typically provide above-species-level resolution, thereby disregarding intraspecific variation. To address this, we developed a novel DNA microarray tool, termed the CyanoStrainChip, that enables strain-level comprehensive profiling of environmental cyanobacteria. The CyanoStrainChip was designed to target 1277 strains; nearly all major groups of cyanobacteria are included by implementing 43,666 genome-wide, strain-specific probes. It demonstrated strong specificity by in vitro mock community experiments. The high correlation (Pearson's R > 0.97) between probe fluorescence intensities and the corresponding DNA amounts (ranging from 1-100 ng) indicated excellent quantitative capability. Consistent cyanobacterial profiles of field samples were observed by both the CyanoStrainChip and next-generation sequencing methods. Furthermore, CyanoStrainChip analysis of surface water samples in Lake Chaohu uncovered a high intraspecific variation of abundance change within the genus Microcystis between different severity levels of cyanobacterial blooms, highlighting two toxic Microcystis strains that are of critical concern for Lake Chaohu harmful blooms suppression. Overall, these results suggest a potential for CyanoStrainChip as a valuable tool for cyanobacterial ecological research and harmful bloom monitoring to supplement existing techniques.
Collapse
Affiliation(s)
- Hao-Yue Shu
- Guangdong
Magigene Biotechnology Co., Ltd., Shenzhen 518081, PR China
- School
of Food and Drug, Shenzhen Polytechnic, Shenzhen 518081, PR China
| | - Liang Zhao
- Institute
of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity
and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology
for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510006, PR China
| | - Yanyan Jia
- School
of Ecology, Sun Yat-sen University, Shenzhen 518107, PR China
| | - Fei-Fei Liu
- Guangdong
Magigene Biotechnology Co., Ltd., Shenzhen 518081, PR China
| | - Jiang Chen
- Guangdong
Magigene Biotechnology Co., Ltd., Shenzhen 518081, PR China
| | - Chih-Min Chang
- Guangdong
Magigene Biotechnology Co., Ltd., Shenzhen 518081, PR China
| | - Tao Jin
- Guangdong
Magigene Biotechnology Co., Ltd., Shenzhen 518081, PR China
- One
Health Biotechnology (Suzhou) Co., Ltd., Suzhou 215009, PR China
| | - Jian Yang
- School
of Food and Drug, Shenzhen Polytechnic, Shenzhen 518081, PR China
| | - Wen-Sheng Shu
- Guangdong
Magigene Biotechnology Co., Ltd., Shenzhen 518081, PR China
- Institute
of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity
and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology
for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510006, PR China
| |
Collapse
|
3
|
Abuawad A, Ashhab Y, Offenhäusser A, Krause HJ. DNA Sensor for the Detection of Brucella spp. Based on Magnetic Nanoparticle Markers. Int J Mol Sci 2023; 24:17272. [PMID: 38139102 PMCID: PMC10744106 DOI: 10.3390/ijms242417272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Due to the limitations of conventional Brucella detection methods, including safety concerns, long incubation times, and limited specificity, the development of a rapid, selective, and accurate technique for the early detection of Brucella in livestock animals is crucial to prevent the spread of the associated disease. In the present study, we introduce a magnetic nanoparticle marker-based biosensor using frequency mixing magnetic detection for point-of-care testing and quantification of Brucella DNA. Superparamagnetic nanoparticles were used as magnetically measured markers to selectively detect the target DNA hybridized with its complementary capture probes immobilized on a porous polyethylene filter. Experimental conditions like density and length of the probes, hybridization time and temperature, and magnetic binding specificity, sensitivity, and detection limit were investigated and optimized. Our sensor demonstrated a relatively fast detection time of approximately 10 min, with a detection limit of 55 copies (0.09 fM) when tested using DNA amplified from Brucella genetic material. In addition, the detection specificity was examined using gDNA from Brucella and other zoonotic bacteria that may coexist in the same niche, confirming the method's selectivity for Brucella DNA. Our proposed biosensor has the potential to be used for the early detection of Brucella bacteria in the field and can contribute to disease control measures.
Collapse
Affiliation(s)
- Abdalhalim Abuawad
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany; (A.A.)
- Faculty of Mathematics, Computer Science and Natural Sciences, Rheinisch-Westfälische Technische Hochschule Aachen University, 52062 Aachen, Germany
| | - Yaqoub Ashhab
- Palestine–Korea Biotechnology Center, Palestine Polytechnic University, Hebron P720, Palestine
| | - Andreas Offenhäusser
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany; (A.A.)
- Faculty of Mathematics, Computer Science and Natural Sciences, Rheinisch-Westfälische Technische Hochschule Aachen University, 52062 Aachen, Germany
| | - Hans-Joachim Krause
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany; (A.A.)
| |
Collapse
|
4
|
El-Shaikh A, Seeger B. Content-based filter queries on DNA data storage systems. Sci Rep 2023; 13:7053. [PMID: 37120614 PMCID: PMC10148835 DOI: 10.1038/s41598-023-34160-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/25/2023] [Indexed: 05/01/2023] Open
Abstract
Recent developments in DNA data storage systems have revealed the great potential to store large amounts of data at a very high density with extremely long persistence and low cost. However, despite recent contributions to robust data encoding, current DNA storage systems offer limited support for random access on DNA storage devices due to restrictive biochemical constraints. Moreover, state-of-the-art approaches do not support content-based filter queries on DNA storage. This paper introduces the first encoding for DNA that enables content-based searches on structured data like relational database tables. We provide the details of the methods for coding and decoding millions of directly accessible data objects on DNA. We evaluate the derived codes on real data sets and verify their robustness.
Collapse
Affiliation(s)
- Alex El-Shaikh
- Departement of Mathematics and Computer Science, University of Marburg, 35037, Marburg, Germany.
| | - Bernhard Seeger
- Departement of Mathematics and Computer Science, University of Marburg, 35037, Marburg, Germany
| |
Collapse
|
5
|
Behnke J, Cai Y, Gu H, LaRoche J. Short-term response to iron resupply in an iron-limited open ocean diatom reveals rapid decay of iron-responsive transcripts. PLoS One 2023; 18:e0280827. [PMID: 36693065 PMCID: PMC9873189 DOI: 10.1371/journal.pone.0280827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
In large areas of the ocean, iron concentrations are insufficient to promote phytoplankton growth. Numerous studies have been conducted to characterize the effect of iron on algae and how algae cope with fluctuating iron concentrations. Fertilization experiments in low-iron areas resulted primarily in diatom-dominated algal blooms, leading to laboratory studies on diatoms comparing low- and high-iron conditions. Here, we focus on the short-term temporal response following iron addition to an iron-starved open ocean diatom, Thalassiosira oceanica. We employed the NanoString platform and analyzed a high-resolution time series on 54 transcripts encoding proteins involved in photosynthesis, N-linked glycosylation, iron transport, as well as transcription factors. Nine transcripts were iron-responsive, with an immediate response to the addition of iron. The fastest response observed was the decrease in transcript levels of proteins involved in iron uptake, followed by an increase in transcript levels of iron-containing enzymes and a simultaneous decrease in the transcript levels of their iron-free replacement enzymes. The transcription inhibitor actinomycin D was used to understand the underlying mechanisms of the decrease of the iron-responsive transcripts and to determine their half-lives. Here, Mn-superoxide dismutase (Mn-SOD), plastocyanin (PETE), ferredoxin (PETF) and cellular repressor of EA1-stimulated genes (CREGx2) revealed longer than average half-lives. Four iron-responsive transcripts showed statistically significant differences in their decay rates between the iron-recovery samples and the actD treatment. These differences suggest regulatory mechanisms influencing gene transcription and mRNA stability. Overall, our study contributes towards a detailed understanding of diatom cell biology in the context of iron fertilization response and provides important observations to assess oceanic diatom responses following sudden changes in iron concentrations.
Collapse
Affiliation(s)
- Joerg Behnke
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail: (JB); (JL)
| | - Yun Cai
- Department of Mathematics & Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hong Gu
- Department of Mathematics & Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail: (JB); (JL)
| |
Collapse
|
6
|
Allegra A, Cicero N, Tonacci A, Musolino C, Gangemi S. Circular RNA as a Novel Biomarker for Diagnosis and Prognosis and Potential Therapeutic Targets in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14071700. [PMID: 35406472 PMCID: PMC8997050 DOI: 10.3390/cancers14071700] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
Circular RNAs (circRNAs) are a novel type of covalently closed RNAs involved in several physiological and pathological processes. They display tissue-specific expression and are constant, abundant, and highly conserved, making them perfect markers for diagnosis and prognosis. Several studies have proposed that circRNAs are also differentially produced in malignancies where they have oncogenic effects. Furthermore, circRNAs affecting microRNAs modify the expression profile of several transcription factors which play essential roles in tumors. CircRNAs within the hematopoietic compartment were identified as modulators of mechanisms able to enhance or suppress tumor progression in blood malignancies. Moreover, several circRNAs were suggested to confer resistance to the conventional drugs employed in hematopoietic cancers. In this review, we highlight the growing role and the controlling mechanisms by which circRNAs modify multiple myeloma genesis. We propose that circRNAs can be considered as potential diagnostic and prognostic markers, can induce chemoresistance, and might represent novel therapeutic targets for multiple myeloma.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Hematology, University of Messina, 98125 Messina, Italy;
- Correspondence:
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Hematology, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
7
|
Ahmed R, Augustine R, Valera E, Ganguli A, Mesaeli N, Ahmad IS, Bashir R, Hasan A. Spatial mapping of cancer tissues by OMICS technologies. Biochim Biophys Acta Rev Cancer 2021; 1877:188663. [PMID: 34861353 DOI: 10.1016/j.bbcan.2021.188663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022]
Abstract
Spatial mapping of heterogeneity in gene expression in cancer tissues can improve our understanding of cancers and help in the rapid detection of cancers with high accuracy and reliability. Significant advancements have been made in recent years in OMICS technologies, which possess the strong potential to be applied in the spatial mapping of biopsy tissue samples and their molecular profiling to a single-cell level. The clinical application of OMICS technologies in spatial profiling of cancer tissues is also advancing. The current review presents recent advancements and prospects of applying OMICS technologies to the spatial mapping of various analytes in cancer tissues. We benchmark the current state of the art in the field to advance existing OMICS technologies for high throughput spatial profiling. The factors taken into consideration include spatial resolution, types of biomolecules, number of different biomolecules that can be detected from the same assay, labeled versus label-free approaches, and approximate time required for each assay. Further advancements are still needed for the widespread application of OMICs technologies in performing fast and high throughput spatial mapping of cancer tissues as well as their effective use in research and clinical applications.
Collapse
Affiliation(s)
- Rashid Ahmed
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, Doha 2713, Qatar; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA
| | - Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, Doha 2713, Qatar
| | - Enrique Valera
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA; Department of Bioengineering, University of Illinois at Urbana Champaign, IL, USA
| | - Anurup Ganguli
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA; Department of Bioengineering, University of Illinois at Urbana Champaign, IL, USA
| | - Nasrin Mesaeli
- Department of Biochemistry, Weill Cornell Medicine in Qatar, Qatar Foundation, Doha, Qatar
| | - Irfan S Ahmad
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA
| | - Rashid Bashir
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA; Department of Bioengineering, University of Illinois at Urbana Champaign, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, Doha 2713, Qatar.
| |
Collapse
|
8
|
Inkster AM, Yuan V, Konwar C, Matthews AM, Brown CJ, Robinson WP. A cross-cohort analysis of autosomal DNA methylation sex differences in the term placenta. Biol Sex Differ 2021; 12:38. [PMID: 34044884 PMCID: PMC8162041 DOI: 10.1186/s13293-021-00381-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human placental DNA methylation (DNAme) data is a valuable resource for studying sex differences during gestation, as DNAme profiles after delivery reflect the cumulative effects of gene expression patterns and exposures across gestation. Here, we present an analysis of sex differences in autosomal DNAme in the uncomplicated term placenta (n = 343) using the Illumina 450K array. RESULTS At a false discovery rate < 0.05 and a mean sex difference in DNAme beta value of > 0.10, we identified 162 autosomal CpG sites that were differentially methylated by sex and replicated in an independent cohort of samples (n = 293). Several of these differentially methylated CpG sites were part of larger correlated regions of sex differential DNAme. Although global DNAme levels did not differ by sex, the majority of significantly differentially methylated CpGs were more highly methylated in male placentae, the opposite of what is seen in differential methylation analyses of somatic tissues. Patterns of autosomal DNAme at these 162 CpGs were significantly associated with maternal age (in males) and newborn birthweight standard deviation (in females). CONCLUSIONS Our results provide a comprehensive analysis of sex differences in autosomal DNAme in the term human placenta. We report a list of high-confidence autosomal sex-associated differentially methylated CpGs and identify several key features of these loci that suggest their relevance to sex differences observed in normative and complicated pregnancies.
Collapse
Affiliation(s)
- Amy M. Inkster
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1 Canada
| | - Victor Yuan
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1 Canada
| | - Chaini Konwar
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Centre for Molecular Medicine and Therapeutics, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
| | - Allison M. Matthews
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1 Canada
- Centre for Molecular Medicine and Therapeutics, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, V6T 1Z7 Canada
| | - Carolyn J. Brown
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1 Canada
| | - Wendy P. Robinson
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, V6H 3N1 Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1 Canada
| |
Collapse
|
9
|
Zhou J, Zhang M, Li X, Wang Z, Pan D, Shi Y. Performance comparison of four types of target enrichment baits for exome DNA sequencing. Hereditas 2021; 158:10. [PMID: 33597004 PMCID: PMC7888174 DOI: 10.1186/s41065-021-00171-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Next-generation sequencing technology is developing rapidly and target capture sequencing has become an important technique. Several different platforms for library preparation and target capture with different bait types respectively are commercially available. Here we compare the performance of the four platforms with different bait types to find out their advantages and limitations. The purpose of this study is to help investigators and clinicians select the appropriate platform for their particular application and lay the foundation for the development of a better target capture platform for next-generation sequencing. RESULTS We formulate capture efficiency as a novel parameter that can be used to better evaluations of specificity and coverage depth among the different capture platforms. Target coverage, capture efficiency, GC bias, AT Dropout, sensitivity in single nucleotide polymorphisms, small insertions and deletions detection, and the feature of each platform were compared for low input samples. In general, all platforms perform well and small differences among them are revealed. In our results, RNA baits have stronger binding power than DNA baits, and with ultra deep sequencing, double stranded RNA baits perform better than single stranded RNA baits in all aspects. DNA baits got better performance in the region with high GC content and RNA baits got lower AT dropout suggesting that the binding power is different between DNA and RNA baits to genome regions with different characteristics. CONCLUSIONS The platforms with double stranded RNA baits have the most balanced capture performance. Our results show the key differences in performance among the four updated platforms with four different bait types. The better performance of double stranded RNA bait with ultra deep sequencing suggests that it may improve the sensitivity of ultra low frequent mutation detection. In addition, we further propose that the mixed baits of double stranded RNA and single stranded DNA may improve target capture performance.
Collapse
Grants
- 2017YFC0908105, 2019YFA0905400 the National Key R&D Program of China
- 2017SHZDZX01 Shanghai Municipal Science and Technology Major Project
- U1804284, 81421061, 81701321, 32070679, 81501154 the Natural Science Foundation of China
- 15XD1502200 the Program of Shanghai Subject Chief Scientist
- 13dz2260500 the National Program for Support of Top-Notch Young Professionals, Shanghai Key Laboratory of Psychotic Disorders
- SHDC12016115 the National Program for Support of Top-Notch Young Professionals, Shanghai Hospital Development Center
- 17JC1402900, 17490712200, 18DZ2260200 Shanghai Municipal Commission of Science and Technology
- ZK2015B01, 201540114 shanghai municipal health commission
- 19X150010012 Scientific Research and Development Fund of Shanghai Jiao Tong University
- the National Key R&D Program of China
- the National Program for Support of Top-Notch Young Professionals, Shanghai Hospital Development Center
- shanghai municipal health commission
Collapse
Affiliation(s)
- Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Mancang Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Xiaoqi Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Dun Pan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
| |
Collapse
|
10
|
Shin S, Jung Y, Uhm H, Song M, Son S, Goo J, Jeong C, Song JJ, Kim VN, Hohng S. Quantification of purified endogenous miRNAs with high sensitivity and specificity. Nat Commun 2020; 11:6033. [PMID: 33247115 PMCID: PMC7699633 DOI: 10.1038/s41467-020-19865-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are short (19-24 nt) non-coding RNAs that suppress the expression of protein coding genes at the post-transcriptional level. Differential expression profiles of miRNAs across a range of diseases have emerged as powerful biomarkers, making a reliable yet rapid profiling technique for miRNAs potentially essential in clinics. Here, we report an amplification-free multi-color single-molecule imaging technique that can profile purified endogenous miRNAs with high sensitivity, specificity, and reliability. Compared to previously reported techniques, our technique can discriminate single base mismatches and single-nucleotide 3'-tailing with low false positive rates regardless of their positions on miRNA. By preloading probes in Thermus thermophilus Argonaute (TtAgo), miRNAs detection speed is accelerated by more than 20 times. Finally, by utilizing the well-conserved linearity between single-molecule spot numbers and the target miRNA concentrations, the absolute average copy numbers of endogenous miRNA species in a single cell can be estimated. Thus our technique, Ago-FISH (Argonaute-based Fluorescence In Situ Hybridization), provides a reliable way to accurately profile various endogenous miRNAs on a single miRNA sensing chip.
Collapse
Affiliation(s)
- Soochul Shin
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea
| | - Yoonseok Jung
- Center for RNA Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Heesoo Uhm
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea
| | - Minseok Song
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea
| | - Soomin Son
- Center for RNA Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jiyoung Goo
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyunghee University, Seoul, Republic of Korea
| | - Cherlhyun Jeong
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyunghee University, Seoul, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Díaz-de Usera A, Lorenzo-Salazar JM, Rubio-Rodríguez LA, Muñoz-Barrera A, Guillen-Guio B, Marcelino-Rodríguez I, García-Olivares V, Mendoza-Alvarez A, Corrales A, Íñigo-Campos A, González-Montelongo R, Flores C. Evaluation of Whole-Exome Enrichment Solutions: Lessons from the High-End of the Short-Read Sequencing Scale. J Clin Med 2020; 9:jcm9113656. [PMID: 33202991 PMCID: PMC7696786 DOI: 10.3390/jcm9113656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Whole-exome sequencing has become a popular technique in research and clinical settings, assisting in disease diagnosis and increasing the understanding of disease pathogenesis. In this study, we aimed to compare common enrichment capture solutions available in the market. Peripheral blood-purified DNA samples were enriched with SureSelectQXT V6 (Agilent) and various Illumina solutions: TruSeq DNA Nano, TruSeq DNA Exome, Nextera DNA Exome, and Illumina DNA Prep with Enrichment, and sequenced on a HiSeq 4000. We found that their percentage of duplicate reads was as much as 2 times higher than previously reported values for the previous HiSeq series. SureSelectQXT and Illumina DNA Prep with Enrichment showed the best average on-target coverage, which improved when off-target regions were included. At high coverage levels and in shared bases, these two solutions and TruSeq DNA Exome provided three of the best performances. With respect to the number of small variants detected, SureSelectQXT presented the lowest number of detected variants in target regions. When off-target regions were considered, its ability equalized to other solutions. Our results show SureSelectQXT and Illumina DNA Prep with Enrichment to be the best enrichment capture solutions.
Collapse
Affiliation(s)
- Ana Díaz-de Usera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain; (A.D.-d.U.); (J.M.L.-S.); (L.A.R.-R.); (A.M.-B.); (V.G.-O.); (A.Í.-C.); (R.G.-M.)
| | - Jose M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain; (A.D.-d.U.); (J.M.L.-S.); (L.A.R.-R.); (A.M.-B.); (V.G.-O.); (A.Í.-C.); (R.G.-M.)
| | - Luis A. Rubio-Rodríguez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain; (A.D.-d.U.); (J.M.L.-S.); (L.A.R.-R.); (A.M.-B.); (V.G.-O.); (A.Í.-C.); (R.G.-M.)
| | - Adrián Muñoz-Barrera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain; (A.D.-d.U.); (J.M.L.-S.); (L.A.R.-R.); (A.M.-B.); (V.G.-O.); (A.Í.-C.); (R.G.-M.)
| | - Beatriz Guillen-Guio
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain; (B.G.-G.); (I.M.-R.); (A.M.-A.); (A.C.)
| | - Itahisa Marcelino-Rodríguez
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain; (B.G.-G.); (I.M.-R.); (A.M.-A.); (A.C.)
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Víctor García-Olivares
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain; (A.D.-d.U.); (J.M.L.-S.); (L.A.R.-R.); (A.M.-B.); (V.G.-O.); (A.Í.-C.); (R.G.-M.)
| | - Alejandro Mendoza-Alvarez
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain; (B.G.-G.); (I.M.-R.); (A.M.-A.); (A.C.)
| | - Almudena Corrales
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain; (B.G.-G.); (I.M.-R.); (A.M.-A.); (A.C.)
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonio Íñigo-Campos
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain; (A.D.-d.U.); (J.M.L.-S.); (L.A.R.-R.); (A.M.-B.); (V.G.-O.); (A.Í.-C.); (R.G.-M.)
| | - Rafaela González-Montelongo
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain; (A.D.-d.U.); (J.M.L.-S.); (L.A.R.-R.); (A.M.-B.); (V.G.-O.); (A.Í.-C.); (R.G.-M.)
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain; (A.D.-d.U.); (J.M.L.-S.); (L.A.R.-R.); (A.M.-B.); (V.G.-O.); (A.Í.-C.); (R.G.-M.)
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain; (B.G.-G.); (I.M.-R.); (A.M.-A.); (A.C.)
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-922-602938
| |
Collapse
|
12
|
Thompson MK, Kiourlappou M, Davis I. Ribo-Pop: simple, cost-effective, and widely applicable ribosomal RNA depletion. RNA (NEW YORK, N.Y.) 2020; 26:1731-1742. [PMID: 32759389 PMCID: PMC7566562 DOI: 10.1261/rna.076562.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
The measurement of RNA abundance derived from massively parallel sequencing experiments is an essential technique. Methods that reduce ribosomal RNA levels are usually required prior to sequencing library construction because ribosomal RNA typically comprises the vast majority of a total RNA sample. For some experiments, ribosomal RNA depletion is favored over poly(A) selection because it offers a more inclusive representation of the transcriptome. However, methods to deplete ribosomal RNA are generally proprietary, complex, inefficient, applicable to only specific species, or compatible with only a narrow range of RNA input levels. Here, we describe Ribo-Pop (ribosomal RNA depletion for popular use), a simple workflow and antisense oligo design strategy that we demonstrate works over a wide input range and can be easily adapted to any organism with a sequenced genome. We provide a computational pipeline for probe selection, a streamlined 20-min protocol, and ready-to-use oligo sequences for several organisms. We anticipate that our simple and generalizable "open source" design strategy would enable virtually any laboratory to pursue full transcriptome sequencing in their organism of interest with minimal time and resource investment.
Collapse
Affiliation(s)
- Mary Kay Thompson
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Maria Kiourlappou
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| |
Collapse
|
13
|
Liu Y, Sun P, Zhao Y, Liu B. The role of long non-coding RNAs and downstream signaling pathways in leukemia progression. Hematol Oncol 2020; 39:27-40. [PMID: 32621547 DOI: 10.1002/hon.2776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 01/17/2023]
Abstract
The study of long non-coding RNAs (lncRNA) is a newly established field and our knowledge about them is rapidly growing. These kinds of RNAs are unchanged parts of the genome throughout evolution, that modulate cell growth, differentiation, and apoptosis during diverse physiological and pathological processes including leukemia development. They have the capability to be useful biomarkers for the diagnosis, clinical typing, prognosis, as well as potential therapeutic targets. In this study, we summarized the role of lncRNAs in the expression and function of white blood cells and oncogenic transformation into four main types of leukemia.
Collapse
Affiliation(s)
- Yadong Liu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Penghao Sun
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Yuhao Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Zhang W, Li J, Salena B, Li Y. A DNA Switch for Detecting Single Nucleotide Polymorphism within a Long DNA Sequence Under Denaturing Conditions. Chemistry 2019; 26:592-596. [PMID: 31475757 DOI: 10.1002/chem.201903536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/28/2019] [Indexed: 01/24/2023]
Abstract
DNA detection is usually conducted under nondenaturing conditions to favor the formation of Watson-Crick base-paring interactions. However, although such a setting is excellent for distinguishing a single-nucleotide polymorphism (SNP) within short DNA sequences (15-25 nucleotides), it does not offer a good solution to SNP detection within much longer sequences. Here we report on a new detection method capable of detecting SNP in a DNA sequence containing 35-90 nucleotides. This is achieved through incorporating into the recognition DNA sequence a previously discovered DNA molecule that forms a stable G-quadruplex in the presence of 7 molar urea, a known condition for denaturing DNA structures. The systems are configured to produce both colorimetric and fluorescent signals upon target binding.
Collapse
Affiliation(s)
- Wenqing Zhang
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Jiuxing Li
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Bruno Salena
- Department of Medicine, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Yingfu Li
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
15
|
Hölz K, Schaudy E, Lietard J, Somoza MM. Multi-level patterning nucleic acid photolithography. Nat Commun 2019; 10:3805. [PMID: 31444344 PMCID: PMC6707258 DOI: 10.1038/s41467-019-11670-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
The versatile and tunable self-assembly properties of nucleic acids and engineered nucleic acid constructs make them invaluable in constructing microscale and nanoscale devices, structures and circuits. Increasing the complexity, functionality and ease of assembly of such constructs, as well as interfacing them to the macroscopic world requires a multifaceted and programmable fabrication approach that combines efficient and spatially resolved nucleic acid synthesis with multiple post-synthetic chemical and enzymatic modifications. Here we demonstrate a multi-level photolithographic patterning approach that starts with large-scale in situ surface synthesis of natural, modified or chimeric nucleic acid molecular structures and is followed by chemical and enzymatic nucleic acid modifications and processing. The resulting high-complexity, micrometer-resolution nucleic acid surface patterns include linear and branched structures, multi-color fluorophore labeling and programmable targeted oligonucleotide immobilization and cleavage.
Collapse
Affiliation(s)
- Kathrin Hölz
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14 (UZA II), 1090, Vienna, Austria
| | - Erika Schaudy
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14 (UZA II), 1090, Vienna, Austria
| | - Jory Lietard
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14 (UZA II), 1090, Vienna, Austria.
| | - Mark M Somoza
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14 (UZA II), 1090, Vienna, Austria.
| |
Collapse
|
16
|
Das P, Sedighi A, Krull UJ. Cancer biomarker determination by resonance energy transfer using functional fluorescent nanoprobes. Anal Chim Acta 2018; 1041:1-24. [DOI: 10.1016/j.aca.2018.07.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/27/2022]
|
17
|
Development and testing of an 18S rRNA phylogenetic microarray for marine sediments. J Microbiol Methods 2018; 154:95-106. [DOI: 10.1016/j.mimet.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/09/2018] [Accepted: 10/08/2018] [Indexed: 11/22/2022]
|
18
|
Zahariev M, Chen W, Visagie CM, Lévesque CA. Cluster oligonucleotide signatures for rapid identification by sequencing. BMC Bioinformatics 2018; 19:395. [PMID: 30522439 PMCID: PMC6284311 DOI: 10.1186/s12859-018-2363-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 09/09/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Oligonucleotide signatures (signatures) have been widely used for studying microbial diversity and function in wet-lab settings, but using them for accurate in silico identification of organisms from high-throughput sequencing (HTS) data is only a proof of concept. Existing signature design programs for sequence signatures (signatures matching exactly one sequence) or clade signatures (signatures matching every sequence in a phylogenetic clade) are not able to identify all possible polymorphic sites for sequences with high similarity and perform poorly when handling large genome sequencing datasets. RESULTS We introduce cluster signatures: subsequences that match perfectly and exclusively any group of sequences in a data set. Cluster signatures provide complete recall for primer/probe design and increased discrimination between sequences beyond that of clade signatures. Using cluster signatures for in silico identification of HTS targets achieves good precision/recall and running time performance. This method has been implemented into an open source tool, the Automated Oligonucleotide Design Pipeline (adop), included in supplementary material and available at: https://bitbucket.org/wenchen_aafc/aodp_v2.0_release . CONCLUSIONS Cluster signatures provide a rapid and universal analysis tool to identify all possible short diagnostic DNA markers and variants from any DNA sequencing dataset. They are particularly useful in discriminating genetic material from closely related organisms and in detecting deleterious mutations in highly or perfectly conserved genomic sites.
Collapse
Affiliation(s)
- Manuel Zahariev
- Ottawa R&D Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON, K1A 0C6 Canada
| | - Wen Chen
- Skwez Technology Corp, Box 3674, Garibaldi Highlands, BC, V0N 1T0 Canada
| | - Cobus M. Visagie
- The Agricultural Research Counci –PPRI, P/Bag X134, Queenswood, 0121 South Africa
| | - C. André Lévesque
- Sidney Laboratory Project - Science, Canadian Food Inspection Agency, Floor 2E, Room 233, 59 Camelot Drive, Ottawa, ON, K1A 0Y9 Canada
| |
Collapse
|
19
|
Sun L, Meckes DG. Methodological Approaches to Study Extracellular Vesicle miRNAs in Epstein⁻Barr Virus-Associated Cancers. Int J Mol Sci 2018; 19:ijms19092810. [PMID: 30231493 PMCID: PMC6164614 DOI: 10.3390/ijms19092810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 02/07/2023] Open
Abstract
Epstein Barr-virus (EBV) was the first virus identified to be associated with human cancer in 1964 and is found ubiquitously throughout the world's population. It is now established that EBV contributes to the development and progression of multiple human cancers of both lymphoid and epithelial cell origins. EBV encoded miRNAs play an important role in tumor proliferation, angiogenesis, immune escape, tissue invasion, and metastasis. Recently, EBV miRNAs have been found to be released from infected cancer cells in extracellular vesicles (EVs) and regulate gene expression in neighboring uninfected cells present in the tumor microenvironment and possibly at distal sites. As EVs are abundant in many biological fluids, the viral and cellular miRNAs present within EBV-modified EVs may serve as noninvasion markers for cancer diagnosis and prognosis. In this review, we discuss recent advances in EV isolation and miRNA detection, and provide a complete workflow for EV purification from plasma and deep-sequencing for biomarker discovery.
Collapse
Affiliation(s)
- Li Sun
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| |
Collapse
|
20
|
Dahl M, Kristensen LS, Grønbæk K. Long Non-Coding RNAs Guide the Fine-Tuning of Gene Regulation in B-Cell Development and Malignancy. Int J Mol Sci 2018; 19:E2475. [PMID: 30134619 PMCID: PMC6165225 DOI: 10.3390/ijms19092475] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
With the introduction of next generation sequencing methods, such as RNA sequencing, it has become apparent that alterations in the non-coding regions of our genome are important in the development of cancer. Particularly interesting is the class of long non-coding RNAs (lncRNAs), including the recently described subclass of circular RNAs (circRNAs), which display tissue- and cell-type specific expression patterns and exert diverse regulatory functions in the cells. B-cells undergo complex and tightly regulated processes in order to develop from antigen naïve cells residing in the bone marrow to the highly diverse and competent effector cells circulating in peripheral blood. These processes include V(D)J recombination, rapid proliferation, somatic hypermutation and clonal selection, posing a risk of malignant transformation at each step. The aim of this review is to provide insight into how lncRNAs including circRNAs, participate in normal B-cell differentiation, and how deregulation of these molecules is involved in the development of B-cell malignancies. We describe the prognostic value and functional significance of specific deregulated lncRNAs in diseases such as acute lymphoblastic leukemia, chronic lymphocytic leukemia, mantle cell lymphoma, diffuse large B-cell lymphoma, follicular lymphoma, Burkitt lymphoma and multiple myeloma, and we provide an overview of the current knowledge on the role of circRNAs in these diseases.
Collapse
MESH Headings
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/immunology
- Burkitt Lymphoma/pathology
- Cell Differentiation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/pathology
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/immunology
- Lymphoma, Follicular/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/immunology
- Lymphoma, Mantle-Cell/pathology
- Multiple Myeloma/genetics
- Multiple Myeloma/immunology
- Multiple Myeloma/pathology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- RNA/genetics
- RNA/immunology
- RNA, Circular
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/immunology
- Signal Transduction
Collapse
Affiliation(s)
- Mette Dahl
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark.
- Biotech Research and Innovation Centre, BRIC, Copenhagen University, DK-2100 Copenhagen, Denmark.
| | - Lasse Sommer Kristensen
- Department of Molecular Biology and Genetics (MBG), Aarhus University, DK-8000 Aarhus, Denmark.
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark.
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark.
- Biotech Research and Innovation Centre, BRIC, Copenhagen University, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
21
|
Comtet-Marre S, Chaucheyras-Durand F, Bouzid O, Mosoni P, Bayat AR, Peyret P, Forano E. FibroChip, a Functional DNA Microarray to Monitor Cellulolytic and Hemicellulolytic Activities of Rumen Microbiota. Front Microbiol 2018; 9:215. [PMID: 29487591 PMCID: PMC5816793 DOI: 10.3389/fmicb.2018.00215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/30/2018] [Indexed: 01/22/2023] Open
Abstract
Ruminants fulfill their energy needs for growth primarily through microbial breakdown of plant biomass in the rumen. Several biotic and abiotic factors influence the efficiency of fiber degradation, which can ultimately impact animal productivity and health. To provide more insight into mechanisms involved in the modulation of fibrolytic activity, a functional DNA microarray targeting genes encoding key enzymes involved in cellulose and hemicellulose degradation by rumen microbiota was designed. Eight carbohydrate-active enzyme (CAZyme) families (GH5, GH9, GH10, GH11, GH43, GH48, CE1, and CE6) were selected which represented 392 genes from bacteria, protozoa, and fungi. The DNA microarray, designated as FibroChip, was validated using targets of increasing complexity and demonstrated sensitivity and specificity. In addition, FibroChip was evaluated for its explorative and semi-quantitative potential. Differential expression of CAZyme genes was evidenced in the rumen bacterium Fibrobacter succinogenes S85 grown on wheat straw or cellobiose. FibroChip was used to identify the expressed CAZyme genes from the targeted families in the rumen of a cow fed a mixed diet based on grass silage. Among expressed genes, those encoding GH43, GH5, and GH10 families were the most represented. Most of the F. succinogenes genes detected by the FibroChip were also detected following RNA-seq analysis of RNA transcripts obtained from the rumen fluid sample. Use of the FibroChip also indicated that transcripts of fiber degrading enzymes derived from eukaryotes (protozoa and anaerobic fungi) represented a significant proportion of the total microbial mRNA pool. FibroChip represents a reliable and high-throughput tool that enables researchers to monitor active members of fiber degradation in the rumen.
Collapse
Affiliation(s)
- Sophie Comtet-Marre
- UMR 454 MEDIS, INRA, Université Clermont Auvergne, Clermont-Ferrand, France.,R&D Animal Nutrition, Lallemand, Blagnac, France
| | - Frédérique Chaucheyras-Durand
- UMR 454 MEDIS, INRA, Université Clermont Auvergne, Clermont-Ferrand, France.,R&D Animal Nutrition, Lallemand, Blagnac, France
| | - Ourdia Bouzid
- UMR 454 MEDIS, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pascale Mosoni
- UMR 454 MEDIS, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ali R Bayat
- Milk Production Solutions, Green Technology, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Pierre Peyret
- UMR 454 MEDIS, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Evelyne Forano
- UMR 454 MEDIS, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
22
|
Hameed MW, Juszczak I, Bock R, van Dongen JT. Comparison of mitochondrial gene expression and polysome loading in different tobacco tissues. PLANT METHODS 2017; 13:112. [PMID: 29255478 PMCID: PMC5729415 DOI: 10.1186/s13007-017-0257-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND To investigate translational regulation of gene expression in plant mitochondria, a mitochondrial polysome isolation protocol was established for tobacco to investigate polysomal mRNA loading as a proxy for translational activity. Furthermore, we developed an oligonucleotide based microarray platform to determine the level of Nicotiana tabacum and Arabidopsis thaliana mitochondrial mRNA. RESULTS Microarray analysis of free and polysomal mRNAs was used to characterize differences in the levels of free transcripts and ribosome-bound mRNAs in various organs of tobacco plants. We have observed higher mitochondrial transcript levels in young leaves, flowers and floral buds as compared to fully expanded leaves and roots. A similar pattern of abundance was observed for ribosome-bound mitochondrial mRNAs in these tissues. However, the accumulation of the mitochondrial protein COX2 was found to be inversely related to that of its ribosome-bound mRNA. CONCLUSIONS Our results indicate that the association of mitochondrial mRNAs to ribosomes is largely determined by the total transcript level of a gene. However, at least for Cox2, we demonstrated that the level of ribosome-bound mRNA is not reflected by the amount of COX2 protein.
Collapse
Affiliation(s)
- Muhammad Waqar Hameed
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270 Pakistan
| | - Ilona Juszczak
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Molecular Physiology, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Joost Thomas van Dongen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| |
Collapse
|
23
|
Targeted sequencing of both DNA strands barcoded and captured individually by RNA probes to identify genome-wide ultra-rare mutations. Sci Rep 2017; 7:3356. [PMID: 28611392 PMCID: PMC5469810 DOI: 10.1038/s41598-017-03448-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
Next Generation Sequencing (NGS) has been widely implemented in biological research and has made a profound impact on patient care. One of the essential NGS applications is to identify disease-causing sequence variants, where high coverage and accuracy are needed. Here, we reported a novel NGS pipeline, termed a Sequencing System of Digitalized Barcode Encrypted Single-stranded Library from Extremely Low (quality and quantity) DNA Input with Probe-based DNA Enrichment by RNA probes targeting DNA duplex (DEEPER-Seq). This method combines an ultra-sensitive single-stranded library construction with barcoding error correction, termed DEEPER-Library; and a DNA capture approach using RNA probes targeting both DNA strands, termed DEEPER-Capture. DEEPER-Seq can create NGS libraries from as little as 20 pg DNA with PCR error correcting capabilities, and capture target sequences at an average ratio of 29.2% by targeting both DNA strands simultaneously with an over 98.6% coverage. Our method tags and sequences each of the two strands of a DNA duplex independently and only scores mutations that are found at the same position in both strands, which allows us to identify mutations with allelic fractions down to 0.03% in a whole exome sequencing (WES) study with a background error rate of one artificial error per 4.8 × 109 nucleotides.
Collapse
|
24
|
Wang Q, Shashikant CS, Jensen M, Altman NS, Girirajan S. Novel metrics to measure coverage in whole exome sequencing datasets reveal local and global non-uniformity. Sci Rep 2017; 7:885. [PMID: 28408746 PMCID: PMC5429826 DOI: 10.1038/s41598-017-01005-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 03/24/2017] [Indexed: 12/24/2022] Open
Abstract
Whole Exome Sequencing (WES) is a powerful clinical diagnostic tool for discovering the genetic basis of many diseases. A major shortcoming of WES is uneven coverage of sequence reads over the exome targets contributing to many low coverage regions, which hinders accurate variant calling. In this study, we devised two novel metrics, Cohort Coverage Sparseness (CCS) and Unevenness (UE) Scores for a detailed assessment of the distribution of coverage of sequence reads. Employing these metrics we revealed non-uniformity of coverage and low coverage regions in the WES data generated by three different platforms. This non-uniformity of coverage is both local (coverage of a given exon across different platforms) and global (coverage of all exons across the genome in the given platform). The low coverage regions encompassing functionally important genes were often associated with high GC content, repeat elements and segmental duplications. While a majority of the problems associated with WES are due to the limitations of the capture methods, further refinements in WES technologies have the potential to enhance its clinical applications.
Collapse
Affiliation(s)
- Qingyu Wang
- Bioinformatics and Genomics Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Statistics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Cooduvalli S Shashikant
- Bioinformatics and Genomics Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Matthew Jensen
- Bioinformatics and Genomics Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Naomi S Altman
- Bioinformatics and Genomics Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Statistics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Santhosh Girirajan
- Bioinformatics and Genomics Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Anthropology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
25
|
Sharma S, Ryndak MB, Aggarwal AN, Yadav R, Sethi S, Masih S, Laal S, Verma I. Transcriptome analysis of mycobacteria in sputum samples of pulmonary tuberculosis patients. PLoS One 2017; 12:e0173508. [PMID: 28282458 PMCID: PMC5345810 DOI: 10.1371/journal.pone.0173508] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/21/2017] [Indexed: 11/18/2022] Open
Abstract
Pulmonary tuberculosis, the disease caused by Mycobacterium tuberculosis, still retains a top rank among the deadliest communicable diseases. Sputum expectorated during the disease continues to be a primary diagnostic specimen and also serves as a reservoir of bacteria. The expression pattern of mycobacteria in sputum will lead to an insight into bacterial adaptation at the most highly transmissible stage of infection and can also help in identifying newer diagnostic as well as drug targets. Thus, in the present study, a whole genome microarray of Mycobacterium tuberculosis was used to elucidate the transcriptional profile of mycobacteria in the sputum samples of smear positive pulmonary tuberculosis patients. Overall, the mycobacteria in sputum appeared to be in a low energy and low replicative state as compared to in vitro grown log phase M. tb with downregulation of genes involved in ATP synthesis, aerobic respiration and translational machinery. Simultaneously, downregulation was also seen in the genes involved in secretion machinery of mycobacteria along with the downregulation of genes involved in the synthesis of phthiocerol dimycocerosate and phenol glycolipids. In contrast, the majority of the genes which showed an upregulation in sputum mycobacteria were of unknown function. Further identification of these genes may provide new insights into the mycobacterial behavior during this phase of infection and may help in deciphering candidates for development of better diagnostic and drug candidates.
Collapse
Affiliation(s)
- Sumedha Sharma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Michelle B. Ryndak
- Department of Pathology, New York University Langone Medical Center, New York, New York, United States of America
| | - Ashutosh N. Aggarwal
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Yadav
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Sethi
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shet Masih
- Molecular Diagnostic and Research Laboratory (MDRL) Pvt. Ltd., Chandigarh, India
| | - Suman Laal
- Department of Pathology, New York University Langone Medical Center, New York, New York, United States of America
- Veterans Affairs New York Harbor Healthcare System, New York, New York, United States of America
| | - Indu Verma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
26
|
Neuhaus K, Landstorfer R, Simon S, Schober S, Wright PR, Smith C, Backofen R, Wecko R, Keim DA, Scherer S. Differentiation of ncRNAs from small mRNAs in Escherichia coli O157:H7 EDL933 (EHEC) by combined RNAseq and RIBOseq - ryhB encodes the regulatory RNA RyhB and a peptide, RyhP. BMC Genomics 2017; 18:216. [PMID: 28245801 PMCID: PMC5331693 DOI: 10.1186/s12864-017-3586-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/13/2017] [Indexed: 12/14/2022] Open
Abstract
Background While NGS allows rapid global detection of transcripts, it remains difficult to distinguish ncRNAs from short mRNAs. To detect potentially translated RNAs, we developed an improved protocol for bacterial ribosomal footprinting (RIBOseq). This allowed distinguishing ncRNA from mRNA in EHEC. A high ratio of ribosomal footprints per transcript (ribosomal coverage value, RCV) is expected to indicate a translated RNA, while a low RCV should point to a non-translated RNA. Results Based on their low RCV, 150 novel non-translated EHEC transcripts were identified as putative ncRNAs, representing both antisense and intergenic transcripts, 74 of which had expressed homologs in E. coli MG1655. Bioinformatics analysis predicted statistically significant target regulons for 15 of the intergenic transcripts; experimental analysis revealed 4-fold or higher differential expression of 46 novel ncRNA in different growth media. Out of 329 annotated EHEC ncRNAs, 52 showed an RCV similar to protein-coding genes, of those, 16 had RIBOseq patterns matching annotated genes in other enterobacteriaceae, and 11 seem to possess a Shine-Dalgarno sequence, suggesting that such ncRNAs may encode small proteins instead of being solely non-coding. To support that the RIBOseq signals are reflecting translation, we tested the ribosomal-footprint covered ORF of ryhB and found a phenotype for the encoded peptide in iron-limiting condition. Conclusion Determination of the RCV is a useful approach for a rapid first-step differentiation between bacterial ncRNAs and small mRNAs. Further, many known ncRNAs may encode proteins as well. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3586-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Klaus Neuhaus
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany. .,Core Facility Microbiome/NGS, ZIEL Institute for Food & Health, Weihenstephaner Berg 3, D-85354, Freising, Germany.
| | - Richard Landstorfer
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany
| | - Svenja Simon
- Informatik und Informationswissenschaft, Universität Konstanz, D-78457, Konstanz, Germany
| | - Steffen Schober
- Institut für Nachrichtentechnik, Universität Ulm, Albert-Einstein-Allee 43, D-89081, Ulm, Germany
| | - Patrick R Wright
- Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Cameron Smith
- Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Romy Wecko
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany
| | - Daniel A Keim
- Informatik und Informationswissenschaft, Universität Konstanz, D-78457, Konstanz, Germany
| | - Siegfried Scherer
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany
| |
Collapse
|
27
|
Li R, Fristensky B, Wang G. Sequence data analysis and preprocessing for oligo probe design in microbial genomes. AIMS BIOENGINEERING 2017. [DOI: 10.3934/bioeng.2017.1.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Abstract
Microarray technology is a multiplex analytical technique for the detection of many different analytes in a mixture of biomolecules. The detection limits for each of the analytes for which the array is designed depend on a multiplicity of reaction parameters, the array itself, and profoundly on the label and detection technology employed. Significant improvements in assay sensitivity have been achieved by optimizing all steps that affect the generation of signal and noise. Nanoparticle technology brings a new dimension to this technology by providing not only higher sensitivity but also improved specificity for hybridization-based microarray assay systems.
Collapse
|
29
|
Abstract
Microarray is a high throughput discovery tool that has been broadly used for genomic research. Probe-target hybridization is the central concept of this technology to determine the relative abundance of nucleic acid sequences through fluorescence-based detection. In microarray experiments, variations of expression measurements can be attributed to many different sources that influence the stability and reproducibility of microarray platforms. Normalization is an essential step to reduce non-biological errors and to convert raw image data from multiple arrays (channels) to quality data for further analysis. In general, for the traditional microarray analysis, most established normalization methods are based on two assumptions: (1) the total number of target genes is large enough (>10,000); and (2) the expression level of the majority of genes is kept constant. However, microRNA (miRNA) arrays are usually spotted in low density, due to the fact that the total number of miRNAs is less than 2,000 and the majority of miRNAs are weakly or not expressed. As a result, normalization methods based on the above two assumptions are not applicable to miRNA profiling studies. In this review, we discuss a few representative microarray platforms on the market for miRNA profiling and compare the traditional methods with a few novel strategies specific for miRNA microarrays.
Collapse
Affiliation(s)
- Bin Wang
- Department of Mathematics and Statistics, University of South Alabama, 411 University BLVD N, Room 325, Mobile, AL 36688, USA; E-Mail:
| | - Yaguang Xi
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: 1-251-445-9857; Fax: 1-251-460-6994
| |
Collapse
|
30
|
Dietz S, Schirmer U, Mercé C, von Bubnoff N, Dahl E, Meister M, Muley T, Thomas M, Sültmann H. Low Input Whole-Exome Sequencing to Determine the Representation of the Tumor Exome in Circulating DNA of Non-Small Cell Lung Cancer Patients. PLoS One 2016; 11:e0161012. [PMID: 27529345 PMCID: PMC4987014 DOI: 10.1371/journal.pone.0161012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/28/2016] [Indexed: 01/06/2023] Open
Abstract
Circulating cell-free DNA (cfDNA) released from cancerous tissues has been found to harbor tumor-associated alterations and to represent the molecular composition of the tumor. Recent advances in technologies, especially in next-generation sequencing, enable the analysis of low amounts of cfDNA from body fluids. We analyzed the exomes of tumor tissue and matched serum samples to investigate the molecular representation of the tumor exome in cfDNA. To this end, we implemented a workflow for sequencing of cfDNA from low serum volumes (200 μl) and performed whole-exome sequencing (WES) of serum and matched tumor tissue samples from six non-small cell lung cancer (NSCLC) patients and two control sera. Exomes, including untranslated regions (UTRs) of cfDNA were sequenced with an average coverage of 68.5x. Enrichment efficiency, target coverage, and sequencing depth of cfDNA reads were comparable to those from matched tissues. Discovered variants were compared between serum and tissue as well as to the COSMIC database of known mutations. Although not all tissue variants could be confirmed in the matched serum, up to 57% of the tumor variants were reflected in matched cfDNA with mutations in PIK3CA, ALK, and PTEN as well as variants at COSMIC annotated sites in all six patients analyzed. Moreover, cfDNA revealed a mutation in MTOR, which was not detected in the matched tissue, potentially from an untested region of the heterogeneous primary tumor or from a distant metastatic clone. WES of cfDNA may provide additional complementary molecular information about clinically relevant mutations and the clonal heterogeneity of the tumors.
Collapse
Affiliation(s)
- Steffen Dietz
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Uwe Schirmer
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Clémentine Mercé
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Nikolas von Bubnoff
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Edgar Dahl
- Molecular Oncology Group, Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Michael Meister
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Translational Research Unit, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Muley
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Translational Research Unit, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Thomas
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Oncology, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Holger Sültmann
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
31
|
Hong CS, Singh LN, Mullikin JC, Biesecker LG. Assessing the reproducibility of exome copy number variations predictions. Genome Med 2016; 8:82. [PMID: 27503473 PMCID: PMC4976506 DOI: 10.1186/s13073-016-0336-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/13/2016] [Indexed: 11/28/2022] Open
Abstract
Background Reproducibility is receiving increased attention across many domains of science and genomics is no exception. Efforts to identify copy number variations (CNVs) from exome sequence (ES) data have been increasing. Many algorithms have been published to discover CNVs from exomes and a major challenge is the reproducibility in other datasets. Here we test exome CNV calling reproducibility under three conditions: data generated by different sequencing centers; varying sample sizes; and varying capture methodology. Methods Four CNV tools were tested: eXome Hidden Markov Model (XHMM), Copy Number Inference From Exome Reads (CoNIFER), EXCAVATOR, and Copy Number Analysis for Targeted Resequencing (CONTRA). To examine the reproducibility, we ran the callers on four datasets, varying sample sizes of N = 10, 30, 75, 100, 300, and data with different capture methodology. We examined the false negative (FN) calls and false positive (FP) calls for potential limitations of the CNV callers. The positive predictive value (PPV) was measured by checking the CNV call concordance against single nucleotide polymorphism array. Results Using independently generated datasets, we examined the PPV for each dataset and observed wide range of PPVs. The PPV values were highly data dependent (p <0.001). For the sample sizes and capture method analyses, we tested the callers in triplicates. Both analyses resulted in wide ranges of PPVs, even for the same test. Interestingly, negative correlations between the PPV and the sample sizes were observed for CoNIFER (ρ = –0.80). Further examination of FN calls showed that 44 % of these were missed by all callers and were attributed to the CNV size (46 % spanned ≤3 exons). Overlap of the FP calls showed that FPs were unique to each caller, indicative of algorithm dependency. Conclusions Our results demonstrate that further improvements in CNV callers are necessary to improve reproducibility and to include wider spectrum of CNVs (including the small CNVs). These CNV callers should be evaluated on multiple independent, heterogeneously generated datasets of varying size to increase robustness and utility. These approaches to the evaluation of exome CNV are essential to support wide utility and applicability of CNV discovery in exome studies. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0336-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Celine S Hong
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Larry N Singh
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - James C Mullikin
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20852, USA.,Comparative Genomics Analysis Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Leslie G Biesecker
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA. .,NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20852, USA.
| |
Collapse
|
32
|
Expressed miRNAs target feather related mRNAs involved in cell signaling, cell adhesion and structure during chicken epidermal development. Gene 2016; 591:393-402. [PMID: 27320726 DOI: 10.1016/j.gene.2016.06.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 01/12/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Previous studies have shown that miRNA regulation contributes to a diverse set of processes including cellular differentiation and morphogenesis which leads to the creation of different cell types in multicellular organisms and is thus key to animal development. Feathers are one of the most distinctive features of extant birds and are important for multiple functions including flight, thermal regulation, and sexual selection. However, the role of miRNAs in feather development has been woefully understudied despite the identification of cell signaling pathways, cell adhesion molecules and structural genes involved in feather development. In this study, we performed a microarray experiment comparing the expression of miRNAs and mRNAs among three embryonic stages of development and two tissues (scutate scale and feather) of the chicken. We combined this expression data with miRNA target prediction tools and a curated list of feather related genes to produce a set of 19 miRNA-mRNA duplexes. These targeted mRNAs have been previously identified as important cell signaling and cell adhesion genes as well as structural genes involved in feather and scale morphogenesis. Interestingly, the miRNA target site of the cell signaling pathway gene, Aldehyde Dehydrogenase 1 Family, Member A3 (ALDH1A3), is unique to birds indicating a novel role in Aves. The identified miRNA target site of the cell adhesion gene, Tenascin C (TNC), is only found in specific chicken TNC splice variants that are differentially expressed in developing scutate scale and feather tissue indicating an important role of miRNA regulation in epidermal differentiation. Additionally, we found that β-keratins, a major structural component of avian and reptilian epidermal appendages, are targeted by multiple miRNA genes. In conclusion, our work provides quantitative expression data on miRNAs and mRNAs during feather and scale development and has produced a highly diverse, but manageable list of miRNA-mRNA duplexes for future validation experiments.
Collapse
|
33
|
Cho H, Chou HH. Thermodynamically optimal whole-genome tiling microarray design and validation. BMC Res Notes 2016; 9:305. [PMID: 27295952 PMCID: PMC4906886 DOI: 10.1186/s13104-016-2113-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 06/01/2016] [Indexed: 11/10/2022] Open
Abstract
Background Microarray is an efficient apparatus to interrogate the whole transcriptome of species. Microarray can be designed according to annotated gene sets, but the resulted microarrays cannot be used to identify novel transcripts and this design method is not applicable to unannotated species. Alternatively, a whole-genome tiling microarray can be designed using only genomic sequences without gene annotations, and it can be used to detect novel RNA transcripts as well as known genes. The difficulty with tiling microarray design lies in the tradeoff between probe-specificity and coverage of the genome. Sequence comparison methods based on BLAST or similar software are commonly employed in microarray design, but they cannot precisely determine the subtle thermodynamic competition between probe targets and partially matched probe nontargets during hybridizations. Findings Using the whole-genome thermodynamic analysis software PICKY to design tiling microarrays, we can achieve maximum whole-genome coverage allowable under the thermodynamic constraints of each target genome. The resulted tiling microarrays are thermodynamically optimal in the sense that all selected probes share the same melting temperature separation range between their targets and closest nontargets, and no additional probes can be added without violating the specificity of the microarray to the target genome. Conclusions This new design method was used to create two whole-genome tiling microarrays for Escherichia coli MG1655 and Agrobacterium tumefaciens C58 and the experiment results validated the design. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-2113-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hyejin Cho
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Hui-Hsien Chou
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA. .,Department of Computer Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
34
|
Development and validation of a custom microarray for global transcriptome profiling of the fungus Aspergillus nidulans. Curr Genet 2016; 62:897-910. [PMID: 27038308 DOI: 10.1007/s00294-016-0597-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 01/22/2023]
Abstract
Transcriptome profiling is a powerful tool for identifying gene networks from whole genome expression analysis in many living species. Here is described the first extensively characterized platform using Agilent microarray technology for transcriptome analysis in the filamentous fungus Aspergillus (Emericella) nidulans. We developed and validated a reliable gene expression microarray in 8 × 15 K format, with predictive and experimental data establishing its specificity and sensitivity. Either one or two 60-mer oligonucleotide probes were selected for each of 10,550 nuclear as well as 20 mitochondrial coding sequences. More than 99 % of probes were predicted to hybridize with 100 % identity to their aimed specific A. nidulans target only. Probe sensitivity was supported by a highly narrow distribution of melting temperatures together with thermodynamic features, which strongly favored probe-target perfect match hybridization, in comparison with predicted secondary structures. Array quality was evaluated through transcriptome comparison of two A. nidulans strains, differing by the presence or not of Escherichia coli LacZ transgene. High signal-to-noise ratios were measured, and signal reproducibility was established at intra-probe and inter-probe levels. Reproducibility of microarray performances was assessed by high correlation between two-color dye signals and between technical replicates. Results were confirmed by RT-qPCR analysis on five genes. Though it covers 100 % of the A. nidulans targeted coding sequences, this low density array allows limited experimental costs and simplified data analysis process, making it suitable for studying gene expression in this model organism through large numbers of experimental conditions, in basic, biomedical or industrial microbiology research fields.
Collapse
|
35
|
Modai S, Shomron N. Molecular Risk Factors for Schizophrenia. Trends Mol Med 2016; 22:242-253. [DOI: 10.1016/j.molmed.2016.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 01/15/2016] [Accepted: 01/15/2016] [Indexed: 01/02/2023]
|
36
|
Parisot N, Peyretaillade E, Dugat-Bony E, Denonfoux J, Mahul A, Peyret P. Probe Design Strategies for Oligonucleotide Microarrays. Methods Mol Biol 2016; 1368:67-82. [PMID: 26614069 DOI: 10.1007/978-1-4939-3136-1_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Oligonucleotide microarrays have been widely used for gene detection and/or quantification of gene expression in various samples ranging from a single organism to a complex microbial assemblage. The success of a microarray experiment, however, strongly relies on the quality of designed probes. Consequently, probe design is of critical importance and therefore multiple parameters should be considered for each probe in order to ensure high specificity, sensitivity, and uniformity as well as potentially quantitative power. Moreover, to assess the complete gene repertoire of complex biological samples such as those studied in the field of microbial ecology, exploratory probe design strategies must be also implemented to target not-yet-described sequences. To design such probes, two algorithms, KASpOD and HiSpOD, have been developed and they are available via two user-friendly web services. Here, we describe the use of this software necessary for the design of highly effective probes especially in the context of microbial oligonucleotide microarrays by taking into account all the crucial parameters.
Collapse
Affiliation(s)
- Nicolas Parisot
- Université d'Auvergne, EA 4678, CIDAM, Clermont Université, BP 10448, F-63000, Clermont-Ferrand, France
| | - Eric Peyretaillade
- Université d'Auvergne, EA 4678, CIDAM, Clermont Université, BP 10448, F-63000, Clermont-Ferrand, France
| | - Eric Dugat-Bony
- Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, INRA, AgroParisTech, UMR 782, Thiverval-Grignon, France
| | - Jérémie Denonfoux
- Genomic Platform and R&D, Genoscreen, Campus de l'Institut Pasteur, Lille, France
| | | | - Pierre Peyret
- Université d'Auvergne, EA 4678, CIDAM, Clermont Université, BP 10448, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
37
|
Achieving Crop Stress Tolerance and Improvement—an Overview of Genomic Techniques. Appl Biochem Biotechnol 2015; 177:1395-408. [DOI: 10.1007/s12010-015-1830-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 09/02/2015] [Indexed: 01/09/2023]
|
38
|
Bae JS, Kim NKD, Lee C, Kim SC, Lee HR, Song HR, Park KB, Kim HW, Lee SH, Kim HY, Lee SC, Jeong C, Park MS, Yoo WJ, Chung CY, Choi IH, Kim OH, Park WY, Cho TJ. Comprehensive genetic exploration of skeletal dysplasia using targeted exome sequencing. Genet Med 2015; 18:563-9. [PMID: 26402641 DOI: 10.1038/gim.2015.129] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/10/2015] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The purpose of this study was to evaluate the clinical utility of targeted exome sequencing (TES) as a molecular diagnostic tool for patients with skeletal dysplasia. METHODS A total of 185 patients either diagnosed with or suspected to have skeletal dysplasia were recruited over a period of 3 years. TES was performed for 255 genes associated with the pathogenesis of skeletal dysplasia, and candidate variants were selected using a bioinformatics analysis. All candidate variants were confirmed by Sanger sequencing, correlation with the phenotype, and a cosegregation study in the family. RESULTS TES detected "confirmed" or "highly likely" pathogenic sequence variants in 74% (71 of 96) of cases in the assured clinical diagnosis category and 20.3% (13 of 64 cases) of cases in the uncertain clinical diagnosis category. TES successfully detected pathogenic variants in all 25 cases of previously known genotypes. The data also suggested a copy-number variation that led to a molecular diagnosis. CONCLUSION This study demonstrates the feasibility of TES for the molecular diagnosis of skeletal dysplasia. However, further confirmation is needed for a final molecular diagnosis, including Sanger sequencing of candidate variants with suspected, poorly captured exons.Genet Med 18 6, 563-569.
Collapse
Affiliation(s)
- Jun-Seok Bae
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Nayoung K D Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Chung Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Sang Cheol Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Hey Ran Lee
- Division of Pediatric Orthopaedics, Seoul National University Children's Hospital, Seoul, Korea
| | - Hae-Ryong Song
- Department of Orthopaedic Surgery, Korea University Guro Hospital, Seoul, Korea
| | - Kun Bo Park
- Department of Orthopaedic Surgery, Inje University Haeundae Hospital, Busan, Korea
| | - Hyun Woo Kim
- Department of Orthopaedic Surgery, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Soon Hyuck Lee
- Department of Orthopaedic Surgery, Korea University Anam Hospital, Seoul, Korea
| | - Ha Yong Kim
- Department of Orthopaedic Surgery, Eulji University Daejeon Hospital, Daejeon, Korea
| | - Soon Chul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Changhoon Jeong
- Department of Orthopaedic Surgery, Bucheon St. Mary's Hospital, the Catholic University of Korea, Bucheon, Korea
| | - Moon Seok Park
- Department of Orthopaedic Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Won Joon Yoo
- Division of Pediatric Orthopaedics, Seoul National University Children's Hospital, Seoul, Korea
| | - Chin Youb Chung
- Department of Orthopaedic Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - In Ho Choi
- Division of Pediatric Orthopaedics, Seoul National University Children's Hospital, Seoul, Korea
| | - Ok-Hwa Kim
- Department of Radiology, Woorisoa Children's Hospital, Seoul, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Tae-Joon Cho
- Division of Pediatric Orthopaedics, Seoul National University Children's Hospital, Seoul, Korea
| |
Collapse
|
39
|
Investigation of Human Cancers for Retrovirus by Low-Stringency Target Enrichment and High-Throughput Sequencing. Sci Rep 2015; 5:13201. [PMID: 26285800 PMCID: PMC4541070 DOI: 10.1038/srep13201] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 07/14/2015] [Indexed: 01/05/2023] Open
Abstract
Although nearly one fifth of all human cancers have an infectious aetiology, the causes for the majority of cancers remain unexplained. Despite the enormous data output from high-throughput shotgun sequencing, viral DNA in a clinical sample typically constitutes a proportion of host DNA that is too small to be detected. Sequence variation among virus genomes complicates application of sequence-specific, and highly sensitive, PCR methods. Therefore, we aimed to develop and characterize a method that permits sensitive detection of sequences despite considerable variation. We demonstrate that our low-stringency in-solution hybridization method enables detection of <100 viral copies. Furthermore, distantly related proviral sequences may be enriched by orders of magnitude, enabling discovery of hitherto unknown viral sequences by high-throughput sequencing. The sensitivity was sufficient to detect retroviral sequences in clinical samples. We used this method to conduct an investigation for novel retrovirus in samples from three cancer types. In accordance with recent studies our investigation revealed no retroviral infections in human B-cell lymphoma cells, cutaneous T-cell lymphoma or colorectal cancer biopsies. Nonetheless, our generally applicable method makes sensitive detection possible and permits sequencing of distantly related sequences from complex material.
Collapse
|
40
|
Pieszko M, Weir W, Goodhead I, Kinnaird J, Shiels B. ApiAP2 Factors as Candidate Regulators of Stochastic Commitment to Merozoite Production in Theileria annulata. PLoS Negl Trop Dis 2015; 9:e0003933. [PMID: 26273826 PMCID: PMC4537280 DOI: 10.1371/journal.pntd.0003933] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/25/2015] [Indexed: 02/05/2023] Open
Abstract
Background Differentiation of one life-cycle stage to the next is critical for survival and transmission of apicomplexan parasites. A number of studies have shown that stage differentiation is a stochastic process and is associated with a point that commits the cell to a change over in the pattern of gene expression. Studies on differentiation to merozoite production (merogony) in T. annulata postulated that commitment involves a concentration threshold of DNA binding proteins and an auto-regulatory loop. Principal Findings In this study ApiAP2 DNA binding proteins that show changes in expression level during merogony of T. annulata have been identified. DNA motifs bound by orthologous domains in Plasmodium were found to be enriched in upstream regions of stage-regulated T. annulata genes and validated as targets for the T. annulata AP2 domains by electrophoretic mobility shift assay (EMSA). Two findings were of particular note: the gene in T. annulata encoding the orthologue of the ApiAP2 domain in the AP2-G factor that commits Plasmodium to gametocyte production, has an expression profile indicating involvement in transmission of T. annulata to the tick vector; genes encoding related domains that bind, or are predicted to bind, sequence motifs of the type 5'-(A)CACAC(A) are implicated in differential regulation of gene expression, with one gene (TA11145) likely to be preferentially up-regulated via auto-regulation as the cell progresses to merogony. Conclusions We postulate that the Theileria factor possessing the AP2 domain orthologous to that of Plasmodium AP2-G may regulate gametocytogenesis in a similar manner to AP2-G. In addition, paralogous ApiAP2 factors that recognise 5'-(A)CACAC(A) type motifs could operate in a competitive manner to promote reversible progression towards the point that commits the cell to undergo merogony. Factors possessing AP2 domains that bind (or are predicted to bind) this motif are present in the vector-borne genera Theileria, Babesia and Plasmodium, and other Apicomplexa; leading to the proposal that the mechanisms that control stage differentiation will show a degree of conservation. The ability of vector-borne Apicomplexan parasites (Babesia, Plasmodium and Theileria) to change from one life-cycle stage to the next is critical for establishment of infection and transmission to new hosts. Stage differentiation steps of both Plasmodium and Theileria are known to involve stochastic transition through an intermediate form to a point that commits the cell to generate the next stage in the life-cycle. In this study we have identified genes encoding ApiAP2 DNA binding proteins in Theileria annulata that are differentially expressed during differentiation from the macroschizont stage, through merozoite production (merogony) to the piroplasm stage. The results provide evidence that the ApiAp2 factor in Theileria that possesses the orthologue of the Plasmodium AP2-G domain may also operate to regulate gametocytogenesis, and that progression to merogony is promoted by the ability of a merozoite DNA binding protein to preferentially up-regulate its own production. In addition, identification of multiple ApiAP2 DNA binding domains that bind related motifs within and across vector-borne Apicomplexan genera lead to the proposal that the mechanisms that promote the transition from asexual to sexual replication will show a degree of conservation.
Collapse
Affiliation(s)
- Marta Pieszko
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, United Kingdom
| | - William Weir
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, United Kingdom
| | - Ian Goodhead
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, United Kingdom
| | - Jane Kinnaird
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, United Kingdom
| | - Brian Shiels
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Giles T, Yon L, de Bree F, Bossers A, Hannant D, Barrow P, Abu-Median AB. Development of a DNA-based microarray for the detection of zoonotic pathogens in rodent species. Mol Cell Probes 2015; 29:427-437. [PMID: 26188129 PMCID: PMC7127396 DOI: 10.1016/j.mcp.2015.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 11/30/2022]
Abstract
The demand for diagnostic tools that allow simultaneous screening of samples for multiple pathogens is increasing because they overcome the limitations of other methods, which can only screen for a single or a few pathogens at a time. Microarrays offer the advantages of being capable to test a large number of samples simultaneously, screening for multiple pathogen types per sample and having comparable sensitivity to existing methods such as PCR. Array design is often considered the most important process in any microarray experiment and can be the deciding factor in the success of a study. There are currently no microarrays for simultaneous detection of rodent-borne pathogens. The aim of this report is to explicate the design, development and evaluation of a microarray platform for use as a screening tool that combines ease of use and rapid identification of a number of rodent-borne pathogens of zoonotic importance. Nucleic acid was amplified by multiplex biotinylation PCR prior to hybridisation onto microarrays. The array sensitivity was comparable to standard PCR, though less sensitive than real-time PCR. The array presented here is a prototype microarray identification system for zoonotic pathogens that can infect rodent species. We have developed a microarray to detect zoonotic pathogens in rodent species. The design stage of a microarray experiment is crucial for a successful experiment. We examined the difference between amplification methods prior to hybridisation.
Collapse
Affiliation(s)
- Timothy Giles
- University of Nottingham, Nottingham, United Kingdom.
| | - Lisa Yon
- University of Nottingham, Nottingham, United Kingdom.
| | | | | | | | - Paul Barrow
- University of Nottingham, Nottingham, United Kingdom.
| | | |
Collapse
|
42
|
Schmid M, Smith J, Burt DW, Aken BL, Antin PB, Archibald AL, Ashwell C, Blackshear PJ, Boschiero C, Brown CT, Burgess SC, Cheng HH, Chow W, Coble DJ, Cooksey A, Crooijmans RPMA, Damas J, Davis RVN, de Koning DJ, Delany ME, Derrien T, Desta TT, Dunn IC, Dunn M, Ellegren H, Eöry L, Erb I, Farré M, Fasold M, Fleming D, Flicek P, Fowler KE, Frésard L, Froman DP, Garceau V, Gardner PP, Gheyas AA, Griffin DK, Groenen MAM, Haaf T, Hanotte O, Hart A, Häsler J, Hedges SB, Hertel J, Howe K, Hubbard A, Hume DA, Kaiser P, Kedra D, Kemp SJ, Klopp C, Kniel KE, Kuo R, Lagarrigue S, Lamont SJ, Larkin DM, Lawal RA, Markland SM, McCarthy F, McCormack HA, McPherson MC, Motegi A, Muljo SA, Münsterberg A, Nag R, Nanda I, Neuberger M, Nitsche A, Notredame C, Noyes H, O'Connor R, O'Hare EA, Oler AJ, Ommeh SC, Pais H, Persia M, Pitel F, Preeyanon L, Prieto Barja P, Pritchett EM, Rhoads DD, Robinson CM, Romanov MN, Rothschild M, Roux PF, Schmidt CJ, Schneider AS, Schwartz MG, Searle SM, Skinner MA, Smith CA, Stadler PF, Steeves TE, Steinlein C, Sun L, Takata M, Ulitsky I, Wang Q, Wang Y, Warren WC, Wood JMD, Wragg D, Zhou H. Third Report on Chicken Genes and Chromosomes 2015. Cytogenet Genome Res 2015; 145:78-179. [PMID: 26282327 PMCID: PMC5120589 DOI: 10.1159/000430927] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Michael Schmid
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Solntsev LA, Starikova VD, Sakharnov NA, Knyazev DI, Utkin OV. Strategy of probe selection for studying mRNAs that participate in receptor-mediated apoptosis signaling. Mol Biol 2015. [DOI: 10.1134/s0026893315030164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Hameed MW. Hypoxia up-regulates mitochondrial genome-encoded transcripts in Arabidopsis roots. Genes Genet Syst 2015; 90:325-34. [DOI: 10.1266/ggs.14-00057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Muhammad Waqar Hameed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi
- Pakistan and Max Planck Institute of Molecular Plant Physiology
| |
Collapse
|
45
|
Cheng H, Wu JX, Zheng H, Xu W, Zhou L, Too HP, Choi WK. DNA hybridization on silicon nanowire platform prepared by glancing angle deposition and metal assisted chemical etching process. RSC Adv 2015. [DOI: 10.1039/c5ra07117h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Porous nanowire surface provides high capacity for oligonucleotide hybridization.
Collapse
Affiliation(s)
- H. Cheng
- Advanced Materials for Micro- and Nano-Systems
- Singapore-MIT Alliance
- Singapore
| | - J. X. Wu
- NUS Graduate School for Integrative Sciences and Engineering
- National University of Singapore
- Singapore
| | - H. Zheng
- GLOBALFOUNDRIES Singapore Pte. Ltd
- Singapore
| | - W. Xu
- Department of Electrical and Computer Engineering
- National University of Singapore
- Singapore
| | | | - H. P. Too
- Department of Biochemistry
- National University of Singapore
- Singapore
- Bioprocessing Technology Institute
- Singapore
| | - W. K. Choi
- Advanced Materials for Micro- and Nano-Systems
- Singapore-MIT Alliance
- Singapore
- NUS Graduate School for Integrative Sciences and Engineering
- National University of Singapore
| |
Collapse
|
46
|
Wang X, Teng D, Guan Q, Tian F, Wang J. Detection of genetically modified crops using multiplex asymmetric polymerase chain reaction and asymmetric hyperbranched rolling circle amplification coupled with reverse dot blot. Food Chem 2014; 173:1022-9. [PMID: 25466120 DOI: 10.1016/j.foodchem.2014.10.126] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/14/2014] [Accepted: 10/22/2014] [Indexed: 02/04/2023]
Abstract
To meet the ever-increasing demand for detection of genetically modified crops (GMCs), low-cost, high-throughput and high-accuracy detection assays are needed. The new multiplex asymmetric polymerase chain reaction and asymmetric hyper-branched rolling circle amplification coupled with reverse dot blot (RDB) systems were developed to detect GMCs. Thirteen oligonucleotide probes were designed to identify endogenous targets (Lec1, Hmg and Sad1), event-specific targets (RRS-5C, RRS-3C, Bt176-3C and MON810-3C), screening targets (35S promoter and NOS terminator), and control targets (18S and PLX). Optimised conditions were as follows: tailed hybridization probes (1-2 pmol/l) were immobilized on a membrane by baking for 2h, and a 10:1 ratio of forward to reverse primers was used. The detection limits were 0.1 μg/l of 2% RRS and 0.5 ng/l of DNA from genetically modified (GM) soybean. These results indicate that the RDB assay could be used to detect multiplex target genes of GMCs rapidly and inexpensively.
Collapse
Affiliation(s)
- Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, China; Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Da Teng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, China; Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingfeng Guan
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, China; Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fang Tian
- Baotou City Health School, Baotou Medical College of Career Technical College, Baotou 014030, China
| | - Jianhua Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, China; Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
47
|
Abstract
We constructed a 400K WG tiling oligoarray for the horse and applied it for the discovery of copy number variations (CNVs) in 38 normal horses of 16 diverse breeds, and the Przewalski horse. Probes on the array represented 18,763 autosomal and X-linked genes, and intergenic, sub-telomeric and chrY sequences. We identified 258 CNV regions (CNVRs) across all autosomes, chrX and chrUn, but not in chrY. CNVs comprised 1.3% of the horse genome with chr12 being most enriched. American Miniature horses had the highest and American Quarter Horses the lowest number of CNVs in relation to Thoroughbred reference. The Przewalski horse was similar to native ponies and draft breeds. The majority of CNVRs involved genes, while 20% were located in intergenic regions. Similar to previous studies in horses and other mammals, molecular functions of CNV-associated genes were predominantly in sensory perception, immunity and reproduction. The findings were integrated with previous studies to generate a composite genome-wide dataset of 1476 CNVRs. Of these, 301 CNVRs were shared between studies, while 1174 were novel and require further validation. Integrated data revealed that to date, 41 out of over 400 breeds of the domestic horse have been analyzed for CNVs, of which 11 new breeds were added in this study. Finally, the composite CNV dataset was applied in a pilot study for the discovery of CNVs in 6 horses with XY disorders of sexual development. A homozygous deletion involving AKR1C gene cluster in chr29 in two affected horses was considered possibly causative because of the known role of AKR1C genes in testicular androgen synthesis and sexual development. While the findings improve and integrate the knowledge of CNVs in horses, they also show that for effective discovery of variants of biomedical importance, more breeds and individuals need to be analyzed using comparable methodological approaches. Genomes of individuals in a species vary in many ways, one of which is DNA copy number variation (CNV). This includes deletions, duplications, and complex rearrangements typically larger than 50 base-pairs. CNVs are part of normal genetic variation contributing to phenotypic diversity but can also be pathogenic and associated with diseases and disorders. In order to distinguish between the two, detailed knowledge about CNVs in the species of interest is needed. Here we studied the genomes of 38 normal horses of 16 diverse breeds, and identified 258 CNV regions. We integrated our findings with previously published horse CNVs and generated a composite dataset of ∼1400 CNVRs. Despite this large number, our analysis shows that CNV research in horses needs further improvement because the current data are based on 10% of horse breeds and that most CNVRs are study-specific and require validation. Finally, we analyzed CNVs in horses with disorders of sexual development and found in two male pseudo-hermaphrodites a large deletion disrupting a group of genes involved in sex hormone metabolism and sexual differentiation. The findings underline the possible role of CNVs in complex disorders such as development and reproduction.
Collapse
|
48
|
Panova M, Johansson T, Canbäck B, Bentzer J, Rosenblad MA, Johannesson K, Tunlid A, André C. Species and gene divergence in Littorina snails detected by array comparative genomic hybridization. BMC Genomics 2014; 15:687. [PMID: 25135785 PMCID: PMC4148934 DOI: 10.1186/1471-2164-15-687] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 08/11/2014] [Indexed: 12/11/2022] Open
Abstract
Background Array comparative genomic hybridization (aCGH) is commonly used to screen different types of genetic variation in humans and model species. Here, we performed aCGH using an oligonucleotide gene-expression array for a non-model species, the intertidal snail Littorina saxatilis. First, we tested what types of genetic variation can be detected by this method using direct re-sequencing and comparison to the Littorina genome draft. Secondly, we performed a genome-wide comparison of four closely related Littorina species: L. fabalis, L. compressa, L. arcana and L. saxatilis and of populations of L. saxatilis found in Spain, Britain and Sweden. Finally, we tested whether we could identify genetic variation underlying “Crab” and “Wave” ecotypes of L. saxatilis. Results We could reliably detect copy number variations, deletions and high sequence divergence (i.e. above 3%), but not single nucleotide polymorphisms. The overall hybridization pattern and number of significantly diverged genes were in close agreement with earlier phylogenetic reconstructions based on single genes. The trichotomy of L. arcana, L. compressa and L. saxatilis could not be resolved and we argue that these divergence events have occurred recently and very close in time. We found evidence for high levels of segmental duplication in the Littorina genome (10% of the transcripts represented on the array and up to 23% of the analyzed genomic fragments); duplicated genes and regions were mostly the same in all analyzed species. Finally, this method discriminated geographically distant populations of L. saxatilis, but we did not detect any significant genome divergence associated with ecotypes of L. saxatilis. Conclusions The present study provides new information on the sensitivity and the potential use of oligonucleotide arrays for genotyping of non-model organisms. Applying this method to Littorina species yields insights into genome evolution following the recent species radiation and supports earlier single-gene based phylogenies. Genetic differentiation of L. saxatilis ecotypes was not detected in this study, despite pronounced innate phenotypic differences. The reason may be that these differences are due to single-nucleotide polymorphisms. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-687) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marina Panova
- Department of Biological and Environmental Sciences - Tjärnö, Gothenburg University, Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Larsen MJ, Thomassen M, Tan Q, Sørensen KP, Kruse TA. Microarray-based RNA profiling of breast cancer: batch effect removal improves cross-platform consistency. BIOMED RESEARCH INTERNATIONAL 2014; 2014:651751. [PMID: 25101291 PMCID: PMC4101981 DOI: 10.1155/2014/651751] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/17/2014] [Accepted: 06/09/2014] [Indexed: 12/13/2022]
Abstract
Microarray is a powerful technique used extensively for gene expression analysis. Different technologies are available, but lack of standardization makes it challenging to compare and integrate data. Furthermore, batch-related biases within datasets are common but often not tackled. We have analyzed the same 234 breast cancers on two different microarray platforms. One dataset contained known batch-effects associated with the fabrication procedure used. The aim was to assess the significance of correcting for systematic batch-effects when integrating data from different platforms. We here demonstrate the importance of detecting batch-effects and how tools, such as ComBat, can be used to successfully overcome such systematic variations in order to unmask essential biological signals. Batch adjustment was found to be particularly valuable in the detection of more delicate differences in gene expression. Furthermore, our results show that prober adjustment is essential for integration of gene expression data obtained from multiple sources. We show that high-variance genes are highly reproducibly expressed across platforms making them particularly well suited as biomarkers and for building gene signatures, exemplified by prediction of estrogen-receptor status and molecular subtypes. In conclusion, the study emphasizes the importance of utilizing proper batch adjustment methods when integrating data across different batches and platforms.
Collapse
Affiliation(s)
- Martin J. Larsen
- Department of Clinical Genetics, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark
- Human Genetics, Institute of Clinical Research, University of Southern Denmark, Winsløwvej 19, 5000 Odense C, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark
- Human Genetics, Institute of Clinical Research, University of Southern Denmark, Winsløwvej 19, 5000 Odense C, Denmark
| | - Qihua Tan
- Human Genetics, Institute of Clinical Research, University of Southern Denmark, Winsløwvej 19, 5000 Odense C, Denmark
- Epidemiology, Biostatistics and Biodemography, Institute of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9B, 5000 Odense C, Denmark
| | - Kristina P. Sørensen
- Department of Clinical Genetics, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark
- Human Genetics, Institute of Clinical Research, University of Southern Denmark, Winsløwvej 19, 5000 Odense C, Denmark
| | - Torben A. Kruse
- Department of Clinical Genetics, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark
- Human Genetics, Institute of Clinical Research, University of Southern Denmark, Winsløwvej 19, 5000 Odense C, Denmark
| |
Collapse
|
50
|
Ward LD, Wang J, Bussemaker HJ. Characterizing a collective and dynamic component of chromatin immunoprecipitation enrichment profiles in yeast. BMC Genomics 2014; 15:494. [PMID: 24947676 PMCID: PMC4124144 DOI: 10.1186/1471-2164-15-494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 05/27/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Recent chromatin immunoprecipitation (ChIP) experiments in fly, mouse, and human have revealed the existence of high-occupancy target (HOT) regions or "hotspots" that show enrichment across many assayed DNA-binding proteins. Similar co-enrichment observed in yeast so far has been treated as artifactual, and has not been fully characterized. RESULTS Here we reanalyze ChIP data from both array-based and sequencing-based experiments to show that in the yeast S. cerevisiae, the collective enrichment phenomenon is strongly associated with proximity to noncoding RNA genes and with nucleosome depletion. DNA sequence motifs that confer binding affinity for the proteins are largely absent from these hotspots, suggesting that protein-protein interactions play a prominent role. The hotspots are condition-specific, suggesting that they reflect a chromatin state or protein state, and are not a static feature of underlying sequence. Additionally, only a subset of all assayed factors is associated with these loci, suggesting that the co-enrichment cannot be simply explained by a chromatin state that is universally more prone to immunoprecipitation. CONCLUSIONS Together our results suggest that the co-enrichment patterns observed in yeast represent transcription factor co-occupancy. More generally, they make clear that great caution must be used when interpreting ChIP enrichment profiles for individual factors in isolation, as they will include factor-specific as well as collective contributions.
Collapse
Affiliation(s)
- Lucas D Ward
- />Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave, New York, NY 10027 USA
- />Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Junbai Wang
- />Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave, New York, NY 10027 USA
- />Department of Pathology, Oslo University Hospital - The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Harmen J Bussemaker
- />Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave, New York, NY 10027 USA
- />Center for Computational Biology and Bioinformatics, Columbia University, 1130 St. Nicholas Ave, New York, NY 10032 USA
| |
Collapse
|