1
|
Chadaeva IV, Ponomarenko PM, Rasskazov DA, Sharypova EB, Kashina EV, Zhechev DA, Drachkova IA, Arkova OV, Savinkova LK, Ponomarenko MP, Kolchanov NA, Osadchuk LV, Osadchuk AV. Candidate SNP markers of reproductive potential are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters. BMC Genomics 2018; 19:0. [PMID: 29504899 PMCID: PMC5836831 DOI: 10.1186/s12864-018-4478-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The progress of medicine, science, technology, education, and culture improves, year by year, quality of life and life expectancy of the populace. The modern human has a chance to further improve the quality and duration of his/her life and the lives of his/her loved ones by bringing their lifestyle in line with their sequenced individual genomes. With this in mind, one of genome-based developments at the junction of personalized medicine and bioinformatics will be considered in this work, where we used two Web services: (i) SNP_TATA_Comparator to search for alleles with a single nucleotide polymorphism (SNP) that alters the affinity of TATA-binding protein (TBP) for the TATA boxes of human gene promoters and (ii) PubMed to look for retrospective clinical reviews on changes in physiological indicators of reproductive potential in carriers of these alleles. RESULTS A total of 126 SNP markers of female reproductive potential, capable of altering the affinity of TBP for gene promoters, were found using the two above-mentioned Web services. For example, 10 candidate SNP markers of thrombosis (e.g., rs563763767) can cause overproduction of coagulation inducers. In pregnant women, Hughes syndrome provokes thrombosis with a fatal outcome although this syndrome can be diagnosed and eliminated even at the earliest stages of its development. Thus, in women carrying any of the above SNPs, preventive treatment of this syndrome before a planned pregnancy can reduce the risk of death. Similarly, seven SNP markers predicted here (e.g., rs774688955) can elevate the risk of myocardial infarction. In line with Bowles' lifespan theory, women carrying any of these SNPs may modify their lifestyle to improve their longevity if they can take under advisement that risks of myocardial infarction increase with age of the mother, total number of pregnancies, in multiple pregnancies, pregnancies under the age of 20, hypertension, preeclampsia, menstrual cycle irregularity, and in women smokers. CONCLUSIONS According to Bowles' lifespan theory-which links reproductive potential, quality of life, and life expectancy-the above information was compiled for those who would like to reduce risks of diseases corresponding to alleles in own sequenced genomes. Candidate SNP markers can focus the clinical analysis of unannotated SNPs, after which they may become useful for people who would like to bring their lifestyle in line with their sequenced individual genomes.
Collapse
Affiliation(s)
- Irina V Chadaeva
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | | | - Dmitry A Rasskazov
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Ekaterina B Sharypova
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Elena V Kashina
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Dmitry A Zhechev
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Irina A Drachkova
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Olga V Arkova
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
- Vector-Best Inc., Koltsovo, Novosibirsk Region, 630559, Russia
| | - Ludmila K Savinkova
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Mikhail P Ponomarenko
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Nikolay A Kolchanov
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Ludmila V Osadchuk
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
- Novosibirsk State Agricultural University, Novosibirsk, 630039, Russia
| | - Alexandr V Osadchuk
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| |
Collapse
|
2
|
Chadaeva IV, Ponomarenko MP, Rasskazov DA, Sharypova EB, Kashina EV, Matveeva MY, Arshinova TV, Ponomarenko PM, Arkova OV, Bondar NP, Savinkova LK, Kolchanov NA. Candidate SNP markers of aggressiveness-related complications and comorbidities of genetic diseases are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters. BMC Genomics 2016; 17:995. [PMID: 28105927 PMCID: PMC5249025 DOI: 10.1186/s12864-016-3353-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Aggressiveness in humans is a hereditary behavioral trait that mobilizes all systems of the body-first of all, the nervous and endocrine systems, and then the respiratory, vascular, muscular, and others-e.g., for the defense of oneself, children, family, shelter, territory, and other possessions as well as personal interests. The level of aggressiveness of a person determines many other characteristics of quality of life and lifespan, acting as a stress factor. Aggressive behavior depends on many parameters such as age, gender, diseases and treatment, diet, and environmental conditions. Among them, genetic factors are believed to be the main parameters that are well-studied at the factual level, but in actuality, genome-wide studies of aggressive behavior appeared relatively recently. One of the biggest projects of the modern science-1000 Genomes-involves identification of single nucleotide polymorphisms (SNPs), i.e., differences of individual genomes from the reference genome. SNPs can be associated with hereditary diseases, their complications, comorbidities, and responses to stress or a drug. Clinical comparisons between cohorts of patients and healthy volunteers (as a control) allow for identifying SNPs whose allele frequencies significantly separate them from one another as markers of the above conditions. Computer-based preliminary analysis of millions of SNPs detected by the 1000 Genomes project can accelerate clinical search for SNP markers due to preliminary whole-genome search for the most meaningful candidate SNP markers and discarding of neutral and poorly substantiated SNPs. RESULTS Here, we combine two computer-based search methods for SNPs (that alter gene expression) {i} Web service SNP_TATA_Comparator (DNA sequence analysis) and {ii} PubMed-based manual search for articles on aggressiveness using heuristic keywords. Near the known binding sites for TATA-binding protein (TBP) in human gene promoters, we found aggressiveness-related candidate SNP markers, including rs1143627 (associated with higher aggressiveness in patients undergoing cytokine immunotherapy), rs544850971 (higher aggressiveness in old women taking lipid-lowering medication), and rs10895068 (childhood aggressiveness-related obesity in adolescence with cardiovascular complications in adulthood). CONCLUSIONS After validation of these candidate markers by clinical protocols, these SNPs may become useful for physicians (may help to improve treatment of patients) and for the general population (a lifestyle choice preventing aggressiveness-related complications).
Collapse
Affiliation(s)
- Irina V. Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090 Russia
| | - Mikhail P. Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090 Russia
| | - Dmitry A. Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Ekaterina B. Sharypova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Elena V. Kashina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Marina Yu Matveeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Tatjana V. Arshinova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Petr M. Ponomarenko
- Children’s Hospital Los Angeles, 4640 Hollywood Boulevard, University of Southern California, Los Angeles, CA 90027 USA
| | - Olga V. Arkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
- Vector-Best Inc, Koltsovo, Novosibirsk Region 630559 Russia
| | - Natalia P. Bondar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Ludmila K. Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090 Russia
| |
Collapse
|
3
|
Candidate SNP Markers of Chronopathologies Are Predicted by a Significant Change in the Affinity of TATA-Binding Protein for Human Gene Promoters. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8642703. [PMID: 27635400 PMCID: PMC5011241 DOI: 10.1155/2016/8642703] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/25/2016] [Accepted: 06/28/2016] [Indexed: 01/14/2023]
Abstract
Variations in human genome (e.g., single nucleotide polymorphisms, SNPs) may be associated with hereditary diseases, their complications, comorbidities, and drug responses. Using Web service SNP_TATA_Comparator presented in our previous paper, here we analyzed immediate surroundings of known SNP markers of diseases and identified several candidate SNP markers that can significantly change the affinity of TATA-binding protein for human gene promoters, with circadian consequences. For example, rs572527200 may be related to asthma, where symptoms are circadian (worse at night), and rs367732974 may be associated with heart attacks that are characterized by a circadian preference (early morning). By the same method, we analyzed the 90 bp proximal promoter region of each protein-coding transcript of each human gene of the circadian clock core. This analysis yielded 53 candidate SNP markers, such as rs181985043 (susceptibility to acute Q fever in male patients), rs192518038 (higher risk of a heart attack in patients with diabetes), and rs374778785 (emphysema and lung cancer in smokers). If they are properly validated according to clinical standards, these candidate SNP markers may turn out to be useful for physicians (to select optimal treatment for each patient) and for the general population (to choose a lifestyle preventing possible circadian complications of diseases).
Collapse
|
4
|
Ponomarenko MP, Arkova O, Rasskazov D, Ponomarenko P, Savinkova L, Kolchanov N. Candidate SNP Markers of Gender-Biased Autoimmune Complications of Monogenic Diseases Are Predicted by a Significant Change in the Affinity of TATA-Binding Protein for Human Gene Promoters. Front Immunol 2016; 7:130. [PMID: 27092142 PMCID: PMC4819121 DOI: 10.3389/fimmu.2016.00130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/21/2016] [Indexed: 12/17/2022] Open
Abstract
Some variations of human genome [for example, single nucleotide polymorphisms (SNPs)] are markers of hereditary diseases and drug responses. Analysis of them can help to improve treatment. Computer-based analysis of millions of SNPs in the 1000 Genomes project makes a search for SNP markers more targeted. Here, we combined two computer-based approaches: DNA sequence analysis and keyword search in databases. In the binding sites for TATA-binding protein (TBP) in human gene promoters, we found candidate SNP markers of gender-biased autoimmune diseases, including rs1143627 [cachexia in rheumatoid arthritis (double prevalence among women)]; rs11557611 [demyelinating diseases (thrice more prevalent among young white women than among non-white individuals)]; rs17231520 and rs569033466 [both: atherosclerosis comorbid with related diseases (double prevalence among women)]; rs563763767 [Hughes syndrome-related thrombosis (lethal during pregnancy)]; rs2814778 [autoimmune diseases (excluding multiple sclerosis and rheumatoid arthritis) underlying hypergammaglobulinemia in women]; rs72661131 and rs562962093 (both: preterm delivery in pregnant diabetic women); and rs35518301, rs34166473, rs34500389, rs33981098, rs33980857, rs397509430, rs34598529, rs33931746, rs281864525, and rs63750953 (all: autoimmune diseases underlying hypergammaglobulinemia in women). Validation of these predicted candidate SNP markers using the clinical standards may advance personalized medicine.
Collapse
Affiliation(s)
- Mikhail P. Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Olga Arkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | | | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
5
|
Arkova OV, Ponomarenko MP, Rasskazov DA, Drachkova IA, Arshinova TV, Ponomarenko PM, Savinkova LK, Kolchanov NA. Obesity-related known and candidate SNP markers can significantly change affinity of TATA-binding protein for human gene promoters. BMC Genomics 2015; 16 Suppl 13:S5. [PMID: 26694100 PMCID: PMC4686794 DOI: 10.1186/1471-2164-16-s13-s5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Obesity affects quality of life and life expectancy and is associated with cardiovascular disorders, cancer, diabetes, reproductive disorders in women, prostate diseases in men, and congenital anomalies in children. The use of single nucleotide polymorphism (SNP) markers of diseases and drug responses (i.e., significant differences of personal genomes of patients from the reference human genome) can help physicians to improve treatment. Clinical research can validate SNP markers via genotyping of patients and demonstration that SNP alleles are significantly more frequent in patients than in healthy people. The search for biomedical SNP markers of interest can be accelerated by computer-based analysis of hundreds of millions of SNPs in the 1000 Genomes project because of selection of the most meaningful candidate SNP markers and elimination of neutral SNPs. RESULTS We cross-validated the output of two computer-based methods: DNA sequence analysis using Web service SNP_TATA_Comparator and keyword search for articles on comorbidities of obesity. Near the sites binding to TATA-binding protein (TBP) in human gene promoters, we found 22 obesity-related candidate SNP markers, including rs10895068 (male breast cancer in obesity); rs35036378 (reduced risk of obesity after ovariectomy); rs201739205 (reduced risk of obesity-related cancers due to weight loss by diet/exercise in obese postmenopausal women); rs183433761 (obesity resistance during a high-fat diet); rs367732974 and rs549591993 (both: cardiovascular complications in obese patients with type 2 diabetes mellitus); rs200487063 and rs34104384 (both: obesity-caused hypertension); rs35518301, rs72661131, and rs562962093 (all: obesity); and rs397509430, rs33980857, rs34598529, rs33931746, rs33981098, rs34500389, rs63750953, rs281864525, rs35518301, and rs34166473 (all: chronic inflammation in comorbidities of obesity). Using an electrophoretic mobility shift assay under nonequilibrium conditions, we empirically validated the statistical significance (α < 0.00025) of the differences in TBP affinity values between the minor and ancestral alleles of 4 out of the 22 SNPs: rs200487063, rs201381696, rs34104384, and rs183433761. We also measured half-life (t1/2), Gibbs free energy change (ΔG), and the association and dissociation rate constants, ka and kd, of the TBP-DNA complex for these SNPs. CONCLUSIONS Validation of the 22 candidate SNP markers by proper clinical protocols appears to have a strong rationale and may advance postgenomic predictive preventive personalized medicine.
Collapse
Affiliation(s)
- Olga V Arkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyeva Avenue, Novosibirsk 630090, Russia
| | - Mikhail P Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyeva Avenue, Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
- Laboratory of Evolutionary Bioinformatics and Theoretical Genetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk 630090, Russia
| | - Dmitry A Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyeva Avenue, Novosibirsk 630090, Russia
| | - Irina A Drachkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyeva Avenue, Novosibirsk 630090, Russia
| | - Tatjana V Arshinova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyeva Avenue, Novosibirsk 630090, Russia
| | - Petr M Ponomarenko
- Children's Hospital Los Angeles, 4640 Hollywood Boulevard, University of Southern California, Los Angeles, CA 90027, USA
| | - Ludmila K Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyeva Avenue, Novosibirsk 630090, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyeva Avenue, Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Ponomarenko PM, Ponomarenko MP. Sequence-based prediction of transcription upregulation by auxin in plants. J Bioinform Comput Biol 2015; 13:1540009. [PMID: 25666655 DOI: 10.1142/s0219720015400090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Auxin is one of the main regulators of growth and development in plants. Prediction of auxin response based on gene sequence is of high importance. We found the TGTCNC consensus of 111 known natural and artificially mutated auxin response elements (AuxREs) with measured auxin-caused relative increase in genes' transcription levels, so-called either "a response to auxin" or "an auxin response." This consensus was identical to the most cited AuxRE motif. Also, we found several DNA sequence features that correlate with auxin-caused increase in genes' transcription levels, namely: number of matches with TGTCNC, homology score based on nucleotide frequencies at the consensus positions, abundances of five trinucleotides and five B-helical DNA features around these known AuxREs. We combined these correlations using a four-step empirical model of auxin response based on a gene's sequence with four steps, namely: (1) search for AuxREs with no auxin; (2) stop at the found AuxRE; (3) repression of the basal transcription of the gene having this AuxRE; and (4) manifold increase of this gene's transcription in response to auxin. Independently measured increases in transcription levels in response to auxin for 70 Arabidopsis genes were found to significantly correlate with predictions of this equation (r = 0.44, p < 0.001) as well as with TATA-binding protein (TBP)'s affinity to promoters of these genes and with nucleosome packing of these promoters (both, p < 0.025). Finally, we improved our equation for prediction of a gene's transcription increase in response to auxin by taking into account TBP-binding and nucleosome packing (r = 0.53, p < 10(-6)). Fisher's F-test validated the significant impact of both TBP/promoter-affinity and promoter nucleosome on auxin response in addition to those of AuxRE, F = 4.07, p < 0.025. It means that both TATA-box and nucleosome should be taken into account to recognize transcription factor binding sites upon DNA sequences: in the case of the TATA-less nucleosome-rich promoters, recognition scores must be higher than in the case of the TATA-containing nucleosome-free promoters at the same transcription activity.
Collapse
Affiliation(s)
- Petr M Ponomarenko
- Children's Hospital Los Angeles, 4640 Hollywood Blvd, Los Angeles, CA 90027, USA
| | | |
Collapse
|
7
|
Ponomarenko M, Rasskazov D, Arkova O, Ponomarenko P, Suslov V, Savinkova L, Kolchanov N. How to Use SNP_TATA_Comparator to Find a Significant Change in Gene Expression Caused by the Regulatory SNP of This Gene's Promoter via a Change in Affinity of the TATA-Binding Protein for This Promoter. BIOMED RESEARCH INTERNATIONAL 2015; 2015:359835. [PMID: 26516624 PMCID: PMC4609514 DOI: 10.1155/2015/359835] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/24/2015] [Indexed: 01/11/2023]
Abstract
The use of biomedical SNP markers of diseases can improve effectiveness of treatment. Genotyping of patients with subsequent searching for SNPs more frequent than in norm is the only commonly accepted method for identification of SNP markers within the framework of translational research. The bioinformatics applications aimed at millions of unannotated SNPs of the "1000 Genomes" can make this search for SNP markers more focused and less expensive. We used our Web service involving Fisher's Z-score for candidate SNP markers to find a significant change in a gene's expression. Here we analyzed the change caused by SNPs in the gene's promoter via a change in affinity of the TATA-binding protein for this promoter. We provide examples and discuss how to use this bioinformatics application in the course of practical analysis of unannotated SNPs from the "1000 Genomes" project. Using known biomedical SNP markers, we identified 17 novel candidate SNP markers nearby: rs549858786 (rheumatoid arthritis); rs72661131 (cardiovascular events in rheumatoid arthritis); rs562962093 (stroke); rs563558831 (cyclophosphamide bioactivation); rs55878706 (malaria resistance, leukopenia), rs572527200 (asthma, systemic sclerosis, and psoriasis), rs371045754 (hemophilia B), rs587745372 (cardiovascular events); rs372329931, rs200209906, rs367732974, and rs549591993 (all four: cancer); rs17231520 and rs569033466 (both: atherosclerosis); rs63750953, rs281864525, and rs34166473 (all three: malaria resistance, thalassemia).
Collapse
Affiliation(s)
- Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga Arkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Petr Ponomarenko
- Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA
| | - Valentin Suslov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
8
|
Ponomarenko MP, Suslov VV, Ponomarenko PM, Gunbin KV, Stepanenko IL, Vishnevsky OV, Kolchanov NA. Abundances of microRNAs in human cells can be estimated as a function of the abundances of YRHB and RHHK tetranucleotides in these microRNAs as an ill-posed inverse problem solution. Front Genet 2013; 4:122. [PMID: 23847649 PMCID: PMC3697047 DOI: 10.3389/fgene.2013.00122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 06/06/2013] [Indexed: 02/03/2023] Open
Abstract
Mature microRNAs (miRNAs) are small endogenous non-coding RNAs 18–25 nt in length. They program the RNA Induced Silencing Complex (RISC) to make it inhibit either messenger RNAs or promoter DNAs. We have found that the mean abundance of miRNAs in Arabidopsis is correlated with the abundance of DRYD tetranucleotides near the 3′-end and the abundance of WRHB tetranucleotides in the center of the miRNA sequence. Based on this correlation, we have estimated miRNA abundances in seven organs of this plant, namely: inflorescences, stems, siliques, seedlings, roots, cauline, and rosette leaves. We have also found that the mean affinity of miRNAs for two proteins in the Argonaute family (Ago2 and Ago3) in man is correlated with the abundance of YRHB tetranucleotides near the 3′-end and that the preference of miRNAs for Ago2 is correlated with the abundance of RHHK tetranucleotides in the center of the miRNA sequence. This allowed us to obtain statistically significant estimates of miRNA abundances in human embryonic kidney cells, HEK293T. These findings in relation to two taxonomically distant entities (man and Arabidopsis) fit one another like pieces of a jigsaw puzzle, which allowed us to heuristically generalize them and state that the miRNA abundance in the human brain may be determined by the abundance of YRHB and RHHK tetranucleotides in these miRNAs.
Collapse
Affiliation(s)
- Mikhail P Ponomarenko
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS Novosibirsk, Russia
| | | | | | | | | | | | | |
Collapse
|
9
|
PONOMARENKO JULIA, ORLOVA GALINA, MERKULOVA TATYANA, VASILIEV GENNADY, PONOMARENKO MIKHAIL. MINING GENOME VARIATION TO ASSOCIATE GENETIC DISEASE WITH MUTATION ALTERATIONS AND ORTHO/PARALOGOUS POLIMORPHYSMS IN TRANSCRIPTION FACTOR BINDING SITE. INT J ARTIF INTELL T 2011. [DOI: 10.1142/s0218213005002284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have developed a system rSNP_Guide, , predicting the transcription factor (TF) binding sites on DNA, which mutation-caused alterations may explain disease penetration. rSNP_Guide uses the detected alterations in the mutant DNA binding to unknown TF caused by diseases and, upon the DNA sequences, calculates the alterations in known TF sites so that to select only the known ones with calculated alterations in the best consistence with those detected. Our system has been control tested on the SNP's with known site-disease relationships. For practical aims, two TF sites associated with diseases were predicted and confirmed by the immune assay with anti-TF antibodies. In the case of tumor susceptibility, the GATA site in the second intron of mouse K-ras gene was truly predicted, whereas mutation damage of this site causes tumor resistance. In the case of alcohol dependencies and others behavioral diseases, the mutation-caused spurious YY1 site in the sixth intron of human tryptophan 2,3-dioxygenase (TDO2) gene was successfully predicted. Finally, sixteen non-documented TF sites localizable at both orthologous and paralogous genes were first characterized by three rates "present", "weakened" or "absent", with significance estimated by rSNP_Guide relatively to six TF sites with known mutation-caused alterations in DNA/TF-binding.
Collapse
Affiliation(s)
- JULIA PONOMARENKO
- Laboratory of Genome Structure, Institute of Cytology and Genetics, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - GALINA ORLOVA
- Laboratory of Theoretical Genetics, Institute of Cytology and Genetics, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - TATYANA MERKULOVA
- Laboratory of Gene Expression Regulation, Institute of Cytology and Genetics, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - GENNADY VASILIEV
- Laboratory of Gene Expression Regulation, Institute of Cytology and Genetics, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - MIKHAIL PONOMARENKO
- Laboratory of Theoretical Genetics, Institute of Cytology and Genetics, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| |
Collapse
|
10
|
Omelyanchuck NA, Ponomarenko PM, Ponomarenko MP. Specific features of the mature microrna nucleotide sequences can influence the affinity for the human Ago2 and Ago3 proteins. Mol Biol 2011. [DOI: 10.1134/s0026893311020130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Kirpota OO, Endutkin AV, Ponomarenko MP, Ponomarenko PM, Zharkov DO, Nevinsky GA. Thermodynamic and kinetic basis for recognition and repair of 8-oxoguanine in DNA by human 8-oxoguanine-DNA glycosylase. Nucleic Acids Res 2011; 39:4836-50. [PMID: 21343179 PMCID: PMC3113562 DOI: 10.1093/nar/gkq1333] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have used a stepwise increase in ligand complexity approach to estimate the relative contributions of the nucleotide units of DNA containing 7,8-dihydro-8-oxoguanine (oxoG) to its total affinity for human 8-oxoguanine DNA glycosylase (OGG1) and construct thermodynamic models of the enzyme interaction with cognate and non-cognate DNA. Non-specific OGG1 interactions with 10–13 nt pairs within its DNA-binding cleft provides approximately 5 orders of magnitude of its affinity for DNA (ΔG° approximately −6.7 kcal/mol). The relative contribution of the oxoG unit of DNA (ΔG° approximately −3.3 kcal/mol) together with other specific interactions (ΔG° approximately −0.7 kcal/mol) provide approximately 3 orders of magnitude of the affinity. Formation of the Michaelis complex of OGG1 with the cognate DNA cannot account for the major part of the enzyme specificity, which lies in the kcat term instead; the rate increases by 6–7 orders of magnitude for cognate DNA as compared with non-cognate one. The kcat values for substrates of different sequences correlate with the DNA twist, while the KM values correlate with ΔG° of the DNA fragments surrounding the lesion (position from −6 to +6). The functions for predicting the KM and kcat values for different sequences containing oxoG were found.
Collapse
Affiliation(s)
- Oleg O Kirpota
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, Department of Molecular Biology, Novosibirsk State University, 2 Pirogova Street and SB RAS Institute of Cytology and Genetics, 10 Lavrentieva Avenue, Novosibirsk 630090, Russia
| | | | | | | | | | | |
Collapse
|
12
|
Anand A, Pugalenthi G, Fogel GB, Suganthan P. Identification and analysis of transcription factor family-specific features derived from DNA and protein information. Pattern Recognit Lett 2010. [DOI: 10.1016/j.patrec.2009.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Ponomarenko JV, Orlova GV, Merkulova TI, Gorshkova EV, Fokin ON, Vasiliev GV, Frolov AS, Ponomarenko MP. rSNP_Guide: an integrated database-tools system for studying SNPs and site-directed mutations in transcription factor binding sites. Hum Mutat 2002; 20:239-48. [PMID: 12325018 DOI: 10.1002/humu.10116] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Since the human genome was sequenced in draft, single nucleotide polymorphism (SNP) analysis has become one of the keynote fields of bioinformatics. We have developed an integrated database-tools system, rSNP_Guide (http://wwwmgs.bionet.nsc.ru/mgs/systems/rsnp/), devoted to prediction of transcription factor (TF) binding sites, alterations of which could be associated with disease phenotype. By inputting data on alterations in DNA sequence and in DNA binding pattern of an unknown TF, rSNP_Guide searches for a known TF with alterations in the recognition score calculated on the basis of TF site's sequence and consistent with the input alterations in DNA binding to the unknown TF. Our system has been tested on many relationships between known TF sites and diseases, as well as on site-directed mutagenesis data. Experimental verification of rSNP_Guide system was made on functionally important SNPs in human TDO2and mouse K-ras genes. Additional examples of analysis are reported involving variants in the human gammaA-globin (HBG1), hsp70(HSPA1A), and Factor IX (F9) gene promoters.
Collapse
|
14
|
Ponomarenko J, Merkulova T, Orlova G, Fokin O, Gorshkov E, Ponomarenko M. Mining DNA sequences to predict sites which mutations cause genetic diseases. Knowl Based Syst 2002. [DOI: 10.1016/s0950-7051(01)00144-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Ponomarenko JV, Orlova GV, Frolov AS, Gelfand MS, Ponomarenko MP. SELEX_DB: a database on in vitro selected oligomers adapted for recognizing natural sites and for analyzing both SNPs and site-directed mutagenesis data. Nucleic Acids Res 2002; 30:195-9. [PMID: 11752291 PMCID: PMC99084 DOI: 10.1093/nar/30.1.195] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
SELEX_DB is an online resource containing both the experimental data on in vitro selected DNA/RNA oligomers (aptamers) and the applets for recognition of these oligomers. Since in vitro experimental data are evidently system-dependent, the new release of the SELEX_DB has been supplemented by the database SYSTEM storing the experimental design. In addition, the recognition applet package, SELEX_TOOLS, applying in vitro selected data to annotation of the genome DNA, is accompanied by the cross-validation test database CROSS_TEST discriminating the sites (natural or other) related to in vitro selected sites out of random DNA. By cross-validation testing, we have unexpectedly observed that the recognition accuracy increases with the growth of homology between the training and test sets of protein binding sequences. For natural sites, the recognition accuracy was lower than that for the nearest protein homologs and higher than that for distant homologs and non-homologous proteins binding the common site. The current SELEX_DB release is available at http://wwwmgs.bionet.nsc.ru/mgs/systems/selex/.
Collapse
Affiliation(s)
- Julia V Ponomarenko
- Institute of Cytology and Genetics, 10 Lavrentyev Avenue, Novosibirsk 630090, Russia and Integrated Genomics, Moscow Branch, PO Box 348, Moscow 117333, Russia.
| | | | | | | | | |
Collapse
|
16
|
Ponomarenko JV, Merkulova TI, Vasiliev GV, Levashova ZB, Orlova GV, Lavryushev SV, Fokin ON, Ponomarenko MP, Frolov AS, Sarai A. rSNP_Guide, a database system for analysis of transcription factor binding to target sequences: application to SNPs and site-directed mutations. Nucleic Acids Res 2001; 29:312-6. [PMID: 11125123 PMCID: PMC29847 DOI: 10.1093/nar/29.1.312] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
rSNP_Guide is a novel curated database system for analysis of transcription factor (TF) binding to target sequences in regulatory gene regions altered by mutations. It accumulates experimental data on naturally occurring site variants in regulatory gene regions and site-directed mutations. This database system also contains the web tools for SNP analysis, i.e., active applet applying weight matrices to predict the regulatory site candidates altered by a mutation. The current version of the rSNP_Guide is supplemented by six sub-databases: (i) rSNP_DB, on DNA-protein interaction caused by mutation; (ii) SYSTEM, on experimental systems; (iii) rSNP_BIB, on citations to original publications; (iv) SAMPLES, on experimentally identified sequences of known regulatory sites; (v) MATRIX, on weight matrices of known TF sites; (vi) rSNP_Report, on characteristic examples of successful rSNP_Tools implementation. These databases are useful for the analysis of natural SNPs and site-directed mutations. The databases are available through the Web, http://wwwmgs.bionet.nsc.ru/mgs/systems/rsnp/.
Collapse
Affiliation(s)
- J V Ponomarenko
- Institute of Cytology and Genetics, 10 Lavrentyev Avenue, Novosibirsk, 630090, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|