1
|
Bratkowski M, Unarta IC, Zhu L, Shubbar M, Huang X, Liu X. Structural dissection of an interaction between transcription initiation and termination factors implicated in promoter-terminator cross-talk. J Biol Chem 2017; 293:1651-1665. [PMID: 29158257 DOI: 10.1074/jbc.m117.811521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/10/2017] [Indexed: 11/06/2022] Open
Abstract
Functional cross-talk between the promoter and terminator of a gene has long been noted. Promoters and terminators are juxtaposed to form gene loops in several organisms, and gene looping is thought to be involved in transcriptional regulation. The general transcription factor IIB (TFIIB) and the C-terminal domain phosphatase Ssu72, essential factors of the transcription preinitiation complex and the mRNA processing and polyadenylation complex, respectively, are important for gene loop formation. TFIIB and Ssu72 interact both genetically and physically, but the molecular basis of this interaction is not known. Here we present a crystal structure of the core domain of TFIIB in two new conformations that differ in the relative distance and orientation of the two cyclin-like domains. The observed extraordinary conformational plasticity may underlie the binding of TFIIB to multiple transcription factors and promoter DNAs that occurs in distinct stages of transcription, including initiation, reinitiation, and gene looping. We mapped the binding interface of the TFIIB-Ssu72 complex using a series of systematic, structure-guided in vitro binding and site-specific photocross-linking assays. Our results indicate that Ssu72 competes with acidic activators for TFIIB binding and that Ssu72 disrupts an intramolecular TFIIB complex known to impede transcription initiation. We also show that the TFIIB-binding site on Ssu72 overlaps with the binding site of symplekin, a component of the mRNA processing and polyadenylation complex. We propose a hand-off model in which Ssu72 mediates a conformational transition in TFIIB, accounting for the role of Ssu72 in transcription reinitiation, gene looping, and promoter-terminator cross-talk.
Collapse
Affiliation(s)
- Matthew Bratkowski
- From the Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, and.,the Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390 and
| | - Ilona Christy Unarta
- the Department of Chemistry and.,Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Lizhe Zhu
- the Department of Chemistry and.,Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Murtada Shubbar
- From the Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, and.,the Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390 and
| | - Xuhui Huang
- the Department of Chemistry and.,Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xin Liu
- From the Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, and .,the Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390 and
| |
Collapse
|
2
|
Yuan H, Li Z, Tang NLS, Deng M. A network based covariance test for detecting multivariate eQTL in saccharomyces cerevisiae. BMC SYSTEMS BIOLOGY 2016; 10 Suppl 1:8. [PMID: 26818242 PMCID: PMC4895706 DOI: 10.1186/s12918-015-0245-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Expression quantitative trait locus (eQTL) analysis has been widely used to understand how genetic variations affect gene expressions in the biological systems. Traditional eQTL is investigated in a pair-wise manner in which one SNP affects the expression of one gene. In this way, some associated markers found in GWAS have been related to disease mechanism by eQTL study. However, in real life, biological process is usually performed by a group of genes. Although some methods have been proposed to identify a group of SNPs that affect the mean of gene expressions in the network, the change of co-expression pattern has not been considered. So we propose a process and algorithm to identify the marker which affects the co-expression pattern of a pathway. Considering two genes may have different correlations under different isoforms which is hard to detect by the linear test, we also consider the nonlinear test. Results When we applied our method to yeast eQTL dataset profiled under both the glucose and ethanol conditions, we identified a total of 166 modules, with each module consisting of a group of genes and one eQTL where the eQTL regulate the co-expression patterns of the group of genes. We found that many of these modules have biological significance. Conclusions We propose a network based covariance test to identify the SNP which affects the structure of a pathway. We also consider the nonlinear test as considering two genes may have different correlations under different isoforms which is hard to detect by linear test. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0245-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huili Yuan
- LMAM, School of Mathematical Sciences, Peking University, Yiheyuan Road, Beijing, 100871, China.
| | - Zhenye Li
- LMAM, School of Mathematical Sciences, Peking University, Yiheyuan Road, Beijing, 100871, China.
| | - Nelson L S Tang
- Department of Chemical Pathology, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Minghua Deng
- LMAM, School of Mathematical Sciences, Peking University, Yiheyuan Road, Beijing, 100871, China. .,Center for Quantitative Biology, Peking University, Yiheyuan Road, Beijing, 100871, China. .,Center for Statistical Sciences, Peking University, Yiheyuan Road, Beijing, 100871, China.
| |
Collapse
|
3
|
Medler S, Al Husini N, Raghunayakula S, Mukundan B, Aldea A, Ansari A. Evidence for a complex of transcription factor IIB with poly(A) polymerase and cleavage factor 1 subunits required for gene looping. J Biol Chem 2011; 286:33709-18. [PMID: 21835917 DOI: 10.1074/jbc.m110.193870] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Gene looping, defined as the interaction of the promoter and the terminator regions of a gene during transcription, requires transcription factor IIB (TFIIB). We have earlier demonstrated association of TFIIB with the distal ends of a gene in an activator-dependent manner (El Kaderi, B., Medler, S., Raghunayakula, S., and Ansari, A. (2009) J. Biol. Chem. 284, 25015-25025). The presence of TFIIB at the 3' end of a gene required its interaction with cleavage factor 1 (CF1) 3' end processing complex subunit Rna15. Here, employing affinity chromatography and glycerol gradient centrifugation, we show that TFIIB associates with poly(A) polymerase and the entire CF1 complex in yeast cells. The factors required for general transcription such as TATA-binding protein, RNA polymerase II, and TFIIH are not a component of the TFIIB complex. This holo-TFIIB complex was resistant to MNase digestion. The complex was observed only in the looping-competent strains, but not in the looping-defective sua7-1 strain. The requirement of Rna15 in gene looping has been demonstrated earlier. Here we provide evidence that poly(A) polymerase (Pap1) as well as CF1 subunits Rna14 and Pcf11 are also required for loop formation of MET16 and INO1 genes. Accordingly, cross-linking of TFIIB to the 3' end of genes was abolished in the mutants of Pap1, Rna14, and Pcf11. We further show that in sua7-1 cells, where holo-TFIIB complex is not formed, the kinetics of activated transcription is altered. These results suggest that a complex of TFIIB, CF1 subunits, and Pap1 exists in yeast cells. Furthermore, TFIIB interaction with the CF1 complex and Pap1 is crucial for gene looping and transcriptional regulation.
Collapse
Affiliation(s)
- Scott Medler
- Department of Biological Science, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | | | |
Collapse
|
4
|
Deng W, Roberts SGE. TFIIB and the regulation of transcription by RNA polymerase II. Chromosoma 2007; 116:417-29. [PMID: 17593382 DOI: 10.1007/s00412-007-0113-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 05/21/2007] [Accepted: 05/21/2007] [Indexed: 02/01/2023]
Abstract
Accurate transcription of a gene by RNA polymerase II requires the assembly of a group of general transcription factors at the promoter. The general transcription factor TFIIB plays a central role in preinitiation complex assembly, providing a bridge between promoter-bound TFIID and RNA polymerase II. TFIIB makes extensive contact with the core promoter via two independent DNA-recognition modules. In addition to interacting with other general transcription factors, TFIIB directly modulates the catalytic center of RNA polymerase II in the transcription complex. Moreover, TFIIB has been proposed as a target of transcriptional activator proteins that act to stimulate preinitiation complex assembly. In this review, we will discuss our current understanding of these activities of TFIIB.
Collapse
Affiliation(s)
- Wensheng Deng
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | |
Collapse
|
5
|
Tubon TC, Tansey WP, Herr W. A nonconserved surface of the TFIIB zinc ribbon domain plays a direct role in RNA polymerase II recruitment. Mol Cell Biol 2004; 24:2863-74. [PMID: 15024075 PMCID: PMC371104 DOI: 10.1128/mcb.24.7.2863-2874.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The general transcription factor TFIIB is a highly conserved and essential component of the eukaryotic RNA polymerase II (pol II) transcription initiation machinery. It consists of a single polypeptide with two conserved structural domains: an amino-terminal zinc ribbon structure (TFIIB(ZR)) and a carboxy-terminal core (TFIIB(CORE)). We have analyzed the role of the amino-terminal region of human TFIIB in transcription in vivo and in vitro. We identified a small nonconserved surface of the TFIIB(ZR) that is required for pol II transcription in vivo and for different types of basal pol II transcription in vitro. Consistent with a general role in transcription, this TFIIB(ZR) surface is directly involved in the recruitment of pol II to a TATA box-containing promoter. Curiously, although the amino-terminal human TFIIB(ZR) domain can recruit both human pol II and yeast (Saccharomyces cerevisiae) pol II, the yeast TFIIB amino-terminal region recruits yeast pol II but not human pol II. Thus, a critical process in transcription from many different promoters-pol II recruitment-has changed in sequence specificity during eukaryotic evolution.
Collapse
Affiliation(s)
- Thomas C Tubon
- Graduate Program in Genetics, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
6
|
Zeng X, Zhang D, Dorsey M, Ma J. Hypomutable regions of yeast TFIIB in a unigenic evolution test represent structural domains. Gene 2003; 309:49-56. [PMID: 12727357 DOI: 10.1016/s0378-1119(03)00492-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As genome sequences of many organisms - including humans - are being decoded, there is a great need for genetic tools to analyze newly discovered genes/proteins. A 'unigenic evolution' approach has been previously proposed for dissecting protein domains, which is based on the assumption that functionally important regions of a protein may tolerate missense mutations less well than other regions. We describe a unigenic evolution analysis of general transcription factor IIB (TFIIB) - a protein that is well characterized both structurally and functionally - to better understand the molecular basis of this genetic approach. The overall distribution profile of hypomutable regions within yeast TFIIB correlates extremely well with the known compact structural domains, suggesting that the unigenic evolution approach can help reveal structural properties of a protein. We further show that a small region located immediately carboxyl-terminal to the zinc ribbon motif is functionally important despite its strong hypermutability. Our study further demonstrates the usefulness of the unigenic evolution approach in dissecting protein domains, but suggests that the mutability of different regions of a protein in such a test is determined primarily by their structural properties.
Collapse
Affiliation(s)
- Xiao Zeng
- Division of Developmental Biology, Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
7
|
Zhang DY, Carson DJ, Ma J. The role of TFIIB-RNA polymerase II interaction in start site selection in yeast cells. Nucleic Acids Res 2002; 30:3078-85. [PMID: 12136090 PMCID: PMC135743 DOI: 10.1093/nar/gkf422] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Revised: 05/20/2002] [Accepted: 05/20/2002] [Indexed: 11/14/2022] Open
Abstract
Previous studies have established a critical role of both TFIIB and RNA polymerase II (RNAPII) in start site selection in the yeast Saccharomyces cerevisiae. However, it remains unclear how the TFIIB-RNAPII interaction impacts on this process since such an interaction can potentially influence both preinitiation complex (PIC) stability and conformation. In this study, we further investigate the role of TFIIB in start site selection by characterizing our newly generated TFIIB mutants, two of which exhibit a novel upstream shift of start sites in vivo. We took advantage of an artificial recruitment system in which an RNAPII holoenzyme component is covalently linked to a DNA-binding domain for more direct and stable recruitment. We show that TFIIB mutations can exert their effects on start site selection in such an artificial recruitment system even though it has a relaxed requirement for TFIIB. We further show that these TFIIB mutants have normal affinity for RNAPII and do not alter the promoter melting/scanning step. Finally, we show that overexpressing the genetically isolated TFIIB mutant E62K, which has a reduced affinity for RNAPII, can correct its start site selection defect. We discuss a model in which the TFIIB-RNAPII interaction controls the start site selection process by influencing the conformation of PIC prior to or during PIC assembly, as opposed to PIC stability.
Collapse
Affiliation(s)
- Dong-Yi Zhang
- Division of Developmental Biology, Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
8
|
Yaghmai R, Cutting GR. Optimized regulation of gene expression using artificial transcription factors. Mol Ther 2002; 5:685-94. [PMID: 12027552 DOI: 10.1006/mthe.2002.0610] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A major focus in the basic science of gene therapy is the study of factors involved in target-specific regulation of gene expression. Optimization of artificial or "designer" transcription factors capable of specific regulation of target genes is a prerequisite to developing practical applications in human subjects. In this paper, we present a systematic and combinatorial approach to optimize engineered transcription factors using designed zinc-finger proteins fused to transcriptional effector domains derived from the naturally occurring activators (VP16 or P65) or repressor (KRAB) proteins. We also demonstrate effective targeting of artificial transcription factors to regulate gene expression from three different constitutive viral promoters (SV40, CMV, RSV). Achieving a desired level of gene expression from a targeted region depended on several variables, including target site affinities for various DNA-binding domains, the nature of the activator domain, the particular cell type used, and the position of the target site with respect to the core promoter. Hence, several aspects of the artificial transcription factors should be simultaneously evaluated to ensure the optimum level of gene expression from a given target site in a given cell type. Our observations and our optimization approach have substantial implications for designing safe and effective artificial transcription factors for cell-based and therapeutic uses.
Collapse
Affiliation(s)
- Reza Yaghmai
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins Hospital, 600 North Wolfe St., Blalock 1008, Baltimore, Maryland 21287-4922, USA.
| | | |
Collapse
|
9
|
Zhao C, York A, Yang F, Forsthoefel DJ, Dave V, Fu D, Zhang D, Corado MS, Small S, Seeger MA, Ma J. The activity of the Drosophila morphogenetic protein Bicoid is inhibited by a domain located outside its homeodomain. Development 2002; 129:1669-80. [PMID: 11923203 DOI: 10.1242/dev.129.7.1669] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila morphogenetic protein Bicoid (Bcd) is a homeodomain-containing activator that stimulates the expression of target genes during early embryonic development. We demonstrate that a small domain of Bcd located immediately N-terminally of the homeodomain represses its own activity in Drosophila cells. This domain, referred to as a self-inhibitory domain, works as an independent module that does not rely on any other sequences of Bcd and can repress the activity of heterologous activators. We further show that this domain of Bcd does not affect its properties of DNA binding or subcellular distribution. A Bcd derivative with point mutations in the self-inhibitory domain severely affects pattern formation and target gene expression in Drosophila embryos. We also provide evidence to suggest that the action of the self-inhibitory domain requires a Drosophila co-factor(s), other than CtBP or dSAP18. Our results suggest that proper action of Bcd as a transcriptional activator and molecular morphogen during embryonic development is dependent on the downregulation of its own activity through an interaction with a novel co-repressor(s) or complex(es).
Collapse
Affiliation(s)
- Chen Zhao
- Division of Developmental Biology, Children's Hospital Research Foundation, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
|