1
|
Domínguez A, Gargallo R, Cuestas-Ayllón C, Grazu V, Fàbrega C, Valiuska S, Noé V, Ciudad CJ, Calderon EJ, de la Fuente JM, Eritja R, Aviñó A. Biophysical evaluation of antiparallel triplexes for biosensing and biomedical applications. Int J Biol Macromol 2024; 264:130540. [PMID: 38430998 DOI: 10.1016/j.ijbiomac.2024.130540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Polypyrimidine sequences can be targeted by antiparallel clamps forming triplex structures either for biosensing or therapeutic purposes. Despite its successful implementation, their biophysical properties remain to be elusive. In this work, PAGE, circular dichroism and multivariate analysis were used to evaluate the properties of PPRHs directed to SARS-CoV-2 genome. Several PPRHs designed to target various polypyrimidine sites within the viral genome were synthesized. These PPRHs displayed varying binding affinities, influenced by factors such as the length of the PPRH and its GC content. The number and position of pyrimidine interruptions relative to the 4 T loop of the PPRH was found a critical factor, affecting the binding affinity with the corresponding target. Moreover, these factors also showed to affect in the intramolecular and intermolecular equilibria of PPRHs alone and when hybridized to their corresponding targets, highlighting the polymorphic nature of these systems. Finally, the functionality of the PPRHs was evaluated in a thermal lateral flow sensing device showing a good correspondence between their biophysical properties and detection limits. These comprehensive studies contribute to the understanding of the critical factors involved in the design of PPRHs for effective targeting of biologically relevant genomes through the formation of triplex structures under neutral conditions.
Collapse
Affiliation(s)
- Arnau Domínguez
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona (UB), 08028 Barcelona, Spain
| | - Carlos Cuestas-Ayllón
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), Consejo Superior de Investigaciones Científicas (CSIC), 50018 Zaragoza, Spain
| | - Valeria Grazu
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), Consejo Superior de Investigaciones Científicas (CSIC), 50018 Zaragoza, Spain
| | - Carme Fàbrega
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Simonas Valiuska
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Carlos J Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Enrique J Calderon
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Jesús Martínez de la Fuente
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), Consejo Superior de Investigaciones Científicas (CSIC), 50018 Zaragoza, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
2
|
Story S, Bhaduri S, Ganguly S, Dakarapu R, Wicks SL, Bhadra J, Kwange S, Arya DP. Understanding Antisense Oligonucleotide Efficiency in Inhibiting Prokaryotic Gene Expression. ACS Infect Dis 2024; 10:971-987. [PMID: 38385613 DOI: 10.1021/acsinfecdis.3c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Oligonucleotides offer a unique opportunity for sequence specific regulation of gene expression in bacteria. A fundamental question to address is the choice of oligonucleotide, given the large number of options available. Different modifications varying in RNA binding affinities and cellular uptake are available but no comprehensive comparisons have been performed. Herein, the efficiency of blocking expression of β-galactosidase (β-Gal) in E. coli was evaluated utilizing different antisense oligomers (ASOs). Fluorescein (FAM)-labeled oligomers were used to understand their differences in bacterial uptake. Flow cytometry analysis revealed significant differences in uptake, with high fluorescence seen in cells treated with FAM-labeled peptidic nucleic acid (PNA), phosphorodiamidate morpholino oligonucleotide (PMO) and phosphorothioate (PS) oligomers, and low fluorescence observed in cells treated with phosphodiester (PO) oligomers. Thermal denaturation (Tm) of oligomer:RNA duplexes and isothermal titration calorimetry (ITC) studies reveal that ASO binding to target RNA demonstrates a good correlation between Tm and Kd values. There was no correlation between Kd values and reduction of β-Gal activity in bacterial cells. However, cell-free translation assays demonstrated a direct relationship between Kd values and inhibition of gene expression by antisense oligomers, with tight binding oligomers such as LNA being the most efficient. Membrane active compounds such as polymyxin B and A22 further improved the cellular uptake of FAM-PNA and FAM-PS oligomers in wild-type E. coli cells. PNA and PMO were most effective in cellular uptake and reducing β-Gal activity as compared to oligomers with PS or those with PO linkages. Overall, cell uptake of the oligomers is shown as the key determinant in predicting their differences in bacterial antisense inhibition, and the RNA affinity is the key determinant in inhibition of gene expression in cell free systems.
Collapse
Affiliation(s)
- Sandra Story
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| | | | - Sudakshina Ganguly
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | | | - Sarah L Wicks
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| | - Jhuma Bhadra
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Simeon Kwange
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| | - Dev P Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| |
Collapse
|
3
|
Abu El Asrar R, Margamuljana L, Abramov M, Bande O, Agnello S, Jang M, Herdewijn P. Enzymatic Incorporation of Modified Purine Nucleotides in DNA. Chembiochem 2017; 18:2408-2415. [PMID: 29024251 DOI: 10.1002/cbic.201700393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Indexed: 01/19/2023]
Abstract
A series of nucleotide analogues, with a hypoxanthine base moiety (8-aminohypoxanthine, 1-methyl-8-aminohypoxanthine, and 8-oxohypoxanthine), together with 5-methylisocytosine were tested as potential pairing partners of N8 -glycosylated nucleotides with an 8-azaguanine or 8-aza-9-deazaguanine base moiety by using DNA polymerases (incorporation studies). The best results were obtained with the 5-methylisocytosine nucleotide followed by the 1-methyl-8-aminohypoxanthine nucleotide. The experiments demonstrated that small differences in the structure (8-azaguanine versus 8-aza-9-deazaguanine) might lead to significant differences in recognition efficiency and selectivity, base pairing by Hoogsteen recognition at the polymerase level is possible, 8-aza-9-deazaguanine represents a self-complementary base pair, and a correlation exists between in vitro incorporation studies and in vivo recognition by natural bases in Escherichia coli, but this recognition is not absolute (exceptions were observed).
Collapse
Affiliation(s)
- Rania Abu El Asrar
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Lia Margamuljana
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Mikhail Abramov
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Omprakash Bande
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Stefano Agnello
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,Present address: Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Miyeon Jang
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
4
|
del Mundo I, Zewail-Foote M, Kerwin SM, Vasquez KM. Alternative DNA structure formation in the mutagenic human c-MYC promoter. Nucleic Acids Res 2017; 45:4929-4943. [PMID: 28334873 PMCID: PMC5416782 DOI: 10.1093/nar/gkx100] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 01/08/2023] Open
Abstract
Mutation 'hotspot' regions in the genome are susceptible to genetic instability, implicating them in diseases. These hotspots are not random and often co-localize with DNA sequences potentially capable of adopting alternative DNA structures (non-B DNA, e.g. H-DNA and G4-DNA), which have been identified as endogenous sources of genomic instability. There are regions that contain overlapping sequences that may form more than one non-B DNA structure. The extent to which one structure impacts the formation/stability of another, within the sequence, is not fully understood. To address this issue, we investigated the folding preferences of oligonucleotides from a chromosomal breakpoint hotspot in the human c-MYC oncogene containing both potential G4-forming and H-DNA-forming elements. We characterized the structures formed in the presence of G4-DNA-stabilizing K+ ions or H-DNA-stabilizing Mg2+ ions using multiple techniques. We found that under conditions favorable for H-DNA formation, a stable intramolecular triplex DNA structure predominated; whereas, under K+-rich, G4-DNA-forming conditions, a plurality of unfolded and folded species were present. Thus, within a limited region containing sequences with the potential to adopt multiple structures, only one structure predominates under a given condition. The predominance of H-DNA implicates this structure in the instability associated with the human c-MYC oncogene.
Collapse
Affiliation(s)
- Imee Marie A. del Mundo
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. Austin, TX 78723, USA
| | - Maha Zewail-Foote
- Department of Chemistry and Biochemistry, Southwestern University, 1001 E University Ave, Georgetown, TX 78626, USA
| | - Sean M. Kerwin
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, TX 78666, USA
| | - Karen M. Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. Austin, TX 78723, USA
| |
Collapse
|
5
|
Bande O, Braddick D, Agnello S, Jang M, Pezo V, Schepers G, Rozenski J, Lescrinier E, Marlière P, Herdewijn P. Base pairing involving artificial bases in vitro and in vivo. Chem Sci 2016; 7:995-1010. [PMID: 29896368 PMCID: PMC5954848 DOI: 10.1039/c5sc03474d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/28/2015] [Indexed: 01/09/2023] Open
Abstract
Herein we report the synthesis of N8-glycosylated 8-aza-deoxyguanosine (N8-8-aza-dG) and 8-aza-9-deaza-deoxyguanosine (N8-8-aza-9-deaza-dG) nucleotides and their base pairing properties with 5-methyl-isocytosine (d-isoCMe), 8-amino-deoxyinosine (8-NH2-dI), 1-N-methyl-8-amino-deoxyinosine (1-Me-8-NH2-dI), 7,8-dihydro-8-oxo-deoxyinosine (8-Oxo-dI), 7,8-dihydro-8-oxo-deoxyadenosine (8-Oxo-dA), and 7,8-dihydro-8-oxo-deoxyguanosine (8-Oxo-dG), in comparison with the d-isoCMe:d-isoG artificial genetic system. As demonstrated by Tm measurements, the N8-8-aza-dG:d-isoCMe base pair formed less stable duplexes as the C:G and d-isoCMe:d-isoG pairs. Incorporation of 8-NH2-dI versus the N8-8-aza-dG nucleoside resulted in a greater reduction in Tm stability, compared to d-isoCMe:d-isoG. Insertion of the methyl group at the N1 position of 8-NH2-dI did not affect duplex stability with N8-8-aza-dG, thus suggesting that the base paring takes place through Hoogsteen base pairing. The cellular interpretation of the nucleosides was studied, whereby a lack of recognition or mispairing of the incorporated nucleotides with the canonical DNA bases indicated the extent of orthogonality in vivo. The most biologically orthogonal nucleosides identified included the 8-amino-deoxyinosines (1-Me-8-NH2-dI and 8-NH2-dI) and N8-8-aza-9-deaza-dG. The 8-oxo modifications mimic oxidative damage ahead of cancer development, and the impact of the MutM mediated recognition of these 8-oxo-deoxynucleosides was studied, finding no significant impact in their in vivo assay.
Collapse
Affiliation(s)
- Omprakash Bande
- Medicinal Chemistry , Rega Institute for Medical Research , KU Leuven , Minderbroedersstraat 10 , 3000 Leuven , Belgium . ; Tel: +32 16 337387
| | - Darren Braddick
- iSSB - CNRS FRE3561 , University of Evry-Val-d'Essonne , 5 rue Henri Desbruères, Genopole Campus 1, Bât. 6 , F-91030 Évry Cedex , France
| | - Stefano Agnello
- Medicinal Chemistry , Rega Institute for Medical Research , KU Leuven , Minderbroedersstraat 10 , 3000 Leuven , Belgium . ; Tel: +32 16 337387
| | - Miyeon Jang
- Medicinal Chemistry , Rega Institute for Medical Research , KU Leuven , Minderbroedersstraat 10 , 3000 Leuven , Belgium . ; Tel: +32 16 337387
| | - Valérie Pezo
- iSSB - CNRS FRE3561 , University of Evry-Val-d'Essonne , 5 rue Henri Desbruères, Genopole Campus 1, Bât. 6 , F-91030 Évry Cedex , France
| | - Guy Schepers
- Medicinal Chemistry , Rega Institute for Medical Research , KU Leuven , Minderbroedersstraat 10 , 3000 Leuven , Belgium . ; Tel: +32 16 337387
| | - Jef Rozenski
- Medicinal Chemistry , Rega Institute for Medical Research , KU Leuven , Minderbroedersstraat 10 , 3000 Leuven , Belgium . ; Tel: +32 16 337387
| | - Eveline Lescrinier
- Medicinal Chemistry , Rega Institute for Medical Research , KU Leuven , Minderbroedersstraat 10 , 3000 Leuven , Belgium . ; Tel: +32 16 337387
| | - Philippe Marlière
- iSSB - CNRS FRE3561 , University of Evry-Val-d'Essonne , 5 rue Henri Desbruères, Genopole Campus 1, Bât. 6 , F-91030 Évry Cedex , France
| | - Piet Herdewijn
- iSSB - CNRS FRE3561 , University of Evry-Val-d'Essonne , 5 rue Henri Desbruères, Genopole Campus 1, Bât. 6 , F-91030 Évry Cedex , France
- Medicinal Chemistry , Rega Institute for Medical Research , KU Leuven , Minderbroedersstraat 10 , 3000 Leuven , Belgium . ; Tel: +32 16 337387
| |
Collapse
|
6
|
Abstract
Incorporation of a 5-methyl-2-thiocytosine base to the parallel homopyrimidine region of a triplex DNA receptor enabled selective molecular recognition of an inosine ligand.
Collapse
Affiliation(s)
- Haidong Huang
- Department of Chemistry and Environmental Science
- New Jersey Institute of Technology
- Newark
- USA
| | - Peter C. Tlatelpa
- Department of Chemistry and Environmental Science
- New Jersey Institute of Technology
- Newark
- USA
| |
Collapse
|
7
|
Brancolini G, Migliore A, Corni S, Fuentes-Cabrera M, Luque FJ, Di Felice R. Dynamical treatment of charge transfer through duplex nucleic acids containing modified adenines. ACS NANO 2013; 7:9396-406. [PMID: 24060008 PMCID: PMC3903158 DOI: 10.1021/nn404165y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We address the issue of whether chemical alterations of nucleobases are an effective tool to modulate charge transfer through DNA molecules. Our investigation uses a multilevel computational approach based on classical molecular dynamics and quantum chemistry. We find yet another piece of evidence that structural fluctuations are a key factor to determine the electronic structure of double-stranded DNA. We argue that the electronic structure and charge transfer ability of flexible polymers is the result of a complex intertwining of various structural, dynamical and chemical factors. Chemical intuition may be used to design molecular wires, but this is not the sole component in the complex charge transfer mechanism through DNA.
Collapse
Affiliation(s)
- Giorgia Brancolini
- CNR Institute of Nanoscience, S3 Center, Via Campi 213/A, 41125 Modena, Italy
- (GB); (RDF). Phone: +39-059-205-5320. Fax: +39-059-205-5651
| | - Agostino Migliore
- School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Stefano Corni
- CNR Institute of Nanoscience, S3 Center, Via Campi 213/A, 41125 Modena, Italy
| | - Miguel Fuentes-Cabrera
- Center for Nanophase Materials Sciences, and Computer Science and Mathematics Division, Oak Ridge National Laboratory, P O Box 2008, Oak Ridge, Tennessee 37831 6494, USA
| | - F. Javier Luque
- Department de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, Universitat de Barcelona, Avenida Diagonal 643, Barcelona 08028, Spain
| | - Rosa Di Felice
- CNR Institute of Nanoscience, S3 Center, Via Campi 213/A, 41125 Modena, Italy
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089 USA
- (GB); (RDF). Phone: +39-059-205-5320. Fax: +39-059-205-5651
| |
Collapse
|
8
|
Hancock SP, Ghane T, Cascio D, Rohs R, Di Felice R, Johnson RC. Control of DNA minor groove width and Fis protein binding by the purine 2-amino group. Nucleic Acids Res 2013; 41:6750-60. [PMID: 23661683 PMCID: PMC3711457 DOI: 10.1093/nar/gkt357] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The width of the DNA minor groove varies with sequence and can be a major determinant of DNA shape recognition by proteins. For example, the minor groove within the center of the Fis–DNA complex narrows to about half the mean minor groove width of canonical B-form DNA to fit onto the protein surface. G/C base pairs within this segment, which is not contacted by the Fis protein, reduce binding affinities up to 2000-fold over A/T-rich sequences. We show here through multiple X-ray structures and binding properties of Fis–DNA complexes containing base analogs that the 2-amino group on guanine is the primary molecular determinant controlling minor groove widths. Molecular dynamics simulations of free-DNA targets with canonical and modified bases further demonstrate that sequence-dependent narrowing of minor groove widths is modulated almost entirely by the presence of purine 2-amino groups. We also provide evidence that protein-mediated phosphate neutralization facilitates minor groove compression and is particularly important for binding to non-optimally shaped DNA duplexes.
Collapse
Affiliation(s)
- Stephen P Hancock
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90095-1737, USA
| | | | | | | | | | | |
Collapse
|
9
|
Arcella A, Portella G, Ruiz ML, Eritja R, Vilaseca M, Gabelica V, Orozco M. Structure of Triplex DNA in the Gas Phase. J Am Chem Soc 2012; 134:6596-606. [DOI: 10.1021/ja209786t] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Annalisa Arcella
- Joint IRB BSC Research Program
in Computational Biology, Institute for Research in Biomedicine, Baldiri Reixach 10, Barcelona 08028, Spain
| | - Guillem Portella
- Joint IRB BSC Research Program
in Computational Biology, Institute for Research in Biomedicine, Baldiri Reixach 10, Barcelona 08028, Spain
| | - Maria Luz Ruiz
- Chemistry and Molecular Pharmacology
Program, Institute for Research in Biomedicine, IQAC-CSIC, CIBER-BBN, Barcelona 08028, Spain
| | - Ramon Eritja
- Chemistry and Molecular Pharmacology
Program, Institute for Research in Biomedicine, IQAC-CSIC, CIBER-BBN, Barcelona 08028, Spain
| | - Marta Vilaseca
- Mass Spectrometry Core Facility, Institute for Research in Biomedicine, Barcelona 08028,
Spain
| | - Valérie Gabelica
- Department of Chemistry, University of Liège, Allée de la Chimie,
Building B6c, B-4000 Liège, Belgium
| | - Modesto Orozco
- Joint IRB BSC Research Program
in Computational Biology, Institute for Research in Biomedicine, Baldiri Reixach 10, Barcelona 08028, Spain
- Departament de Bioquímica
i Biología Molecular, Facultat de Biología, Universitat de Barcelona, Avgda Diagonal 645, Barcelona
08028, Spain
| |
Collapse
|
10
|
Sau SP, Hrdlicka PJ. C2'-pyrene-functionalized triazole-linked DNA: universal DNA/RNA hybridization probes. J Org Chem 2012; 77:5-16. [PMID: 22087648 PMCID: PMC3253902 DOI: 10.1021/jo201845z] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Development of universal hybridization probes, that is, oligonucleotides displaying identical affinity toward matched and mismatched DNA/RNA targets, has been a longstanding goal due to potential applications as degenerate PCR primers and microarray probes. The classic approach toward this end has been the use of "universal bases" that either are based on hydrogen-bonding purine derivatives or aromatic base analogues without hydrogen-bonding capabilities. However, development of probes that result in truly universal hybridization without compromising duplex thermostability has proven challenging. Here we have used the "click reaction" to synthesize four C2'-pyrene-functionalized triazole-linked 2'-deoxyuridine phosphoramidites. We demonstrate that oligodeoxyribonucleotides modified with the corresponding monomers display (a) minimally decreased thermal affinity toward DNA/RNA complements relative to reference strands, (b) highly robust universal hybridization characteristics (average differences in thermal denaturation temperatures of matched vs mismatched duplexes involving monomer W are <1.7 °C), and (c) exceptional affinity toward DNA targets containing abasic sites opposite of the modification site (ΔT(m) up to +25 °C). The latter observation, along with results from absorption and fluorescence spectroscopy, suggests that the pyrene moiety is intercalating into the duplex whereby the opposing nucleotide is pushed into an extrahelical position. These properties render C2'-pyrene-functionalized triazole-linked DNA as promising universal hybridization probes for applications in nucleic acid chemistry and biotechnology.
Collapse
Affiliation(s)
- Sujay P. Sau
- Department of Chemistry, University of Idaho, Moscow, ID-83844, USA
| | | |
Collapse
|
11
|
Guerrini L, McKenzie F, Wark AW, Faulds K, Graham D. Tuning the interparticle distance in nanoparticle assemblies in suspension via DNA-triplex formation: correlation between plasmonic and surface-enhanced Raman scattering responses. Chem Sci 2012. [DOI: 10.1039/c2sc20031g] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Lao VV, Darwanto A, Sowers LC. Impact of base analogues within a CpG dinucleotide on the binding of DNA by the methyl-binding domain of MeCP2 and methylation by DNMT1. Biochemistry 2010; 49:10228-36. [PMID: 20979427 DOI: 10.1021/bi1011942] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The epigenetic control of transcription requires the selective recognition of methylated CpG dinucleotides by methylation-sensitive sequence-specific DNA binding proteins. In order to probe the mechanism of selective interaction of the methyl-binding protein with methylated DNA, we have prepared a series of oligonucleotides containing modified purines and pyrimidines at the recognition site, and we have examined the binding of these oligonucleotides to the methyl-binding domain (MBD) of the methyl-CpG-binding protein 2 (MeCP2). Our results suggest that pyrimidine 5-substituents similar in size to a methyl group facilitate protein binding; however, binding affinity does not correlate with the hydrophobicity of the substituent, and neither the 4-amino group of 5-methylcytosine (mC) nor Watson-Crick base pair geometry is essential for MBD binding. However, 5-substituted uracil analogues in one strand do not direct human DNA methyltransferase 1 (DNMT1) methylation of the opposing strand, as does mC. Important recognition elements do include the guanine O6 and N7 atoms present in the major groove. Unexpectedly, removal of the guanine 2-amino group from the minor groove substantially enhances MBD binding, likely resulting from DNA bending at the substitution site. The enhanced binding of the MBD to oligonucleotides containing several cytosine analogues observed here is better explained by a DNA-protein interface mediated by structured water as opposed to hydrophobic interactions.
Collapse
Affiliation(s)
- Victoria Valinluck Lao
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California 92350, United States
| | | | | |
Collapse
|
13
|
Aviñó A, Mazzini S, Ferreira R, Eritja R. Synthesis and structural properties of oligonucleotides covalently linked to acridine and quindoline derivatives through a threoninol linker. Bioorg Med Chem 2010; 18:7348-56. [PMID: 20888244 DOI: 10.1016/j.bmc.2010.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/06/2010] [Accepted: 09/08/2010] [Indexed: 11/28/2022]
Abstract
Oligonucleotide conjugates containing acridine and quindoline derivatives linked through a threoninol molecule were synthesized. We showed that these conjugates formed duplexes and quadruplexes with higher thermal stability than the corresponding unmodified oligonucleotides. When acridine is located in the middle of the sequence, DNA duplexes have a similar stability independently of the natural base present in front of acridine. Self-complementary oligonucleotides and thrombin binding aptamers (TBA) carrying the acridine and quindoline molecules are studied by NMR.
Collapse
Affiliation(s)
- Anna Aviñó
- Institute for Research in Biomedicine, Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), CSIC, Baldiri Reixac 10, E-08028 Barcelona, Spain.
| | | | | | | |
Collapse
|
14
|
Sun X, Lee JK. Stability of DNA Duplexes Containing Hypoxanthine (Inosine): Gas versus Solution Phase and Biological Implications. J Org Chem 2010; 75:1848-54. [DOI: 10.1021/jo9023683] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xuejun Sun
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901
| | - Jeehiun K. Lee
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901
| |
Collapse
|
15
|
Aviñó A, Cubero E, Gargallo R, González C, Orozco M, Eritja R. Structural properties of g,t-parallel duplexes. J Nucleic Acids 2010; 2010. [PMID: 20798879 PMCID: PMC2925217 DOI: 10.4061/2010/763658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 11/15/2009] [Indexed: 11/20/2022] Open
Abstract
The structure of G,T-parallel-stranded duplexes of DNA carrying similar amounts of adenine and guanine residues is studied by means of molecular dynamics (MD) simulations and UV- and CD spectroscopies. In addition the impact of the substitution of adenine by 8-aminoadenine and guanine by 8-aminoguanine is analyzed. The presence of 8-aminoadenine and 8-aminoguanine stabilizes the parallel duplex structure. Binding of these oligonucleotides to their target polypyrimidine sequences to form the corresponding G,T-parallel triplex was not observed. Instead, when unmodified parallel-stranded duplexes were mixed with their polypyrimidine target, an interstrand Watson-Crick duplex was formed. As predicted by theoretical calculations parallel-stranded duplexes carrying 8-aminopurines did not bind to their target. The preference for the parallel-duplex over the Watson-Crick antiparallel duplex is attributed to the strong stabilization of the parallel duplex produced by the 8-aminopurines. Theoretical studies show that the isomorphism of the triads is crucial for the stability of the parallel triplex.
Collapse
Affiliation(s)
- Anna Aviñó
- Institute for Research in Biomedicine, IQAC-CSIC, CIBER-BBN Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Edifici Helix, Baldiri Reixac 15, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Rutledge LR, Wheaton CA, Wetmore SD. A computational characterization of the hydrogen-bonding and stacking interactions of hypoxanthine. Phys Chem Chem Phys 2007; 9:497-509. [PMID: 17216066 DOI: 10.1039/b606388h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydrogen-bonding and stacking interactions of hypoxanthine, a potential universal nucleobase, were calculated using a variety of methodologies (CCSD(T), MP2, B3LYP, PWB6K, AMBER). All methods predict that the hydrogen-bonding interaction in the hypoxanthine-cytosine pair is approximately 25 kJ mol(-1) stronger than that in the other dimers. Although the calculations support suggestions from experiments that hypoxanthine preferentially binds with cytosine, the trend in the calculated hydrogen-bond strengths for the remaining natural nucleobases do not show a strong correlation with the experimentally predicted binding preferences. However, our calculations suggest that the stacking interactions of hypoxanthine are similar in magnitude to the hydrogen-bonding interactions at all levels of theory (with the exception of B3LYP, which incorrectly predicts stacked dimers to be unstable). Therefore, stacking interactions should also be considered when analyzing the stability of DNA helices containing hypoxanthine and the use of larger models that account for both hydrogen-bonding and stacking within DNA duplexes will likely result in better agreement with experimental observations. For the majority of the dimers, PWB6K and AMBER provide reasonable binding strengths at reduced computational costs, and therefore will be useful techniques for considering larger models.
Collapse
Affiliation(s)
- Lesley R Rutledge
- Department of Chemistry, Mount Allison University, 63C York Street, Sackville, New Brunswick, Canada E4L 1G8
| | | | | |
Collapse
|
17
|
|
18
|
Shchyolkina AK, Kaluzhny DN, Arndt-Jovin DJ, Jovin TM, Zhurkin VB. Recombination R-triplex: H-bonds contribution to stability as revealed with minor base substitutions for adenine. Nucleic Acids Res 2006; 34:3239-45. [PMID: 16798913 PMCID: PMC1500870 DOI: 10.1093/nar/gkl431] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 05/29/2006] [Accepted: 05/31/2006] [Indexed: 01/29/2023] Open
Abstract
Several cellular processes involve alignment of three nucleic acids strands, in which the third strand (DNA or RNA) is identical and in a parallel orientation to one of the DNA duplex strands. Earlier, using 2-aminopurine as a fluorescent reporter base, we demonstrated that a self-folding oligonucleotide forms a recombination-like structure consistent with the R-triplex. Here, we extended this approach, placing the reporter 2-aminopurine either in the 5'- or 3'-strand. We obtained direct evidence that the 3'-strand forms a stable duplex with the complementary central strand, while the 5'-strand participates in non-Watson-Crick interactions. Substituting 2,6-diaminopurine or 7-deazaadenine for adenine, we tested and confirmed the proposed hydrogen bonding scheme of the A*(T.A) R-type triplet. The adenine substitutions expected to provide additional H-bonds led to triplex structures with increased stability, whereas the substitutions consistent with a decrease in the number of H-bonds destabilized the triplex. The triplex formation enthalpies and free energies exhibited linear dependences on the number of H-bonds predicted from the A*(T.A) triplet scheme. The enthalpy of the 10 nt long intramolecular triplex of -100 kJ x mol(-1) demonstrates that the R-triplex is relatively unstable and thus an ideal candidate for a transient intermediate in homologous recombination, t-loop formation at the mammalian telomere ends, and short RNA invasion into a duplex. On the other hand, the impact of a single H-bond, 18 kJ x mol(-1), is high compared with the overall triplex formation enthalpy. The observed energy advantage of a 'correct' base in the third strand opposite the Watson-Crick base pair may be a powerful mechanism for securing selectivity of recognition between the single strand and the duplex.
Collapse
Affiliation(s)
- Anna K. Shchyolkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences119991 Moscow, Russia
- Department of Molecular Biology, Max Planck Institute for Biophysical ChemistryD-37070 Goettingen, Germany
- Laboratory of Cell Biology, National Cancer InstituteNIH, Bethesda, MD 20892, USA
| | - Dmitry N. Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences119991 Moscow, Russia
- Department of Molecular Biology, Max Planck Institute for Biophysical ChemistryD-37070 Goettingen, Germany
- Laboratory of Cell Biology, National Cancer InstituteNIH, Bethesda, MD 20892, USA
| | - Donna J. Arndt-Jovin
- Department of Molecular Biology, Max Planck Institute for Biophysical ChemistryD-37070 Goettingen, Germany
| | - Thomas M. Jovin
- Department of Molecular Biology, Max Planck Institute for Biophysical ChemistryD-37070 Goettingen, Germany
| | - Victor B. Zhurkin
- Laboratory of Cell Biology, National Cancer InstituteNIH, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Sarzynska J, Kulinski T. Dynamics and Stability of GCAA Tetraloops with 2-Aminopurine and Purine Substitutions. J Biomol Struct Dyn 2005; 22:425-39. [PMID: 15588106 DOI: 10.1080/07391102.2005.10507014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The contributions of various interactions in the GGCGCAAGCC hairpin containing a GCAA tetraloop were studied by computer simulations using the substitutions of functional groups. The guanosine (G) in the first tetraloop position or in the C-G closing base pair was replaced by 2-aminopurine (AP), and the individual tetraloop's adenosines (A) were replaced by purine (PUR). These substitutions eliminated particular hydrogen bonds thought to stabilize the GCAA tetraloop. For each substitution, molecular dynamics (MD) simulations were carried out in an aqueous solution with sodium counterions, using the CHARMM27 force field. The MD simulations showed that the substitutions in the first (G-->AP) and the third (A-->PUR) position of the GCAA tetraloop did not significantly influence the conformation of the hairpin. A long-lived bridging water molecule observed in the GCAA loop was present in both modified loops. The substitutions made in the last loop position (A-->PUR) or in the C-G base pair closing the tetraloop (G-->AP) to some extent influenced the loop structure and dynamics. These loops did not display the long-lived bridging water molecules. When the second A in the GCAA loop was replaced by PUR, the first A in the loop was observed in the anti or in the syn orientation about the glycosyl bond. The G to AP substitution in C-G base pair led to a change of their arrangement from the Watson-Crick to wobble. The MD simulations of the hairpin with C-AP wobble closing base pair showed increased conformational dynamics of the hairpin. The changes of hairpin formation free energy associated with the substitutions of individual bases were calculated by the free energy perturbation method. Our theoretical estimates suggest a larger destabilization for the G to AP substitutions in GCAA loop than for the substitutions of individual A's by PUR, which is in accordance with experimental tendency. The calculations predicted a similar free energy change for G to AP substitutions in the GCAA tetraloop and in the C-G closing base pair.
Collapse
Affiliation(s)
- Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12 / 14, 61 704 Poznan, Poland.
| | | |
Collapse
|
20
|
Sarzynska J, Nilsson L, Kulinski T. Effects of base substitutions in an RNA hairpin from molecular dynamics and free energy simulations. Biophys J 2004; 85:3445-59. [PMID: 14645041 PMCID: PMC1303653 DOI: 10.1016/s0006-3495(03)74766-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Contributions of individual interactions in the GGCGCAAGCC hairpin containing a GCAA tetraloop were studied by computer simulations using base substitutions. The G in the first tetraloop position was replaced by inosine (I) or adenosine (A), and the G in the C-G basepair closing the tetraloop was replaced by I. These substitutions eliminate particular hydrogen bonds proposed in the nuclear magnetic resonance model of the GCAA tetraloop. Molecular dynamics simulations of the GCAA tetraloop in aqueous solvent displayed a well-defined hydrogen pattern between the first and last loop nucleotides (G and A) stabilized by a bridging water molecule. Substitution of G-->I in the basepair closing the tetraloop did not significantly influence the loop structure and dynamics. The ICAA loop maintained the overall structure, but displayed variation in the hydrogen-bond network within the tetraloop itself. Molecular dynamics simulations of the ACAA loop led to conformational heterogeneity of the resulting structures. Changes of hairpin formation free energy associated with substitutions of individual bases were calculated by the free energy perturbation method. The calculated decrease of the hairpin stability upon G-->I substitution in the C-G basepair closing the tetraloop was in good agreement with experimental thermodynamic data. Our theoretical estimates for G-->I and G-->A mutations located in the tetraloop suggest larger loop destabilization than corresponding experimental results. The extent of conformational sampling of the structures resulting from base substitutions and its impact on the calculated free energy was discussed.
Collapse
Affiliation(s)
- Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | | | | |
Collapse
|
21
|
Aviñó A, Cubero E, González C, Eritja R, Orozco M. Antiparallel triple helices. Structural characteristics and stabilization by 8-amino derivatives. J Am Chem Soc 2004; 125:16127-38. [PMID: 14678005 DOI: 10.1021/ja035039t] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structural, dynamical, and recognition properties of antiparallel DNA triplexes formed by the antiparallel d(G#G.C), d(A#A.T), and d(T#A.T) motifs (the pound sign and dot mean reverse-Hoogsteen and Watson-Crick hydrogen bonds, respectively) are studied by means of "state of the art" molecular dynamics simulations. Once the characteristics of the helix are defined, molecular dynamics and thermodynamic integration calculations are used to determine the expected stabilization of the antiparallel triplex caused by the introduction of 8-aminopurines. Finally, oligonucleotides containing 8-aminopurine derivatives are synthesized and tested experimentally using several approaches in a variety of systems. A very large stabilization of the triplex is found experimentally, as predicted by simulations. These results open the possibility for the use of oligonucleotides carrying 8-aminopurines to bind single-stranded nucleic acids by formation of antiparallel triplexes.
Collapse
Affiliation(s)
- Anna Aviñó
- Institut de Biologia Molecular de Barcelona, CSIC, C/Jordi Girona 18-26, E-08034 Barcelona, Spain
| | | | | | | | | |
Collapse
|
22
|
Epstein JR, Ferguson JA, Lee KH, Walt DR. Combinatorial decoding: an approach for universal DNA array fabrication. J Am Chem Soc 2004; 125:13753-9. [PMID: 14599214 DOI: 10.1021/ja0365577] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A fiber optic microsphere-based oligonucleotide array is described that employs the sequence of the oligonucleotide probe attached to each microsphere as positional identifiers. Each microsphere serves as an immobilized array feature, functionalized with a unique single-stranded oligonucleotide sequence and randomly distributed into an array of microwells. To determine the sequences attached to individual microspheres, a series of fluorescently labeled combinatorial-pooled oligonucleotide target solutions was designed. Each combinatorial decoding solution is intended to identify the nucleotide at a particular position on every microsphere in the array. The combinatorial target solutions were synthesized by linking the four possible nucleotides at each position to four different fluorescent reporter dyes. As such, when the solutions were hybridized to the array, one of four possible fluorescent responses was generated for each position on a microsphere probe sequence. Adjusting the stringency of hybridization enabled single-base mismatch discrimination, and the signal with the highest intensity corresponded to the perfect nucleotide match. By consecutively exposing the array to a series of combinatorial decoding pool solutions, it was possible to simultaneously determine the sequence of every randomly positioned oligonucleotide-functionalized microsphere in the array. Once mapped, the microsphere array can be used for any typical genomic microarray experiment.
Collapse
Affiliation(s)
- Jason R Epstein
- Max Tishler Laboratory for Organic Chemistry, Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | |
Collapse
|
23
|
Aviñó A, Frieden M, Morales JC, de la Torre BG, Güimil-García R, Orozco M, González C, Eritja R. Properties of triple helices formed by oligonucleotides containing 8-aminopurines. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2003; 22:645-8. [PMID: 14565244 DOI: 10.1081/ncn-120021971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The synthesis of parallel hairpins carrying 8-aminopurines is described. These hairpins have a high affinity for specific polypyrimidine sequences resulting in the formation of very stable triplexes.
Collapse
Affiliation(s)
- A Aviñó
- Instituto de Biologia Molecular de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
O'Neill MA, Barton JK. Effects of strand and directional asymmetry on base-base coupling and charge transfer in double-helical DNA. Proc Natl Acad Sci U S A 2002; 99:16543-50. [PMID: 12486238 PMCID: PMC139180 DOI: 10.1073/pnas.012669599] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mechanistic models of charge transfer (CT) in macromolecules often focus on CT energetics and distance as the chief parameters governing CT rates and efficiencies. However, in DNA, features unique to the DNA molecule, in particular, the structure and dynamics of the DNA base stack, also have a dramatic impact on CT. Here we probe the influence of subtle structural variations on base-base CT within a DNA duplex by examining photoinduced quenching of 2-aminopurine (Ap) as a result of hole transfer (HT) to guanine (G). Photoexcited Ap is used as a dual reporter of variations in base stacking and CT efficiency. Significantly, the unique features of DNA, including the strandedness and directional asymmetry of the double helix, play a defining role in CT efficiency. For an (AT)n bridge, the orientation of the base pairs is critical; the yield of intrastrand HT is markedly higher through (A)n compared with (T)n bridges, whereas HT via intrastrand pathways is more efficient than through interstrand pathways. Remarkably, for reactions through the same DNA bridge, over the same distance, and with the same driving force, HT from photoexcited Ap to G in the 5' to 3' direction is more efficient and less dependent on distance than HT from 3' to 5'. We attribute these differences in HT efficiency to variations in base-base coupling within the DNA assemblies. Thus base-base coupling is a critical parameter in DNA CT and strongly depends on subtle structural nuances of duplex DNA.
Collapse
Affiliation(s)
- Melanie A O'Neill
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
26
|
Aviñó A, Frieden M, Morales JC, García de la Torre B, Güimil García R, Azorín F, Gelpí JL, Orozco M, González C, Eritja R. Properties of triple helices formed by parallel-stranded hairpins containing 8-aminopurines. Nucleic Acids Res 2002; 30:2609-19. [PMID: 12060677 PMCID: PMC117286 DOI: 10.1093/nar/gkf374] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Parallel-stranded hairpins with a polypyrimidine sequence linked to a complementary purine carrying 8-aminopurines such as 8-aminoadenine, 8-aminoguanine and 8-aminohypoxanthine bind polypyrimidine sequences complementary (in an antiparallel sense) to the purine part by a triple helix. The relative stabilities of triplexes were assessed by UV-absorption melting experiments as a function of pH and salt concentration. Hairpins carrying 8-aminopurines give very stable triple helical structures even at neutral pH, as confirmed by gel-shift experiments, circular dichroism and nuclear magnetic resonance spectroscopy. The modified hairpins may be redesigned to cope with small interruptions in the polypyrimidine target sequence.
Collapse
Affiliation(s)
- Anna Aviñó
- Cygene Spain S.L., Parc Científic de Barcelona, Baldiri i Reixac 10-12, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Hydrogen-bonded base pairs are an important determinant of nucleic acid structure and function. However, other interactions such as base-base stacking, base-backbone, and backbone-backbone interactions as well as effects exerted by the solvent and by metal or NH(4)(+) ions also have to be taken into account. In addition, hydrogen-bonded base complexes involving more than two bases can occur. With the rapidly increasing number and structural diversity of nucleic acid structures known at atomic detail higher-order hydrogen-bonded base complexes, base polyads, have attracted much interest. This review provides an overview on the occurrence of base polyads in nucleic acid structures and describes computational studies on these nucleic acid building blocks.
Collapse
Affiliation(s)
- J Sühnel
- Biocomputing Group, Institut für Molekulare Biotechnologie, Postfach 100813, D-07708 Jena, Germany
| |
Collapse
|
28
|
Cubero E, Aviñó A, de la Torre BG, Frieden M, Eritja R, Luque FJ, González C, Orozco M. Hoogsteen-based parallel-stranded duplexes of DNA. Effect of 8-amino-purine derivatives. J Am Chem Soc 2002; 124:3133-42. [PMID: 11902902 DOI: 10.1021/ja011928+] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structure of parallel-stranded duplexes of DNA-containing a mixture of guanines (G) and adenines (A) is studied by means of molecular dynamics (MD) simulation, as well as NMR and circular dichroism (CD) spectroscopy. Results demonstrate that the structure is based on the Hoogsteen motif rather than on the reverse Watson-Crick one. Molecular dynamics coupled to thermodynamic integration (MD/TI) calculations and melting experiments allowed us to determine the effect of 8-amino derivatives of A and G and of 8-amino-2'-deoxyinosine on the stability of parallel-stranded duplexes. The large stabilization of the parallel-stranded helix upon 8-amino substitution agrees with a Hoogsteen pairing, confirming MD, NMR, and CD data, and suggests new methods to obtain DNA triplexes for antigene and antisense purposes.
Collapse
Affiliation(s)
- Elena Cubero
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Optimisation of DNA triplex stability is of fundamental importance in the anti-gene strategy. In the present work, thermal denaturation studies by UV-spectrophotometry and structural and dynamical characterizations by NMR spectroscopy have been used systematically to investigate the effects on triplex stability of isolated insertions of different base triplets into an otherwise homogeneous 15-mer dT x dA-dT oligo-triplex. It is found that insertion of a single central C(+) x G-C or T x D-T triplet (D=2,6-diaminopurine) leads to a pronounced stabilization (up to 20 deg. C if the cytosine base is C5 methylated) at acidic as well as neutral pH. To a smaller degree, this is the case also for a C(+) x I-C triplet insertion. Using imino proton exchange measurements, it is shown that insertion of a DT base-pair in the underlying duplex perturbs the intrinsic A-tract structure in the same way as has been shown for a GC insert. We propose that the intrinsic properties of A-tract duplex DNA (e. g. high propeller twist and rigidity) are unfavourable for triplex formation and that GC- or DT-inserts stabilize the triplex by interfering with the A-tract features of the underlying duplex. The C(+) x I-C triplet without the N2 amino group in the minor groove is readily accommodated within the typical, highly propeller-twisted A-tract structure. This might be related to its smaller effect on the stability of the corresponding triplex. These results may be valuable for understanding DNA triplex formation in vivo as well as for the design of efficient triplex-forming oligonucleotides and in choosing suitable target sequences in the anti-gene strategy.
Collapse
Affiliation(s)
- Karin Sandström
- Department of Biochemistry and Biophysics Arrhenius Laboratory, Stockholm University, Stockholm, S-106 91, Sweden
| | | | | | | |
Collapse
|
30
|
Paragi G, Pálinkó I, Van Alsenoy C, Gyémánt IK, Penke B, Timár Z. Ab initio studies on the H-bonding of hypoxanthine and DNA bases. NEW J CHEM 2002. [DOI: 10.1039/b204695d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|