1
|
Godfrey A, Osborn K, Sinclair AJ. Interaction sites of the Epstein-Barr virus Zta transcription factor with the host genome in epithelial cells. Access Microbiol 2022; 3:000282. [PMID: 35018326 PMCID: PMC8742585 DOI: 10.1099/acmi.0.000282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/23/2021] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is present in a state of latency in infected memory B-cells and EBV-associated lymphoid and epithelial cancers. Cell stimulation or differentiation of infected B-cells and epithelial cells induces reactivation to the lytic replication cycle. In each cell type, the EBV transcription and replication factor Zta (BZLF1, EB1) plays a role in mediating the lytic cycle of EBV. Zta is a transcription factor that interacts directly with Zta response elements (ZREs) within viral and cellular genomes. Here we undertake chromatin-precipitation coupled to DNA-sequencing (ChIP-Seq) of Zta-associated DNA from cancer-derived epithelial cells. The analysis identified over 14 000 Zta-binding sites in the cellular genome. We assessed the impact of lytic cycle reactivation on changes in gene expression for a panel of Zta-associated cellular genes. Finally, we compared the Zta-binding sites identified in this study with those previously identified in B-cells and reveal substantial conservation in genes associated with Zta-binding sites.
Collapse
Affiliation(s)
- Anja Godfrey
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Kay Osborn
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | | |
Collapse
|
2
|
Abstract
Protein kinases are common elements in multiple signaling networks, influencing numerous downstream processes by directly phosphorylating specific target proteins. During the cell cycle, multiple complexes, each comprising one cyclin and one cyclin-dependent kinase (Cdk), function to regulate the orderly progression of cell cycle events. The mechanisms of cyclin-Cdk mediated control have, in part, been established through biochemical experiments involving the purification of cyclin and Cdk proteins to evaluate the activity of a given complex toward its target substrate proteins.Here I present a detailed procedure to simplify the preparation of cyclin-Cdk complexes by purifying them as a single fusion molecule with a 1:1 molar ratio and a detailed protocol for performing reconstituted kinases assays with the purified complexes.This methodology has allowed us to measure the activity and specificity of all budding yeast cyclin-Cdk1 complexes toward the model substrate histone H1. In addition, it has allowed us to perform kinase assays with a panel of purified human cyclin-Cdk complexes to analyze their specificity toward the retinoblastoma protein (Rb) and map the substrate cyclin-Cdk kinase docking interactions between Rb and human G1-Cdk complex.This chapter is focused on purification of cell cycle cyclin-Cdk complexes, but also affords a generalizable framework that can be adapted to other cyclin-dependent kinases like transcriptional cyclin-Cdks or any other multisubunit enzyme complexes. Taken together, the described workflow is a powerful and flexible biochemical platform for solving long-standing biological questions and has potential value in synthetic biology and in therapeutic discovery.
Collapse
|
3
|
Cheng HW, Tsai WT, Hsieh YY, Chen KC, Yeh SD. Identification of a Common Epitope in Nucleocapsid Proteins of Euro-America Orthotospoviruses and Its Application for Tagging Proteins. Int J Mol Sci 2021; 22:ijms22168583. [PMID: 34445289 PMCID: PMC8395252 DOI: 10.3390/ijms22168583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
The NSs protein and the nucleocapsid protein (NP) of orthotospoviruses are the major targets for serological detection and diagnosis. A common epitope of KFTMHNQIF in the NSs proteins of Asia orthotospoviruses has been applied as an epitope tag (nss-tag) for monitoring recombinant proteins. In this study, a monoclonal antibody TNP MAb against the tomato spotted wilt virus (TSWV) NP that reacts with TSWV-serogroup members of Euro-America orthotospoviruses was produced. By truncation and deletion analyses of TSWV NP, the common epitope of KGKEYA was identified and designated as the np sequence. The np sequence was successfully utilized as an epitope tag (np-tag) to monitor various proteins, including the green fluorescence protein, the coat protein of the zucchini yellow mosaic virus, and the dust mite chimeric allergen Dp25, in a bacterial expression system. The np-tag was also applied to investigate the protein-protein interaction in immunoprecipitation. In addition, when the np-tag and the nss-tag were simultaneously attached at different termini of the expressed recombinant proteins, they reacted with the corresponding MAbs with high sensitivity. Here, we demonstrated that the np sequence and TNP MAb can be effectively applied for tagging and detecting proteins and can be coupled with the nss-tag to form a novel epitope-tagging system for investigating protein-protein interactions.
Collapse
Affiliation(s)
- Hao-Wen Cheng
- Department of Plant Pathology, National Chung-Hsing University, Taichung 40227, Taiwan; (H.-W.C.); (W.-T.T.); (Y.-Y.H.); (K.-C.C.)
- Advanced Plant Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Wei-Ting Tsai
- Department of Plant Pathology, National Chung-Hsing University, Taichung 40227, Taiwan; (H.-W.C.); (W.-T.T.); (Y.-Y.H.); (K.-C.C.)
| | - Yi-Ying Hsieh
- Department of Plant Pathology, National Chung-Hsing University, Taichung 40227, Taiwan; (H.-W.C.); (W.-T.T.); (Y.-Y.H.); (K.-C.C.)
| | - Kuan-Chun Chen
- Department of Plant Pathology, National Chung-Hsing University, Taichung 40227, Taiwan; (H.-W.C.); (W.-T.T.); (Y.-Y.H.); (K.-C.C.)
| | - Shyi-Dong Yeh
- Department of Plant Pathology, National Chung-Hsing University, Taichung 40227, Taiwan; (H.-W.C.); (W.-T.T.); (Y.-Y.H.); (K.-C.C.)
- Advanced Plant Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
- Correspondence: ; Tel.: +886-4-22877021; Fax: +886-4-22852501
| |
Collapse
|
4
|
Moreno DF, Aldea M. Proteostatic stress as a nodal hallmark of replicative aging. Exp Cell Res 2020; 394:112163. [PMID: 32640194 DOI: 10.1016/j.yexcr.2020.112163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 11/30/2022]
Abstract
Aging is characterized by the progressive decline of physiology at the cell, tissue and organism level, leading to an increased risk of mortality. Proteotoxic stress, mitochondrial dysfunction and genomic instability are considered major universal drivers of cell aging, and accumulating evidence establishes clear biunivocal relationships among these key hallmarks. In this regard, the finite lifespan of the budding yeast, together with the extensive armamentarium of available analytical tools, has made this single cell eukaryote a key model to study aging at molecular and cellular levels. Here we review the current data that link proteostasis to cell cycle progression in the budding yeast, focusing on senescence as an inherent phenotype displayed by aged cells. Recent advances in high-throughput systems to study yeast mother cells while they replicate are providing crucial information on aging-related processes and their temporal interdependencies at a systems level. In our view, the available data point to the existence of multiple feedback mechanisms among the major causal factors of aging, which would converge into the loss of proteostasis as a nodal driver of cell senescence and death.
Collapse
Affiliation(s)
- David F Moreno
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028, Barcelona, Catalonia, Spain
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
5
|
Stein BD, Herzig S, Martínez-Bartolomé S, Lavallée-Adam M, Shaw RJ, Yates JR. Comparison of CRISPR Genomic Tagging for Affinity Purification and Endogenous Immunoprecipitation Coupled with Quantitative Mass Spectrometry To Identify the Dynamic AMPKα2 Interactome. J Proteome Res 2019; 18:3703-3714. [PMID: 31398040 DOI: 10.1021/acs.jproteome.9b00378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent advances in genome editing technologies have enabled the insertion of epitope tags at endogenous loci with relative efficiency. We describe an approach for investigation of protein interaction dynamics of the AMP-activated kinase complex AMPK using a catalytic subunit AMPKα2 (PRKAA2 gene) as the bait, based on CRISPR/Cas9-mediated genome editing coupled to stable isotope labeling in cell culture, multidimensional protein identification technology, and computational and statistical analyses. Furthermore, we directly compare this genetic epitope tagging approach to endogenous immunoprecipitations of the same gene under homologous conditions to assess differences in observed interactors. Additionally, we directly compared each enrichment strategy in the genetically modified cell-line with two separate endogenous antibodies. For each approach, we analyzed the interaction profiles of this protein complex under basal and activated states, and after implementing the same analytical, computational, and statistical analyses, we found that high-confidence protein interactors vary greatly with each method and between commercially available endogenous antibodies.
Collapse
Affiliation(s)
- Benjamin D Stein
- Departments of Molecular Medicine and Neurobiology , The Scripps Research Institute , La Jolla , California , United States.,Molecular and Cell Biology Laboratory , The Salk Institute for Biological Studies , La Jolla , California , United States
| | - Sébastien Herzig
- Molecular and Cell Biology Laboratory , The Salk Institute for Biological Studies , La Jolla , California , United States
| | - Salvador Martínez-Bartolomé
- Departments of Molecular Medicine and Neurobiology , The Scripps Research Institute , La Jolla , California , United States
| | - Mathieu Lavallée-Adam
- Departments of Molecular Medicine and Neurobiology , The Scripps Research Institute , La Jolla , California , United States
| | - Reuben J Shaw
- Molecular and Cell Biology Laboratory , The Salk Institute for Biological Studies , La Jolla , California , United States
| | - John R Yates
- Departments of Molecular Medicine and Neurobiology , The Scripps Research Institute , La Jolla , California , United States
| |
Collapse
|
6
|
HiBiT-qIP, HiBiT-based quantitative immunoprecipitation, facilitates the determination of antibody affinity under immunoprecipitation conditions. Sci Rep 2019; 9:6895. [PMID: 31053795 PMCID: PMC6499798 DOI: 10.1038/s41598-019-43319-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/31/2019] [Indexed: 12/23/2022] Open
Abstract
The affinity of an antibody for its antigen serves as a critical parameter for antibody evaluation. The evaluation of antibody-antigen affinity is essential for a successful antibody-based assay, particularly immunoprecipitation (IP), due to its strict dependency on antibody performance. However, the determination of antibody affinity or its quantitative determinant, the dissociation constant (Kd), under IP conditions is difficult. In the current study, we used a NanoLuc-based HiBiT system to establish a HiBiT-based quantitative immunoprecipitation (HiBiT-qIP) assay for determining the Kd of antigen-antibody interactions in solution. The HiBiT-qIP method measures the amount of immunoprecipitated proteins tagged with HiBiT in a simple yet quantitative manner. We used this method to measure the Kd values of epitope tag-antibody interactions. To accomplish this, FLAG, HA, V5, PA and Ty1 epitope tags in their monomeric, dimeric or trimeric form were fused with glutathione S-transferase (GST) and the HiBiT peptide, and these tagged GST proteins were mixed with cognate monoclonal antibodies in IP buffer for the assessment of the apparent Kd values. This HiBiT-qIP assay showed a considerable variation in the Kd values among the examined antibody clones. Additionally, the use of epitope tags in multimeric form revealed a copy number-dependent increase in the apparent affinity.
Collapse
|
7
|
Abd Elhameed HAH, Hajdu B, Balogh RK, Hermann E, Hunyadi-Gulyás É, Gyurcsik B. Purification of proteins with native terminal sequences using a Ni(II)-cleavable C-terminal hexahistidine affinity tag. Protein Expr Purif 2019; 159:53-59. [PMID: 30905870 DOI: 10.1016/j.pep.2019.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 11/26/2022]
Abstract
The role of the termini of protein sequences is often perturbed by remnant amino acids after the specific protease cleavage of the affinity tags and/or by the amino acids encoded by the plasmid at/around the restriction enzyme sites used to insert the genes. Here we describe a method for affinity purification of a metallonuclease with its precisely determined native termini. First, the gene encoding the target protein is inserted into a newly designed cloning site, which contains two self-eliminating BsmBI restriction enzyme sites. As a consequence, the engineered DNA code of Ni(II)-sensitive Ser-X-His-X motif is fused to the 3'-end of the inserted gene followed by the gene of an affinity tag for protein purification purpose. The C-terminal segment starting from Ser mentioned above is cleaved off from purified protein by a Ni(II)-induced protease-like action. The success of the purification and cleavage was confirmed by gel electrophoresis and mass spectrometry, while structural integrity of the purified protein was checked by circular dichroism spectroscopy. Our new protein expression DNA construct is an advantageous tool for protein purification, when the complete removal of affinity or other tags, without any remaining amino acid residue is essential. The described procedure can easily be generalized and combined with various affinity tags at the C-terminus for chromatographic applications.
Collapse
Affiliation(s)
- Heba A H Abd Elhameed
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary
| | - Bálint Hajdu
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary
| | - Ria K Balogh
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary
| | - Enikő Hermann
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Béla Gyurcsik
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary.
| |
Collapse
|
8
|
Arrington JV, Hsu CC, Tao WA. Kinase Assay-Linked Phosphoproteomics: Discovery of Direct Kinase Substrates. Methods Enzymol 2016; 586:453-471. [PMID: 28137576 DOI: 10.1016/bs.mie.2016.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dissection of direct kinase-substrate relationships provides invaluable information about phosphorylation pathways and can highlight both pathogenic mechanisms and possible drug targets for diseases in which abnormal kinase activity is linked to onset and progression. Here, we describe a mass spectrometry-based strategy to define the direct substrates of a kinase of interest. The kinase assay-linked phosphoproteomics approach examines putative kinase substrates both in vitro and in vivo to produce a list of highly confident substrates.
Collapse
Affiliation(s)
- J V Arrington
- Purdue University, West Lafayette, IN, United States; Purdue University Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - C-C Hsu
- Purdue University, West Lafayette, IN, United States
| | - W A Tao
- Purdue University, West Lafayette, IN, United States; Purdue University Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
9
|
Kulkarni C, Lo M, Fraseur JG, Tirrell DA, Kinzer-Ursem TL. Bioorthogonal Chemoenzymatic Functionalization of Calmodulin for Bioconjugation Applications. Bioconjug Chem 2015; 26:2153-60. [PMID: 26431265 DOI: 10.1021/acs.bioconjchem.5b00449] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calmodulin (CaM) is a widely studied Ca(2+)-binding protein that is highly conserved across species and involved in many biological processes, including vesicle release, cell proliferation, and apoptosis. To facilitate biophysical studies of CaM, researchers have tagged and mutated CaM at various sites, enabling its conjugation to fluorophores, microarrays, and other reactive partners. However, previous attempts to add a reactive label to CaM for downstream studies have generally employed nonselective labeling methods or resulted in diminished CaM function. Here we report the first engineered CaM protein that undergoes site-specific and bioorthogonal labeling while retaining wild-type activity levels. By employing a chemoenzymatic labeling approach, we achieved selective and quantitative labeling of the engineered CaM protein with an N-terminal 12-azidododecanoic acid tag; notably, addition of the tag did not interfere with the ability of CaM to bind Ca(2+) or a partner protein. The specificity of our chemoenzymatic labeling approach also allowed for selective conjugation of CaM to reactive partners in bacterial cell lysates, without intermediate purification of the engineered protein. Additionally, we prepared CaM-affinity resins that were highly effective in purifying a representative CaM-binding protein, demonstrating that the engineered CaM remains active even after surface capture. Beyond studies of CaM and CaM-binding proteins, the protein engineering and surface capture methods described here should be translatable to other proteins and other bioconjugation applications.
Collapse
Affiliation(s)
- Chethana Kulkarni
- Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Blvd., Pasadena, California 91125, United States
| | - Megan Lo
- Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Blvd., Pasadena, California 91125, United States
| | - Julia G Fraseur
- Weldon School of Biomedical Engineering, Purdue University , 206 South Martin Jischke Drive, West Lafayette, Indiana 47907, United States
| | - David A Tirrell
- Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Blvd., Pasadena, California 91125, United States
| | - Tamara L Kinzer-Ursem
- Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Blvd., Pasadena, California 91125, United States.,Weldon School of Biomedical Engineering, Purdue University , 206 South Martin Jischke Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
10
|
Several affinity tags commonly used in chromatographic purification. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2013; 2013:581093. [PMID: 24490106 PMCID: PMC3893739 DOI: 10.1155/2013/581093] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/11/2013] [Accepted: 12/02/2013] [Indexed: 02/05/2023]
Abstract
Affinity tags have become powerful tools from basic biological research to structural and functional proteomics. They were widely used to facilitate the purification and detection of proteins of interest, as well as the separation of protein complexes. Here, we mainly discuss the benefits and drawbacks of several affinity or epitope tags frequently used, including hexahistidine tag, FLAG tag, Strep II tag, streptavidin-binding peptide (SBP) tag, calmodulin-binding peptide (CBP), glutathione S-transferase (GST), maltose-binding protein (MBP), S-tag, HA tag, and c-Myc tag. In some cases, a large-size affinity tag, such as GST or MBP, can significantly impact on the structure and biological activity of the fusion partner protein. So it is usually necessary to excise the tag by protease. The most commonly used endopeptidases are enterokinase, factor Xa, thrombin, tobacco etch virus, and human rhinovirus 3C protease. The proteolysis features of these proteases are described in order to provide a general guidance on the proteolytic removal of the affinity tags.
Collapse
|
11
|
Budina-Kolomets A, Balaburski GM, Bondar A, Beeharry N, Yen T, Murphy ME. Comparison of the activity of three different HSP70 inhibitors on apoptosis, cell cycle arrest, autophagy inhibition, and HSP90 inhibition. Cancer Biol Ther 2013; 15:194-9. [PMID: 24100579 DOI: 10.4161/cbt.26720] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The chaperone HSP70 promotes the survival of cells exposed to many different types of stresses, and is also potently anti-apoptotic. The major stress-induced form of this protein, HSP70-1, is overexpressed in a number of human cancers, yet is negligibly expressed in normal cells. Silencing of the gene encoding HSP70-1 (HSPA1A) is cytotoxic to transformed but not normal cells. Therefore, HSP70 is considered to be a promising cancer drug target, and there has been active interest in the identification and characterization of HSP70 inhibitors for cancer therapy. Because HSP70 behaves in a relatively non-specific manner in the control of protein folding, to date there are no reliably-identified "clients" of this protein, nor is there consensus as to what the phenotypic effects of HSP70 inhibitors are on a cancer cell. Here for the first time we compare three recently-identified HSP70 inhibitors, PES-Cl, MKT-077, and Ver-155008, for their ability to impact some of the known and reported functions of this chaperone; specifically, the ability to inhibit autophagy, to influence the level of HSP90 client proteins, to induce cell cycle arrest, and to inhibit the enzymatic activity of the anaphase-promoting complex/cyclosome (APC/C). We report that all three of these compounds can inhibit autophagy and cause reduced levels of HSP90 client proteins; however, only PES-Cl can inhibit the APC/C and induce G 2/M arrest. Possible reasons for these differences, and the implications for the further development of these prototype compounds as anti-cancer agents, are discussed.
Collapse
Affiliation(s)
- Anna Budina-Kolomets
- Program in Molecular and Cellular Oncogenesis; The Wistar Institute; Philadelphia PA USA
| | - Gregor M Balaburski
- Program in Molecular and Cellular Oncogenesis; The Wistar Institute; Philadelphia PA USA
| | - Anastasia Bondar
- Program in Molecular and Cellular Oncogenesis; The Wistar Institute; Philadelphia PA USA
| | - Neil Beeharry
- Institute for Cancer Research; Fox Chase Cancer Center; Philadelphia PA USA
| | - Tim Yen
- Institute for Cancer Research; Fox Chase Cancer Center; Philadelphia PA USA
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis; The Wistar Institute; Philadelphia PA USA
| |
Collapse
|
12
|
Jiménez J, Ricco N, Grijota-Martínez C, Fadó R, Clotet J. Redundancy or specificity? The role of the CDK Pho85 in cell cycle control. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 4:140-149. [PMID: 24049669 PMCID: PMC3776146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/31/2013] [Indexed: 06/02/2023]
Abstract
It is generally accepted that progression through the eukaryotic cell cycle is driven by cyclin-dependent kinases (CDKs), which are regulated by interaction with oscillatory expressed proteins called cyclins. CDKs may be separated into 2 categories: essential and non-essential. Understandably, more attention has been focused on essential CDKs because they are shown to control cell cycle progression to a greater degree. After clearly determining the basic and "core" mechanisms of essential CDKs, several questions arise. What role do non-essential CDKs play? Are these CDKs functionally redundant and do they serve as a mere backup? Or might they be responsible for some accessory tasks in cell cycle progression or control? In the present review we will try to answer these questions based on recent findings on the involvement of non-essential CDKs in cell cycle progression. We will analyse the most recent information with regard to these questions in the yeast Saccharomyces cerevisiae, a well-established eukaryotic model, and in its unique non-essential CDK involved in the cell cycle, Pho85. We will also briefly extend our discussion to higher eukaryotic systems.
Collapse
Affiliation(s)
- Javier Jiménez
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, International University of Catalonia Barcelona, Catalonia
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Putti S, Calandra P, Rossi N, Scarabino D, Deidda G, Tocchini-Valentini GP. Highly efficient, in vivo optimized, archaeal endonuclease for controlled RNA splicing in mammalian cells. FASEB J 2013; 27:3466-77. [PMID: 23682120 DOI: 10.1096/fj.13-231993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ARCHAEA-ExPRESs is an mRNA modification technology that makes use of components derived from the Archaeon Methanocaldococcus jannaschii, namely the tRNA splicing endonuclease (MJ-EndA) and its natural substrate, the bulge-helix-bulge (BHB) structure (1). These components can perform both cis- and trans-splicing in cellular and animal models and may provide a convenient way to modulate gene expression using components independent of cellular regulatory networks. To use MJ-EndA in stable expression mammalian systems, we developed variants characterized by high efficiency and sustainable in vivo activity. The MJ-EndA variants were created by the introduction of proper localization signals followed by mutagenesis and direct selection in mammalian cells. Of note, enzyme selection used an in vivo selection method based on puromycin resistance conferred to cells by BHB-mediated intron splicing from an out-of-frame puromycin N-acetyl transferase (PAC) gene. This approach yielded several endonuclease variants, the best of which showed 40-fold higher activity compared to the parental enzyme and stable processing of 30% of the target mRNA. Notably, these variants showed complete compatibility with long-term expression in mammalian cells, suggesting that they may be usefully applied in functional genomics and genetically modified animal models.
Collapse
Affiliation(s)
- Sabrina Putti
- Consiglio Nazionale delle Ricerche, Istituto di Biologia Cellulare e Neurobiologia, European Mouse Mutant Archive, Monterotondo, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Cheng HW, Chen KC, Raja JAJ, Li JX, Yeh SD. An efficient tag derived from the common epitope of tospoviral NSs proteins for monitoring recombinant proteins expressed in both bacterial and plant systems. J Biotechnol 2013; 164:510-9. [PMID: 23403362 DOI: 10.1016/j.jbiotec.2013.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 11/18/2022]
Abstract
NSscon (23 aa), a common epitope in the gene silencing suppressor NSs proteins of the members of the Watermelon silver mottle virus (WSMoV) serogroup, was previously identified. In this investigation, we expressed different green fluorescent protein (GFP)-fused deletions of NSscon in bacteria and reacted with NSscon monoclonal antibody (MAb). Our results indicated that the core 9 amino acids, "(109)KFTMHNQIF(117)", denoted as "nss", retain the reactivity of NSscon. In bacterial pET system, four different recombinant proteins labeled with nss, either at N- or C-extremes, were readily detectable without position effects, with sensitivity superior to that for the polyhistidine-tag. When the nss-tagged Zucchini yellow mosaic virus (ZYMV) helper component-protease (HC-Pro) and WSMoV nucleocapsid protein were transiently expressed by agroinfiltration in tobacco, they were readily detectable and the tag's possible efficacy for gene silencing suppression was not noticed. Co-immunoprecipitation of nss-tagged and non-tagged proteins expressed from bacteria confirmed the interaction of potyviral HC-Pro and coat protein. Thus, we conclude that this novel nss sequence is highly valuable for tagging recombinant proteins in both bacterial and plant expression systems.
Collapse
Affiliation(s)
- Hao-Wen Cheng
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | | | | | | | | |
Collapse
|
16
|
Daulat A, Maurice P, Jockers R. Techniques for the Discovery of GPCR-Associated Protein Complexes. Methods Enzymol 2013; 521:329-45. [DOI: 10.1016/b978-0-12-391862-8.00018-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
17
|
Oeffinger M. Two steps forward--one step back: advances in affinity purification mass spectrometry of macromolecular complexes. Proteomics 2012; 12:1591-608. [PMID: 22592981 DOI: 10.1002/pmic.201100509] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cellular functions are defined by the dynamic interactions of proteins within macromolecular networks. Deciphering these complex interplays is the key to getting a comprehensive picture of cellular behavior and to understanding biological systems, from a simple bacterial cell to highly regulated neuronal cells or cancerous tissue. In the last decade, affinity purification (AP) coupled to mass spectrometry has emerged as a powerful tool to comprehensively study interaction networks and their macromolecular assemblies. This review discusses recent advances in AP approaches, from cell lysis to the importance of sample preparation and the choice of AP matrix as well as the development of different epitope tags and strategies to study dynamic interactions, with an emphasis on RNA-protein interaction networks.
Collapse
Affiliation(s)
- Marlene Oeffinger
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
18
|
Lee DW, Peggie M, Deak M, Toth R, Gage ZO, Wood N, Schilde C, Kurz T, Knebel A. The Dac-tag, an affinity tag based on penicillin-binding protein 5. Anal Biochem 2012; 428:64-72. [PMID: 22705378 DOI: 10.1016/j.ab.2012.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
Penicillin-binding protein 5 (PBP5), a product of the Escherichia coli gene dacA, possesses some β-lactamase activity. On binding to penicillin or related antibiotics via an ester bond, it deacylates and destroys them functionally by opening the β-lactam ring. This process takes several minutes. We exploited this process and showed that a fragment of PBP5 can be used as a reversible and monomeric affinity tag. At ambient temperature (e.g., 22°C), a PBP5 fragment binds rapidly and specifically to ampicillin Sepharose. Release can be facilitated either by eluting with 10mM ampicillin or in a ligand-free manner by incubation in the cold (1-10°C) in the presence of 5% glycerol. The "Dac-tag", named with reference to the gene dacA, allows the isolation of remarkably pure fusion protein from a wide variety of expression systems, including (in particular) eukaryotic expression systems.
Collapse
Affiliation(s)
- David Wei Lee
- Advantagen, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Barberis M. Sic1 as a timer of Clb cyclin waves in the yeast cell cycle--design principle of not just an inhibitor. FEBS J 2012; 279:3386-410. [PMID: 22356687 DOI: 10.1111/j.1742-4658.2012.08542.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cellular systems biology aims to uncover design principles that describe the properties of biological networks through interaction of their components in space and time. The cell cycle is a complex system regulated by molecules that are integrated into functional modules to ensure genome integrity and faithful cell division. In budding yeast, cyclin-dependent kinases (Cdk1/Clb) drive cell cycle progression, being activated and inactivated in a precise temporal sequence. In this module, which we refer to as the 'Clb module', different Cdk1/Clb complexes are regulated to generate waves of Clb activity, a functional property of cell cycle control. The inhibitor Sic1 plays a critical role in the Clb module by binding to and blocking Cdk1/Clb activity, ultimately setting the timing of DNA replication and mitosis. Fifteen years of research subsequent to the identification of Sic1 have lead to the development of an integrative approach that addresses its role in regulating the Clb module. Sic1 is an intrinsically disordered protein and achieves its inhibitory function by cooperative binding, where different structural regions stretch on the Cdk1/Clb surface. Moreover, Sic1 promotes S phase entry, facilitating Cdk1/Clb5 nuclear transport, and therefore revealing a double function of inhibitor/activator that rationalizes a mechanism to prevent precocious DNA replication. Interestingly, the investigation of Clb temporal dynamics by mathematical modelling and experimental validation provides evidence that Sic1 acts as a timer to coordinate oscillations of Clb cyclin waves. Here we review these findings, focusing on the design principle underlying the Clb module, which highlights the role of Sic1 in regulating phase-specific Cdk1/Clb activities.
Collapse
Affiliation(s)
- Matteo Barberis
- Institute for Biology, Theoretical Biophysics, Humboldt University Berlin, Germany.
| |
Collapse
|
20
|
Molecular systems biology of Sic1 in yeast cell cycle regulation through multiscale modeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 736:135-67. [PMID: 22161326 DOI: 10.1007/978-1-4419-7210-1_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell cycle control is highly regulated to guarantee the precise timing of events essential for cell growth, i.e., DNA replication onset and cell division. Failure of this control plays a role in cancer and molecules called cyclin-dependent kinase (Cdk) inhibitors (Ckis) exploit a critical function in cell cycle timing. Here we present a multiscale modeling where experimental and computational studies have been employed to investigate structure, function and temporal dynamics of the Cki Sic1 that regulates cell cycle progression in Saccharomyces cerevisiae. Structural analyses reveal molecular details of the interaction between Sic1 and Cdk/cyclin complexes, and biochemical investigation reveals Sic1 function in analogy to its human counterpart p27(Kip1), whose deregulation leads to failure in timing of kinase activation and, therefore, to cancer. Following these findings, a bottom-up systems biology approach has been developed to characterize modular networks addressing Sic1 regulatory function. Through complementary experimentation and modeling, we suggest a mechanism that underlies Sic1 function in controlling temporal waves of cyclins to ensure correct timing of the phase-specific Cdk activities.
Collapse
|
21
|
Sic1 plays a role in timing and oscillatory behaviour of B-type cyclins. Biotechnol Adv 2012; 30:108-30. [DOI: 10.1016/j.biotechadv.2011.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 08/18/2011] [Accepted: 09/12/2011] [Indexed: 12/23/2022]
|
22
|
Schreiber G, Barberis M, Scolari S, Klaus C, Herrmann A, Klipp E. Unraveling interactions of cell cycle-regulating proteins Sic1 and B-type cyclins in living yeast cells: a FLIM-FRET approach. FASEB J 2011; 26:546-54. [PMID: 22002907 DOI: 10.1096/fj.11-192518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sic1, cyclin-dependent kinase inhibitor of budding yeast, is synthesized in anaphase and largely degraded at the S-phase onset to regulate timing of DNA synthesis. Sic1 interacts with phase-specific B-type cyclin (Clb)-kinase (Cdk1) complexes, central regulators in cell cycle control. Its appearance is timed to mediate reduction in kinase activities at appropriate stages. Clbs are unstable proteins with extremely short half-lives. Interactions of Sic1 with Clbs have been detected both in vitro and in vivo by high-throughput genome-wide screenings. Furthermore, we have recently shown that Sic1 regulates waves of Clbs, acting as a timer in their appearance, thus controlling Cdk1-Clbs activation. The molecular mechanism is not yet fully understood but is hypothesized to occur via stoichiometric binding of Sic1 to Cdk1-Clb complexes. Using Förster resonance energy transfer (FRET) via fluorescence lifetime imaging microscopy (FLIM), we showed association of Sic1 to Clb cyclins in living yeast cells. This finding is consistent with the notion that inhibition of kinase activity can occur over the whole cell cycle progression despite variable Sic1 levels. Specifically, Sic1/Clb3 interaction was observed for the first time, and Sic1/Clb2 and Sic1/Clb5 pairs were confirmed, but no Sic1/Clb4 interaction was found, which suggests that, despite high functional homology between Clbs, only some of them can target Sic1 function in vivo.
Collapse
Affiliation(s)
- Gabriele Schreiber
- Theoretical Biophysics, Department of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Jessulat M, Pitre S, Gui Y, Hooshyar M, Omidi K, Samanfar B, Tan LH, Alamgir M, Green J, Dehne F, Golshani A. Recent advances in protein-protein interaction prediction: experimental and computational methods. Expert Opin Drug Discov 2011; 6:921-35. [PMID: 22646215 DOI: 10.1517/17460441.2011.603722] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Proteins within the cell act as part of complex networks, which allow pathways and processes to function. Therefore, understanding how proteins interact is a significant area of current research. AREAS COVERED This review aims to present an overview of key experimental techniques (yeast two-hybrid, tandem affinity purification and protein microarrays) used to discover protein-protein interactions (PPIs), as well as to briefly discuss certain computational methods for predicting protein interactions based on gene localization, phylogenetic information, 3D structural modeling or primary protein sequence data. Due to the large-scale applicability of primary sequence-based methods, the authors have chosen to focus on this strategy for our review. There is an emphasis on a recent algorithm called Protein Interaction Prediction Engine (PIPE) that can predict global PPIs. The readers will discover recent advances both in the practical determination of protein interaction and the strategies that are available to attempt to anticipate interactions without the time and costs of experimental work. EXPERT OPINION Global PPI maps can help understand the biology of complex diseases and facilitate the identification of novel drug target sites. This study describes different techniques used for PPI prediction that we believe will significantly impact the development of the field in a new future. We expect to see a growing number of similar techniques capable of large-scale PPI predictions.
Collapse
Affiliation(s)
- Matthew Jessulat
- Carleton University , Department of Biology , 209 Nesbitt Building, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 , Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li Y, Franklin S, Zhang MJ, Vondriska TM. Highly efficient purification of protein complexes from mammalian cells using a novel streptavidin-binding peptide and hexahistidine tandem tag system: application to Bruton's tyrosine kinase. Protein Sci 2011; 20:140-9. [PMID: 21080425 DOI: 10.1002/pro.546] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tandem affinity purification (TAP) is a generic approach for the purification of protein complexes. The key advantage of TAP is the engineering of dual affinity tags that, when attached to the protein of interest, allow purification of the target protein along with its binding partners through two consecutive purification steps. The tandem tag used in the original method consists of two IgG-binding units of protein A from Staphylococcus aureus (ProtA) and the calmodulin-binding peptide (CBP), and it allows for recovery of 20-30% of the bait protein in yeast. When applied to higher eukaryotes, however, this classical TAP tag suffers from low yields. To improve protein recovery in systems other than yeast, we describe herein the development of a three-tag system comprised of CBP, streptavidin-binding peptide (SBP) and hexa-histidine. We illustrate the application of this approach for the purification of human Bruton's tyrosine kinase (Btk), which results in highly efficient binding and elution of bait protein in both purification steps (>50% recovery). Combined with mass spectrometry for protein identification, this TAP strategy facilitated the first nonbiased analysis of Btk interacting proteins. The high efficiency of the SBP-His₆ purification allows for efficient recovery of protein complexes formed with a target protein of interest from a small amount of starting material, enhancing the ability to detect low abundance and transient interactions in eukaryotic cell systems.
Collapse
Affiliation(s)
- Yifeng Li
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
25
|
Kerrigan JJ, Xie Q, Ames RS, Lu Q. Production of protein complexes via co-expression. Protein Expr Purif 2010; 75:1-14. [PMID: 20692346 DOI: 10.1016/j.pep.2010.07.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/22/2010] [Accepted: 07/31/2010] [Indexed: 12/21/2022]
Abstract
Multi-protein complexes are involved in essentially all cellular processes. A protein's function is defined by a combination of its own properties, its interacting partners, and the stoichiometry of each. Depending on binding partners, a transcription factor can function as an activator in one instance and a repressor in another. The study of protein function or malfunction is best performed in the relevant context. While many protein complexes can be reconstituted from individual component proteins after being produced individually, many others require co-expression of their native partners in the host cells for proper folding, stability, and activity. Protein co-expression has led to the production of a variety of biological active complexes in sufficient quantities for biochemical, biophysical, structural studies, and high throughput screens. This article summarizes examples of such cases and discusses critical considerations in selecting co-expression partners, and strategies to achieve successful production of protein complexes.
Collapse
Affiliation(s)
- John J Kerrigan
- Biological Reagents & Assay Development, Platform Technology & Science, GlaxoSmithKline R&D, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | | | | | | |
Collapse
|
26
|
Xu X, Song Y, Li Y, Chang J, zhang H, An L. The tandem affinity purification method: An efficient system for protein complex purification and protein interaction identification. Protein Expr Purif 2010; 72:149-56. [DOI: 10.1016/j.pep.2010.04.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
|
27
|
The malarial CDK Pfmrk and its effector PfMAT1 phosphorylate DNA replication proteins and co-localize in the nucleus. Mol Biochem Parasitol 2010; 172:9-18. [DOI: 10.1016/j.molbiopara.2010.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 11/20/2022]
|
28
|
Abstract
TAP (tandem affinity purification) allows rapid and clean isolation of a tagged protein along with its interacting partners from cell lysates. Initially developed in yeast, the TAP method has subsequently been adapted to other cells and organisms. In combination with MS analysis, this method has become an indispensable tool for systematic identification of target-associated protein complexes. The key feature of TAP is the use of a dual-affinity tag, which is fused to the protein of interest. The original TAP tag consisted of two IgG-binding units of Protein A of Staphylococcus aureus and the calmodulin-binding peptide. As the technique has been widely exploited, a number of alternative TAP tags based on other affinity handles have been developed. The present review gives an overview of the various tag combinations for TAP with a highlight on those alternatives that result in improved yields or unique features. The information provided should assist in the selection and development of TAP tags for specific applications.
Collapse
|
29
|
Dam S, Lohia A. Entamoeba histolytica sirtuin EhSir2a deacetylates tubulin and regulates the number of microtubular assemblies during the cell cycle. Cell Microbiol 2010; 12:1002-14. [PMID: 20148900 DOI: 10.1111/j.1462-5822.2010.01449.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have discovered four sirtuin genes in Entamoeba histolytica, two of which are similar to eukaryotic sirtuins and two to bacterial and archaeal sirtuins. The eukaryotic sirtuin homologue, EhSir2a, showed NAD(+)-dependent deacetylase activity and was sensitive to class III HDAC inhibitors. Localization of EhSir2a at different cellular sites suggested that this deacetylase could have multiple targets. Using an E. histolytica cDNA library in the yeast two-hybrid genetic screen, we identified several proteins that bound to EhSir2a. These proteins included Eh alpha-tubulin, whose interaction with EhSir2a was validated in E. histolytica. We have shown that EhSir2a deacetylated tubulin and localized with microtubules in E. histolytica. Increased expression levels of EhSir2a in stable transformants led to reduced number of microtubular assemblies in serum synchronized cells. This effect was abrogated by mutations in the deacetylase domain of EhSir2a, showing that EhSir2a deacetylase activity affected the stability and number of microtubular assemblies during the cell cycle of E. histolytica. Our results suggest that epigenetic modification of tubulin by EhSir2a is one of the mechanisms that regulates microtubular assembly in E. histolytica.
Collapse
Affiliation(s)
- Somasri Dam
- Department of Biochemistry, Bose Institute, Kolkata, India
| | | |
Collapse
|
30
|
Yang W, Steen H, Freeman MR. Proteomic approaches to the analysis of multiprotein signaling complexes. Proteomics 2008; 8:832-51. [PMID: 18297654 DOI: 10.1002/pmic.200700650] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Signal transduction is one of the most active fields in modern biomedical research. Increasing evidence has shown that signaling proteins associate with each other in characteristic ways to form large signaling complexes. These diverse structures operate to boost signaling efficiency, ensure specificity and increase sensitivity of the biochemical circuitry. Traditional methods of protein analysis are inadequate to fully characterize and understand these structures, which are intricate, contain many components and are highly dynamic. Instead, proteomics technologies are currently being applied to investigate the nature and composition of multimeric signaling complexes. This review presents commonly used and potential proteomic methods of analyzing diverse protein complexes along with a discussion and a brief evaluation of alternative approaches. Challenges associated with proteomic analysis of signaling complexes are also discussed.
Collapse
Affiliation(s)
- Wei Yang
- The Urological Diseases Research Center, Department of Urology, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | |
Collapse
|
31
|
Dastidar PG, Lohia A. Bipolar spindle frequency and genome content are inversely regulated by the activity of two N-type kinesins in Entamoeba histolytica. Cell Microbiol 2008; 10:1559-71. [PMID: 18363907 DOI: 10.1111/j.1462-5822.2008.01150.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bipolar microtubular spindles are seen infrequently in Entamoeba histolytica trophozoites while monopolar or radial microtubular assemblies are common. Additionally, heterogeneity in nuclear DNA content and multi-nucleation is found in amoeba cells growing in axenic culture. Taken together these observations indicate that genome segregation is irregular in these cells. In order to identify proteins involved in regulating genome segregation, we have focused on studying E. histolytica homologues of kinesin motor proteins that are known to affect stability of bipolar mitotic spindles. We have demonstrated earlier that increased levels of the kinesin--Eh Klp5--led to increased frequency of bipolar spindles accompanied with a reduction in the heterogeneity of genome content, showing that bipolar spindle frequency was inversely linked to genome content in E. histolytica. In this study, we have investigated the role of E. histolytica kinesins (Eh KlpA1, 2-4) in regulating bipolar spindle frequency and genome content. While downregulation of Eh Klp3, 4 and A1 showed no effect, downregulation of Eh Klp2 led to increased frequency of bipolar spindles and homogenization of genome content, similar to the effect of increased expression of Eh Klp5. In addition to microtubules, Eh Klp2-4 associated with F-actin in the cytoplasm, suggesting that these kinesins are multi-functional.
Collapse
|
32
|
Park HR, Cockrell LM, Du Y, Kasinski A, Havel J, Zhao J, Reyes-Turcu F, Wilkinson KD, Fu H. Protein–Protein Interactions. SPRINGER PROTOCOLS HANDBOOKS 2008. [DOI: 10.1007/978-1-60327-375-6_30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Identification of prostate cancer antigens by automated high-throughput filter immunoscreening. J Immunol Methods 2008; 330:12-23. [DOI: 10.1016/j.jim.2007.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 10/01/2007] [Accepted: 10/22/2007] [Indexed: 11/18/2022]
|
34
|
McCluskey AJ, Poon GMK, Gariépy J. A rapid and universal tandem-purification strategy for recombinant proteins. Protein Sci 2007; 16:2726-32. [PMID: 17965191 DOI: 10.1110/ps.072894407] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A major goal in the production of therapeutic proteins, subunit vaccines, as well as recombinant proteins needed for structure determination and structural proteomics is their recovery in a pure and functional state using the simplest purification procedures. Here, we report the design and use of a novel tandem (His)(6)-calmodulin (HiCaM) fusion tag that combines two distinct purification strategies, namely, immobilized metal affinity (IMAC) and hydrophobic interaction chromatography (HIC), in a simple two-step procedure. Two model constructs were generated by fusing the HiCaM purification tag to the N terminus of either the enhanced green fluorescent protein (eGFP) or the human tumor suppressor protein p53. These fusion constructs were abundantly expressed in Escherichia coli and rapidly purified from cleared lysates by tandem IMAC/HIC to near homogeneity under native conditions. Cleavage at a thrombin recognition site between the HiCaM-tag and the constructs readily produced untagged, functional versions of eGFP and human p53 that were >97% pure. The HiCaM purification strategy is rapid, makes use of widely available, high-capacity, and inexpensive matrices, and therefore represents an excellent approach for large-scale purification of recombinant proteins as well as small-scale protein array designs.
Collapse
Affiliation(s)
- Andrew J McCluskey
- Department of Pharmaceutical Sciences, University of Toronto, Ontario M5S 3M2, Canada
| | | | | |
Collapse
|
35
|
Matsumoto R, Nam HW, Agrawal GK, Kim YS, Iwahashi H, Rakwal R. Exploring Novel Function of Yeast Ssa1/2p by Quantitative Profiling Proteomics Using NanoESI-LC−MS/MS. J Proteome Res 2007; 6:3465-74. [PMID: 17691831 DOI: 10.1021/pr070042n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, we profiled proteins in ssa1/2 mutant and wild-type using one-dimensional gel electrophoresis coupled with liquid chromatography and mass spectrometry to reveal a total of 322 proteins. Sixty and 84 nonredundant proteins were detected in ssa1/2 and wild-type, respectively, whereas 178 were common. A quantitative profiling proteomic approach using a modified N-terminal isotope tagging method was undertaken to determine quantitative changes in proteins between mutant and wild-type. Out of 210 identified proteins selected for quantification, 103 propionylated proteins were obtained. Eight only D0-propionylated protein (wild-type) and 4 only D5-propionylated proteins (ssa1/2) were detected; 90 proteins were overlapped in the ssa1/2 mutant and wild-type. In the ssa1/2 mutant, 28 proteins were up-regulated and 26 were down-regulated. The expression levels of the rest of 49 proteins were not changed compared with the wild-type. Furthermore, non-correlation between mRNA and protein expressions was found. Among up-regulated proteins, 19 proteins involved in protein synthesis, chromatin condensation, and silencing showed unchanged mRNA expression levels. Among down-regulated proteins, 21 proteins consisting mainly of transcription factors showed unchanged mRNA expressions. Surprisingly, several proteins involved in protein synthesis were also found among the down-regulated proteins. These results suggested that the proteins showing changed protein expressions and unchanged mRNA expressions were affected by the deletion of SSA1 and SSA2 genes at translational efficiency, mRNA degradation, or protein degradation. Moreover, we found the proteins related to chromosomal control were up-regulated in ssa1/2 mutant, a novel finding of this study, suggesting that the Ssa1/2p might contribute to chromosomal control.
Collapse
Affiliation(s)
- Rena Matsumoto
- International Patent Organism Depositary (IPOD), National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Kim CS. Bayesian Orthogonal Least Squares (BOLS) algorithm for reverse engineering of gene regulatory networks. BMC Bioinformatics 2007; 8:251. [PMID: 17626641 PMCID: PMC1959566 DOI: 10.1186/1471-2105-8-251] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Accepted: 07/13/2007] [Indexed: 11/10/2022] Open
Abstract
Background A reverse engineering of gene regulatory network with large number of genes and limited number of experimental data points is a computationally challenging task. In particular, reverse engineering using linear systems is an underdetermined and ill conditioned problem, i.e. the amount of microarray data is limited and the solution is very sensitive to noise in the data. Therefore, the reverse engineering of gene regulatory networks with large number of genes and limited number of data points requires rigorous optimization algorithm. Results This study presents a novel algorithm for reverse engineering with linear systems. The proposed algorithm is a combination of the orthogonal least squares, second order derivative for network pruning, and Bayesian model comparison. In this study, the entire network is decomposed into a set of small networks that are defined as unit networks. The algorithm provides each unit network with P(D|Hi), which is used as confidence level. The unit network with higher P(D|Hi) has a higher confidence such that the unit network is correctly elucidated. Thus, the proposed algorithm is able to locate true positive interactions using P(D|Hi), which is a unique property of the proposed algorithm. The algorithm is evaluated with synthetic and Saccharomyces cerevisiae expression data using the dynamic Bayesian network. With synthetic data, it is shown that the performance of the algorithm depends on the number of genes, noise level, and the number of data points. With Yeast expression data, it is shown that there is remarkable number of known physical or genetic events among all interactions elucidated by the proposed algorithm. The performance of the algorithm is compared with Sparse Bayesian Learning algorithm using both synthetic and Saccharomyces cerevisiae expression data sets. The comparison experiments show that the algorithm produces sparser solutions with less false positives than Sparse Bayesian Learning algorithm. Conclusion From our evaluation experiments, we draw the conclusion as follows: 1) Simulation results show that the algorithm can be used to elucidate gene regulatory networks using limited number of experimental data points. 2) Simulation results also show that the algorithm is able to handle the problem with noisy data. 3) The experiment with Yeast expression data shows that the proposed algorithm reliably elucidates known physical or genetic events. 4) The comparison experiments show that the algorithm more efficiently performs than Sparse Bayesian Learning algorithm with noisy and limited number of data.
Collapse
Affiliation(s)
- Chang Sik Kim
- Bioinformatics Group, Turku Centre for Computer Science, Turku, Finland.
| |
Collapse
|
37
|
Abstract
The fact that ions of macromolecular complexes produced by electrospray ionization can be maintained intact in a mass spectrometer has stimulated exciting new lines of research. In this review we chart the progress of this research from the observation of simple homo-oligomers to complex heterogeneous macromolecular assemblies of mega-Dalton proportions. The applications described herein not only confirm the status of mass spectrometry (MS) as a structural biology approach to complement X-ray analysis or electron microscopy, but also highlight unique attributes of the methodology. This is exemplified in studies of the biogenesis of macromolecular complexes and in the exchange of subunits between macromolecular complexes. Moreover, recent successes in revealing the overall subunit architecture of complexes are set to promote MS from a complementary approach to a structural biology tool in its own right.
Collapse
Affiliation(s)
- Michal Sharon
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom.
| | | |
Collapse
|
38
|
Sekiguchi T, Kurihara Y, Fukumura J. Phosphorylation of threonine 204 of DEAD-box RNA helicase DDX3 by cyclin B/cdc2 in vitro. Biochem Biophys Res Commun 2007; 356:668-73. [PMID: 17379183 DOI: 10.1016/j.bbrc.2007.03.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 03/05/2007] [Indexed: 11/18/2022]
Abstract
DDX3 is a DEAD-box RNA helicase involved in human immunodeficiency virus mRNA export and translation. Previously, we reported that DDX3 is required for cyclin A expression. To examine whether DDX3 is regulated at the post-transcriptional level, we determined the phosphorylation sites of hamster DDX3 in vitro. Threonine 204 (Thr204) is a conserved amino acid residue of DDX3 homologues in yeast, frog, hamster, and human that is located within motif Q of DEAD-box RNA helicases. A Thr204 to Glu204 DDX3 mutant protein lost its function, suggesting that phosphorylation at Thr204 affects DDX3 function. Thr204 was phosphorylated by cyclin B/cdc2. Thr323 in motif Ib was also phosphorylated by cyclin B/cdc2 kinase. We propose a novel function of cyclin B/cdc2 kinase in mitosis, which is to cause a loss of DDX3 function to repress cyclin A expression and to decrease ribosome biogenesis and translation during mitosis.
Collapse
Affiliation(s)
- Takeshi Sekiguchi
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | |
Collapse
|
39
|
Chang IF. Mass spectrometry-based proteomic analysis of the epitope-tag affinity purified protein complexes in eukaryotes. Proteomics 2007; 6:6158-66. [PMID: 17072909 DOI: 10.1002/pmic.200600225] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In recent years, MS has been widely used to study protein complex in eukaryotes. The identification of interacting proteins of a particular target protein may help defining protein-protein interaction and proteins of unknown functions. To isolate protein complexes, high-speed ultracentrifugation, sucrose density-gradient centrifugation, and coimmunoprecipitation have been widely used. However, the probability of getting nonspecific binding is comparatively high. Alternatively, by use of one- or two-step (tandem affinity purification) epitope-tag affinity purification, protein complexes can be isolated by affinity or immunoaffinity columns. These epitope-tags include protein A, hexahistidine (His), c-Myc, hemaglutinin (HA), calmodulin-binding protein, FLAG, maltose-binding protein, Strep, etc. The isolated protein complex can then be subjected to protease (i.e., trypsin) digestion followed by an MS analysis for protein identification. An example, the epitope-tag purification of the Arabidopsis cytosolic ribosomes, is addressed in this article to show the success of the application. Several representative protein complexes in eukaryotes been isolated and characterized by use of this approach are listed. In this review, the comparison among different tag systems, validation of interacting relationship, and choices of MS analysis method are addressed. The successful rate, advantages, limitations, and challenges of the epitope-tag purification are also discussed.
Collapse
Affiliation(s)
- Ing-Feng Chang
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
40
|
Dastidar PG, Majumder S, Lohia A. Eh Klp5 is a divergent member of the kinesin 5 family that regulates genome content and microtubular assembly in Entamoeba histolytica. Cell Microbiol 2007; 9:316-28. [PMID: 16925786 DOI: 10.1111/j.1462-5822.2006.00788.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Earlier studies have established two unusual features in the cell division cycle of Entamoeba histolytica. First, microtubules form a radial assembly instead of a bipolar mitotic spindle, and second, the genome content of E. histolytica cells varied from 1x to 6x or more. In this study, Eh Klp5 was identified as a divergent member of the BimC kinesin family that is known to regulate formation and stabilization of the mitotic spindle in other eukaryotes. In contrast to earlier studies, we show here that bipolar microtubular spindles were formed in E. histolytica but were visible only in 8-12% of the cells after treatment with taxol. The number of bipolar spindles was significantly increased in Eh Klp5 stable transformants (20-25%) whereas Eh Klp5 double-stranded RNA (dsRNA) transformants did not show any spindles (< 1%). The genome content of Eh Klp5 stable transformants was regulated between 1x and 2x unlike control cells. Binucleated cells accumulated in Eh Klp5 dsRNA transformants and after inhibition of Eh Klp5 with small molecule inhibitors in control cells, suggesting that cytokinesis was delayed in the absence of Eh Klp5. Taken together, our results indicate that Eh Klp5 regulates microtubular assembly, genome content and cell division in E. histolytica. Additionally, Eh Klp5 showed alterations in its drug-binding site compared with its human homologue, Hs Eg5 and this was reflected in its reduced sensitivity to Eg5 inhibitors - monastrol and HR22C16 analogues.
Collapse
|
41
|
Honey S, Futcher B. Roles of the CDK phosphorylation sites of yeast Cdc6 in chromatin binding and rereplication. Mol Biol Cell 2007; 18:1324-36. [PMID: 17267692 PMCID: PMC1838967 DOI: 10.1091/mbc.e06-06-0544] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Saccharomyces cerevisiae Cdc6 protein is crucial for DNA replication. In the absence of cyclin-dependent kinase (CDK) activity, Cdc6 binds to replication origins, and loads Mcm proteins. In the presence of CDK activity, Cdc6 does not bind to origins, and this helps prevent rereplication. CDK activity affects Cdc6 function by multiple mechanisms: CDK activity affects transcription of CDC6, degradation of Cdc6, nuclear import of Cdc6, and binding of Cdc6 to Clb2. Here we examine some of these mechanisms individually. We find that when Cdc6 is forced into the nucleus during late G1 or S, it will not substantially reload onto chromatin no matter whether its CDK sites are present or not. In contrast, at a G2/M nocodazole arrest, Cdc6 will reload onto chromatin if and only if its CDK sites have been removed. Trace amounts of nonphosphorylatable Cdc6 are dominant lethal in strains bearing nonphosphorylatable Orc2 and Orc6, apparently because of rereplication. This synthetic dominant lethality occurs even in strains with wild-type MCM genes. Nonphosphorylatable Cdc6, or Orc2 and Orc6, sensitize cells to rereplication caused by overexpression of various replication initiation proteins such as Dpb11 and Sld2.
Collapse
Affiliation(s)
- Sangeet Honey
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222
| | - Bruce Futcher
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222
| |
Collapse
|
42
|
Schubert P, Hoffman MD, Sniatynski MJ, Kast J. Advances in the analysis of dynamic protein complexes by proteomics and data processing. Anal Bioanal Chem 2006; 386:482-93. [PMID: 16933131 DOI: 10.1007/s00216-006-0609-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 06/05/2006] [Accepted: 06/08/2006] [Indexed: 01/12/2023]
Abstract
Signal transduction governs virtually every cellular function of multicellular organisms, and its deregulation leads to a variety of diseases. This intricate network of molecular interactions is mediated by proteins that are assembled into complexes within individual signaling pathways, and their composition and function is often regulated by different post-translational modifications. Proteomic approaches are commonly used to analyze biological complexes and networks, but often lack the specificity to address the dynamic and hence transient nature of the interactions and the influence of the multiple post-translational modifications that govern these processes. Here we review recent developments in proteomic research to address these limitations, and discuss several technologies that have been developed for this purpose. The synergy between these proteomic and computational tools, when applied together with global methods to the analysis of individual proteins, complexes and pathways, may allow researchers to unravel the underlying mechanisms of signaling networks in greater detail than previously possible.
Collapse
Affiliation(s)
- Peter Schubert
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | | | | | | |
Collapse
|
43
|
Ichimura T, Yamamura H, Sasamoto K, Tominaga Y, Taoka M, Kakiuchi K, Shinkawa T, Takahashi N, Shimada S, Isobe T. 14-3-3 proteins modulate the expression of epithelial Na+ channels by phosphorylation-dependent interaction with Nedd4-2 ubiquitin ligase. J Biol Chem 2005; 280:13187-94. [PMID: 15677482 DOI: 10.1074/jbc.m412884200] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The ubiquitin E3 protein ligase Nedd4-2 is a physiological regulator of the epithelial sodium channel ENaC, which is essential for transepithelial Na+ transport and is linked to Liddle's syndrome, an autosomal dominant disorder of human salt-sensitive hypertension. Nedd4-2 function is negatively regulated by phosphorylation via a serum- and glucocorticoid-inducible protein kinase (Sgk1), which serves as a mechanism to inhibit the ubiquitination-dependent degradation of ENaC. We report here that 14-3-3 proteins participate in this regulatory process through a direct interaction with a phosphorylated form of human Nedd4-2 (a human gene product of KIAA0439, termed hNedd4-2). The interaction is dependent on Sgk1-catalyzed phosphorylation of hNedd4-2 at Ser-468. We found that this interaction preserved the activity of the Sgk1-stimulated ENaC-dependent Na+ current while disrupting the interaction decreased ENaC density on the Xenopus laevis oocytes surface possibly by enhancing Nedd4-2-mediated ubiquitination that leads to ENaC degradation. Our findings suggest that 14-3-3 proteins modulate the cell surface density of ENaC cooperatively with Sgk1 kinase by maintaining hNedd4-2 in an inactive phosphorylated state.
Collapse
Affiliation(s)
- Tohru Ichimura
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
A combined approach for the localization and tandem affinity purification of protein complexes from metazoans. Sci Signal 2005; 2005:pl1. [PMID: 15644491 DOI: 10.1126/stke.2662005pl1] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
An understanding of a protein's function is greatly aided by the knowledge of its localization in vivo and identification of any interacting partners. Here, we describe a method, based on expression of a genetically encoded fusion protein, that allows for protein localization and affinity purification (LAP) in metazoans. This method makes it possible to rapidly identify transformants and to conduct live imaging of protein localization and dynamics. In addition, the same tag can be used in a modified tandem affinity purification (TAP) procedure to isolate native protein complexes of high purity. The efficacy of this purification procedure allows for the characterization of rare protein complexes that are largely inaccessible to classical biochemical purifications. The LAP strategy should be widely applicable to the characterization of protein function in cellular and developmental contexts in various metazoans.
Collapse
|
45
|
Vasilescu J, Guo X, Kast J. Identification of protein-protein interactions usingin vivo cross-linking and mass spectrometry. Proteomics 2004; 4:3845-54. [PMID: 15540166 DOI: 10.1002/pmic.200400856] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The purification of protein complexes can be accomplished by different types of affinity chromatography. In a typical immunoaffinity experiment, protein complexes are captured from a cell lysate by an immobilized antibody that recognizes an epitope on one of the known components of the complex. After extensive washing to remove unspecifically bound proteins, the complexes are eluted and analyzed by mass spectrometry (MS). Transient complexes, which are characterized by high dissociation constants, are typically lost by this approach. In the present study, we describe a novel method for identifying transient protein-protein interactions using in vivo cross-linking and MS-based protein identification. Live cells are treated with formaldehyde, which rapidly permeates the cell membrane and generates protein-protein cross-links. Proteins cross-linked to a Myc-tagged protein of interest are copurified by immunoaffinity chromatography and subjected to a procedure which dissociates the cross-linked complexes. After separation by SDS-PAGE, proteins are identified by tandem mass spectrometry. Application of this method enabled the identification of numerous proteins that copurified with a constitutively active form of M-Ras (M-Ras(Q71L)). Among these, we identified the RasGAP-related protein IQGAP1 to be a novel interaction partner of M-Ras(Q71L). This method is applicable to many proteins and will aid in the study of protein-protein interactions.
Collapse
Affiliation(s)
- Julian Vasilescu
- The Biomedical Research Centre, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
46
|
Auty R, Steen H, Myers LC, Persinger J, Bartholomew B, Gygi SP, Buratowski S. Purification of Active TFIID from Saccharomyces cerevisiae. J Biol Chem 2004; 279:49973-81. [PMID: 15448131 DOI: 10.1074/jbc.m409849200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The basal transcription factor TFIID is composed of the TATA-binding protein (TBP) and 14 TBP-associated factors (TAFs). Although TBP alone binds to the TATA box of DNA and supports basal transcription, the TAFs have essential functions that remain poorly defined. In order to study its properties, TFIID was purified from Saccharomyces cerevisiae using a newly developed affinity tag. Analysis of the final elution by mass spectrometry confirms the presence of all the known TAFs and TBP, as well as Rsp5, Bul1, Ubp3, Bre5, Cka1, and Cka2. Both Taf1 and Taf5 are ubiquitinated, and the ubiquitination pattern of TFIID changes when BUL1 or BRE5 is deleted. Purified TFIID binds specifically to promoter DNA in a manner stabilized by TFIIA, and these complexes can be analyzed by native gel electrophoresis. Phenanthroline-copper footprinting and photoaffinity cross-linking indicate that TFIID makes extensive contacts upstream and downstream of the TATA box. TFIID supports basal transcription and activated transcription, both of which are enhanced by TFIIA.
Collapse
Affiliation(s)
- Roy Auty
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Zhong J, Haynes PA, Zhang S, Yang X, Andon NL, Eckert D, Yates JR, Wang X, Budworth P. Development of a system for the study of protein-protein interactions in planta: characterization of a TATA-box binding protein complex in Oryza sativa. J Proteome Res 2004; 2:514-22. [PMID: 14582648 DOI: 10.1021/pr034023z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe a simple, rapid method for protein complex purification in planta. Using a biotin peptide as an affinity tag with TATA-box binding protein (TBP), 86 unique proteins present in the purified complex were identified by tandem mass spectrometry. We identified proteins known to be associated with TBP, and many other proteins involved in pre-mRNA processing and chromatin remodeling. The identification of these novel protein-protein associations will upon further investigations provide new insights into the mechanisms of mRNA transcription and pre-mRNA processing.
Collapse
Affiliation(s)
- Jingping Zhong
- Department of Functional Genomics, Torrey Mesa Research Institute, Syngenta Research and Technology, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Archambault V, Chang EJ, Drapkin BJ, Cross FR, Chait BT, Rout MP. Targeted Proteomic Study of the Cyclin-Cdk Module. Mol Cell 2004; 14:699-711. [PMID: 15200949 DOI: 10.1016/j.molcel.2004.05.025] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 04/29/2004] [Accepted: 05/18/2004] [Indexed: 01/27/2023]
Abstract
The cell division cycle of the yeast S. cerevisiae is driven by one Cdk (cyclin-dependent kinase), which becomes active when bound to one of nine cyclin subunits. Elucidation of Cdk substrates and other Cdk-associated proteins is essential for a full understanding of the cell cycle. Here, we report the results of a targeted proteomics study using affinity purification coupled to mass spectrometry. Our study identified numerous proteins in association with particular cyclin-Cdk complexes. These included phosphorylation substrates, ubiquitination-degradation proteins, adaptors, and inhibitors. Some associations were previously known, and for others, we confirmed their specificity and biological relevance. Using a hypothesis-driven mass spectrometric approach, we also mapped in vivo phosphorylation at Cdk consensus motif-containing peptides within several cyclin-associated candidate Cdk substrates. Our results demonstrate that this approach can be used to detect a host of transient and dynamic protein associations within a biological module.
Collapse
|
49
|
Abstract
The goal of this review is to analyse how recent technical developments contributed to the biochemical characterisation of protein complexes. Improvement of tags used for protein purification, including in our own laboratory, and the development of new strategies have allowed the use of generic procedures for the purification of a wide variety of protein complexes. Together with increased mass spectrometry sensitivity and automation, this made high throughput studies of protein complexes possible and allowed proteome-wide analyses of protein complexes. However, knowledge of protein complex composition, even at the cellular level, will not be sufficient to understand their function. We suggest that the next level of analysis in this area will be the definition of internal subunit arrangement in complexes as a first step toward more detailed structural analyses.
Collapse
Affiliation(s)
- Andrzej Dziembowski
- Equipe Labelisée 'La Ligue', Centre de Génétique Moléculaire, CNRS UPR 2167 Associated with University Paris 6, Avenue de la Terrasse, 91198 Cedex, Gif sur Yvette, France
| | | |
Collapse
|
50
|
Abstract
RNA-proteins interactions are involved in numerous cellular functions. These interactions are found in most cases within complex macromolecular assemblies. The recent development of tools and techniques to study RNA-protein complexes has significantly increased our knowledge in the nature of these specific interactions. The aim of this article is to present the different techniques used to study RNA-protein complexes, as well as recent data concerning the application of RNA as therapeutic molecules.
Collapse
Affiliation(s)
- Nicolas Hugo
- Ecole Normale Supérieure de Lyon, Cnrs UMR 5665, 46, allée d'Italie, 69364 Lyon 07, France
| | | |
Collapse
|