1
|
Matsuzaki K, Shinohara A, Shinohara M. Human AAA+ ATPase FIGNL1 suppresses RAD51-mediated ultra-fine bridge formation. Nucleic Acids Res 2024; 52:5774-5791. [PMID: 38597669 PMCID: PMC11162793 DOI: 10.1093/nar/gkae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024] Open
Abstract
RAD51 filament is crucial for the homology-dependent repair of DNA double-strand breaks and stalled DNA replication fork protection. Positive and negative regulators control RAD51 filament assembly and disassembly. RAD51 is vital for genome integrity but excessive accumulation of RAD51 on chromatin causes genome instability and growth defects. However, the detailed mechanism underlying RAD51 disassembly by negative regulators and the physiological consequence of abnormal RAD51 persistence remain largely unknown. Here, we report the role of the human AAA+ ATPase FIGNL1 in suppressing a novel type of RAD51-mediated genome instability. FIGNL1 knockout human cells were defective in RAD51 dissociation after replication fork restart and accumulated ultra-fine chromosome bridges (UFBs), whose formation depends on RAD51 rather than replication fork stalling. FIGNL1 suppresses homologous recombination intermediate-like UFBs generated between sister chromatids at genomic loci with repeated sequences such as telomeres and centromeres. These data suggest that RAD51 persistence per se induces the formation of unresolved linkage between sister chromatids resulting in catastrophic genome instability. FIGNL1 facilitates post-replicative disassembly of RAD51 filament to suppress abnormal recombination intermediates and UFBs. These findings implicate FIGNL1 as a key factor required for active RAD51 removal after processing of stalled replication forks, which is essential to maintain genome stability.
Collapse
Affiliation(s)
- Kenichiro Matsuzaki
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara City, Nara 631-8505, Japan
| | - Akira Shinohara
- Laboratory of Genome and Chromosome Functions, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miki Shinohara
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara City, Nara 631-8505, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara City, Nara 631-8505, Japan
| |
Collapse
|
2
|
Kramarz K, Dziadkowiec D. Rrp1, Rrp2 and Uls1 - Yeast SWI2/SNF2 DNA dependent translocases in genome stability maintenance. DNA Repair (Amst) 2022; 116:103356. [PMID: 35716431 DOI: 10.1016/j.dnarep.2022.103356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/12/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
Multiple eukaryotic SWI2/SNF2 DNA translocases safeguard genome integrity, mostly by remodelling nucleosomes, but also by fine-tuning mechanisms of DNA repair, such as homologous recombination. Among this large family there is a unique class of Rad5/16-like enzymes, including Saccharomyces cerevisiae Uls1 and its Schizosaccharomyces pombe orthologues Rrp1 and Rrp2, that have both translocase and E3 ubiquitin ligase activities, and are often directed towards their substrates by SUMOylation. Here we summarize recent advances in understanding how different activities of these yeast proteins jointly contribute to their important roles in replication stress response particularly at centromeres and telomeres. This extends the possible range of functions performed by this class of SNF2 enzymes in human cells involving both their translocase and ubiquitin ligase activities and related to SUMOylation pathways within the nucleus.
Collapse
Affiliation(s)
- Karol Kramarz
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wrocław, Poland.
| | | |
Collapse
|
3
|
Muraszko J, Kramarz K, Argunhan B, Ito K, Baranowska G, Kurokawa Y, Murayama Y, Tsubouchi H, Lambert S, Iwasaki H, Dziadkowiec D. Rrp1 translocase and ubiquitin ligase activities restrict the genome destabilising effects of Rad51 in fission yeast. Nucleic Acids Res 2021; 49:6832-6848. [PMID: 34157114 PMCID: PMC8266636 DOI: 10.1093/nar/gkab511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 11/20/2022] Open
Abstract
Rad51 is the key protein in homologous recombination that plays important roles during DNA replication and repair. Auxiliary factors regulate Rad51 activity to facilitate productive recombination, and prevent inappropriate, untimely or excessive events, which could lead to genome instability. Previous genetic analyses identified a function for Rrp1 (a member of the Rad5/16-like group of SWI2/SNF2 translocases) in modulating Rad51 function, shared with the Rad51 mediator Swi5-Sfr1 and the Srs2 anti-recombinase. Here, we show that Rrp1 overproduction alleviates the toxicity associated with excessive Rad51 levels in a manner dependent on Rrp1 ATPase domain. Purified Rrp1 binds to DNA and has a DNA-dependent ATPase activity. Importantly, Rrp1 directly interacts with Rad51 and removes it from double-stranded DNA, confirming that Rrp1 is a translocase capable of modulating Rad51 function. Rrp1 affects Rad51 binding at centromeres. Additionally, we demonstrate in vivo and in vitro that Rrp1 possesses E3 ubiquitin ligase activity with Rad51 as a substrate, suggesting that Rrp1 regulates Rad51 in a multi-tiered fashion.
Collapse
Affiliation(s)
| | - Karol Kramarz
- Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France.,Université Paris-Saclay, CNRS UMR3348, 91400 Orsay, France
| | - Bilge Argunhan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Japan
| | - Kentaro Ito
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Japan
| | | | - Yumiko Kurokawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Japan
| | - Yasuto Murayama
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Japan
| | - Hideo Tsubouchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Japan
| | - Sarah Lambert
- Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France.,Université Paris-Saclay, CNRS UMR3348, 91400 Orsay, France
| | - Hiroshi Iwasaki
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Japan
| | | |
Collapse
|
4
|
Laine A, Nagelli SG, Farrington C, Butt U, Cvrljevic AN, Vainonen JP, Feringa FM, Grönroos TJ, Gautam P, Khan S, Sihto H, Qiao X, Pavic K, Connolly DC, Kronqvist P, Elo LL, Maurer J, Wennerberg K, Medema RH, Joensuu H, Peuhu E, de Visser K, Narla G, Westermarck J. CIP2A Interacts with TopBP1 and Drives Basal-Like Breast Cancer Tumorigenesis. Cancer Res 2021; 81:4319-4331. [PMID: 34145035 DOI: 10.1158/0008-5472.can-20-3651] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/02/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Basal-like breast cancers (BLBC) are characterized by defects in homologous recombination (HR), deficient mitotic checkpoint, and high-proliferation activity. Here, we discover CIP2A as a candidate driver of BLBC. CIP2A was essential for DNA damage-induced initiation of mouse BLBC-like mammary tumors and for survival of HR-defective BLBC cells. CIP2A was dispensable for normal mammary gland development and for unperturbed mitosis, but selectively essential for mitotic progression of DNA damaged cells. A direct interaction between CIP2A and a DNA repair scaffold protein TopBP1 was identified, and CIP2A inhibition resulted in enhanced DNA damage-induced TopBP1 and RAD51 recruitment to chromatin in mammary epithelial cells. In addition to its role in tumor initiation, and survival of BRCA-deficient cells, CIP2A also drove proliferative MYC and E2F1 signaling in basal-like triple-negative breast cancer (BL-TNBC) cells. Clinically, high CIP2A expression was associated with poor patient prognosis in BL-TNBCs but not in other breast cancer subtypes. Small-molecule reactivators of PP2A (SMAP) inhibited CIP2A transcription, phenocopied the CIP2A-deficient DNA damage response (DDR), and inhibited growth of patient-derived BLBC xenograft. In summary, these results demonstrate that CIP2A directly interacts with TopBP1 and coordinates DNA damage-induced mitotic checkpoint and proliferation, thereby driving BLBC initiation and progression. SMAPs could serve as a surrogate therapeutic strategy to inhibit the oncogenic activity of CIP2A in BLBCs. SIGNIFICANCE: These results identify CIP2A as a nongenetic driver and therapeutic target in basal-like breast cancer that regulates DNA damage-induced G2-M checkpoint and proliferative signaling.
Collapse
Affiliation(s)
- Anni Laine
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Srikar G Nagelli
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Caroline Farrington
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Umar Butt
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Anna N Cvrljevic
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Julia P Vainonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Femke M Feringa
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tove J Grönroos
- Turku PET Center, University of Turku, Turku, Finland.,Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
| | - Prson Gautam
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sofia Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Harri Sihto
- Department of Pathology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Xi Qiao
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Karolina Pavic
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Denise C Connolly
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jochen Maurer
- Department of Obstetrics and Gynecology, University Hospital Aachen (UKA), Aachen, Germany
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Rene H Medema
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Heikki Joensuu
- Department of Pathology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Emilia Peuhu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Karin de Visser
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland. .,Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
5
|
Tsutsui Y, Kurokawa Y, Ito K, Siddique MSP, Kawano Y, Yamao F, Iwasaki H. Multiple regulation of Rad51-mediated homologous recombination by fission yeast Fbh1. PLoS Genet 2014; 10:e1004542. [PMID: 25165823 PMCID: PMC4148199 DOI: 10.1371/journal.pgen.1004542] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 06/16/2014] [Indexed: 11/18/2022] Open
Abstract
Fbh1, an F-box helicase related to bacterial UvrD, has been proposed to modulate homologous recombination in fission yeast. We provide several lines of evidence for such modulation. Fbh1, but not the related helicases Srs2 and Rqh1, suppressed the formation of crossover recombinants from single HO-induced DNA double-strand breaks. Purified Fbh1 in complex with Skp1 (Fbh1-Skp1 complex) inhibited Rad51-driven DNA strand exchange by disrupting Rad51 nucleoprotein filaments in an ATP-dependent manner; this disruption was alleviated by the Swi5-Sfr1 complex, an auxiliary activator of Rad51. In addition, the reconstituted SCFFbh1 complex, composed of purified Fbh1-Skp1 and Pcu1-Rbx1, displayed ubiquitin-ligase E3 activity toward Rad51. Furthermore, Fbh1 reduced the protein level of Rad51 in stationary phase in an F-box-dependent, but not in a helicase domain-independent manner. These results suggest that Fbh1 negatively regulates Rad51-mediated homologous recombination via its two putative, unrelated activities, namely DNA unwinding/translocation and ubiquitin ligation. In addition to its anti-recombinase activity, we tentatively suggest that Fbh1 might also have a pro-recombination role in vivo, because the Fbh1-Skp1 complex stimulated Rad51-mediated strand exchange in vitro after strand exchange had been initiated. Homologous recombination is required for repairing DNA double-strand breaks (DSBs), which are induced by exogenous factors such as DNA damaging agents or by endogenous factors such as collapse of DNA replication fork in mitotic cells. If improperly processed, DSBs could lead to chromosome rearrangement, cell death, or tumorigenesis in mammals, and thus HR is strictly controlled at several steps, including Rad51 recombinase-driven DNA strand exchange reaction. Specifically, DNA helicases have been shown to be important for suppression of inappropriate recombination events. In this study, we analyzed one such DNA helicase, fission yeast Fbh1. We used an in vivo single-DSB repair assay to show that Fbh1 suppresses crossover formation between homologous chromosomes. Next, we obtained in vitro evidence that Fbh1 acts as an inhibitor of the strand-exchange reaction in the absence of Swi5-Sfr1, but stimulates the reaction after it starts. Furthermore, we found that SCFFbh1 has ubiquitin-ligase activity toward Rad51 in vitro and that Fbh1 regulates the protein level of Rad51 in the stationary phase. These results suggest Fbh1 regulates Rad51-mediated homologous recombination by its seemingly-unrelated two activities, DNA helicase/translocase and ubiquitin ligase.
Collapse
Affiliation(s)
- Yasuhiro Tsutsui
- Department of Biological Sciences, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
- * E-mail: (YT); (HI)
| | - Yumiko Kurokawa
- Education Academy of Computational Life Science, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Kentaro Ito
- Department of Biological Sciences, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Md. Shahjahan P. Siddique
- Department of Biological Sciences, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Yumiko Kawano
- Department of Biological Sciences, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Fumiaki Yamao
- International Institute for Advanced Studies, Kizugawa, Kyoto, Japan
| | - Hiroshi Iwasaki
- Department of Biological Sciences, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
- * E-mail: (YT); (HI)
| |
Collapse
|
6
|
Schaefer DG, Delacote F, Charlot F, Vrielynck N, Guyon-Debast A, Le Guin S, Neuhaus JM, Doutriaux MP, Nogué F. RAD51 loss of function abolishes gene targeting and de-represses illegitimate integration in the moss Physcomitrella patens. DNA Repair (Amst) 2010; 9:526-33. [PMID: 20189889 DOI: 10.1016/j.dnarep.2010.02.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 01/28/2010] [Accepted: 02/01/2010] [Indexed: 01/16/2023]
Abstract
Gene targeting (GT) is a major tool for basic and applied research during which the transforming DNA, which shares sequence homology with a chromosomal target, integrates at the corresponding locus by homologous recombination (HR). In eukaryotes, GT recruits enzymes from the HR-mediated double strand break repair pathway. Different mechanisms of HR have been described which depend on the Rad52 epistasis group of genes, but which specific mechanism is used by the cell for GT remains unclear. In Saccharomyces cerevisiae, the RAD52 protein is essential for GT, and the RAD51 protein plays a minor role. In filamentous fungi and animal cells, however, GT depends on RAD51 and is weakly affected by suppression of RAD52. Genetic evidence also indicates that the non-homologous end-joining pathway of DSB repair has a negative impact on GT efficiencies, but how the balance between these two pathways is controlled is poorly understood. Here, we have examined the role of RAD51 in the only plant that exhibits high GT frequencies, the model bryophyte Physcomitrella patens. Our results show that the two RAD51 proteins have partially redundant functions in the maintenance of genome integrity and resistance to ionizing radiation. Furthermore, we demonstrate that loss of function of the two RAD51 proteins completely abolishes GT and strongly increases illegitimate integration rates in this moss. These findings demonstrate for the first time in plant the critical role of RAD51 in controlling the balance between targeted and random integration events observed upon transgenesis, and confirm that P. patens is a particularly interesting tool for studying GT in higher eukaryotes.
Collapse
Affiliation(s)
- D G Schaefer
- Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes, UR254, INRA, Route de St Cyr, 78026 Versailles, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Klein HL. The consequences of Rad51 overexpression for normal and tumor cells. DNA Repair (Amst) 2008; 7:686-93. [PMID: 18243065 DOI: 10.1016/j.dnarep.2007.12.008] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 12/12/2007] [Indexed: 12/19/2022]
Abstract
The Rad51 recombinase is an essential factor for homologous recombination and the repair of DNA double strand breaks, binding transiently to both single stranded and double stranded DNA during the recombination reaction. The use of a homologous recombination mechanism to repair DNA damage is controlled at several levels, including the binding of Rad51 to single stranded DNA to form the Rad51 nucleofilament, which is controlled through the action of DNA helicases that can counteract nucleofilament formation. Overexpression of Rad51 in different organisms and cell types has a wide assortment of consequences, ranging from increased homologous recombination and increased resistance to DNA damaging agents to disruption of the cell cycle and apoptotic cell death. Rad51 expression is increased in p53-negative cells, and since p53 is often mutated in tumor cells, there is a tendency for Rad51 to be overexpressed in tumor cells, leading to increased resistance to DNA damage and drugs used in chemotherapies. As cells with increased Rad51 levels are more resistant to DNA damage, there is a selection for tumor cells to have higher Rad51 levels. While increased Rad51 can provide drug resistance, it also leads to increased genomic instability and may contribute to carcinogenesis.
Collapse
Affiliation(s)
- Hannah L Klein
- Department of Biochemistry, New York University School of Medicine, NYU Medical Center, 550 First Avenue, New York, NY 10016, United States.
| |
Collapse
|
8
|
Nogaj LA, Beale SI. Physical and kinetic interactions between glutamyl-tRNA reductase and glutamate-1-semialdehyde aminotransferase of Chlamydomonas reinhardtii. J Biol Chem 2005; 280:24301-7. [PMID: 15890644 DOI: 10.1074/jbc.m502483200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In plants, algae, and most bacteria, the heme and chlorophyll precursor 5-aminolevulinic acid (ALA) is formed from glutamate in a three-step process. First, glutamate is ligated to its cognate tRNA by glutamyl-tRNA synthetase. Activated glutamate is then converted to a glutamate 1-semialdehyde (GSA) by glutamyl-tRNA reductase (GTR) in an NADPH-dependent reaction. Subsequently, GSA is rearranged to ALA by glutamate-1-semialdehyde aminotransferase (GSAT). The intermediate GSA is highly unstable under physiological conditions. We have used purified recombinant GTR and GSAT from the unicellular alga Chlamydomonas reinhardtii to show that GTR and GSAT form a physical and functional complex that allows channeling of GSA between the enzymes. Co-immunoprecipitation and sucrose gradient ultracentrifugation results indicate that recombinant GTR and GSAT enzymes specifically interact. In vivo cross-linking results support the in vitro results and demonstrate that GTR and GSAT are components of a high molecular mass complex in C. reinhardtii cells. In a coupled enzyme assay containing GTR and wild-type GSAT, addition of inactive mutant GSAT inhibited ALA formation from glutamyl-tRNA. Mutant GSAT did not inhibit ALA formation from GSA by wild-type GSAT. These results suggest that there is competition between wild-type and mutant GSAT for binding to GTR and channeling GSA from GTR to GSAT. Further evidence supporting kinetic interaction of GTR and GSAT is the observation that both wild-type and mutant GSAT stimulate glutamyl-tRNA-dependent NADPH oxidation by GTR.
Collapse
Affiliation(s)
- Luiza A Nogaj
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
9
|
Hope JC, Maftahi M, Freyer GA. A postsynaptic role for Rhp55/57 that is responsible for cell death in Deltarqh1 mutants following replication arrest in Schizosaccharomyces pombe. Genetics 2005; 170:519-31. [PMID: 15802523 PMCID: PMC1450410 DOI: 10.1534/genetics.104.037598] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Following replication arrest, multiple cellular responses are triggered to maintain genomic integrity. In fission yeast, the RecQ helicase, Rqh1, plays a critical role in this process. This is demonstrated in Deltarqh1 cells that, following treatment with hydroxyurea (HU), undergo an aberrant mitosis leading to cell death. Previous data suggest that Rqh1 functions with homologous recombination (HR) in recovery from replication arrest. We have found that loss of the HR genes rhp55(+) or rhp57(+), but not rhp51(+) or rhp54(+), suppresses the HU sensitivity of Deltarqh1 cells. Much of this suppression requires Rhp51 and Rhp54. In addition, this suppression is partially dependent on swi5(+). In budding yeast, overexpressing Rad51 (the Rhp51 homolog) minimized the need for Rad55/57 (Rhp55/57) in nucleoprotein filament formation. We overexpressed Rhp51 in Schizosaccharomyces pombe and found that it greatly reduced the requirement for Rhp55/57 in recovery from DNA damage. However, overexpressing Rhp51 did not change the Deltarhp55 suppression of the HU sensitivity of Deltarqh1, supporting an Rhp55/57 function during HR independent of nucleoprotein filament formation. These results are consistent with Rqh1 playing a role late in HR following replication arrest and provide evidence for a postsynaptic function for Rhp55/57.
Collapse
Affiliation(s)
- Justin C Hope
- Graduate Program in Anatomy and Cell Biology, Department of Anatomy and Cell Biology, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
10
|
Smeets MFMA, Francesconi S, Baldacci G. High dosage Rhp51 suppression of the MMS sensitivity of DNA structure checkpoint mutants reveals a relationship between Crb2 and Rhp51. Genes Cells 2003; 8:573-86. [PMID: 12839619 DOI: 10.1046/j.1365-2443.2003.00657.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND In eukaryotic cells DNA structure checkpoints organize the cellular responses of DNA repair and transient cell cycle arrest and thereby ensure genomic stability. To investigate the exact role of crb2+ in the DNA damage checkpoint response, a genetic screen was carried out in order to identify suppressors of the conditional MMS sensitivity of a crb2-1 mutant. Here we report the isolation of rhp51+ as a multicopy suppressor. RESULTS We show that suppression is not specific for the checkpoint mutant while it is specific for the MMS treatment. Rescue by rhp51+ over-expression is not a consequence of increased recombination repair or checkpoint compensation and epistasis analysis confirms that crb2+ and rhp51+ function in different pathways. A tight linkage between the two pathways is nevertheless suggested by the complementary expression or modification of Crb2 and Rhp51 proteins. Crb2 protein stability is down-regulated when Rhp51 is over-expressed and up-regulated in the absence of Rhp51. The up-regulation of Crb2 is independent of the activation of DNA structure checkpoints. Conversely Rhp51 is more readily activated and differentially modified in the absence of Crb2 or other checkpoint proteins. CONCLUSIONS We conclude that fission yeast Crb2 and Rhp51 function in two parallel, tightly connected and coordinately regulated pathways.
Collapse
Affiliation(s)
- Monique F M A Smeets
- UMR2027, Génotoxicologie et Cycle Cellulaire, Institut Curie, 91405 Orsay, France
| | | | | |
Collapse
|
11
|
Kim WJ, Park EJ, Lee H, Seong RH, Park SD. Physical interaction between recombinational proteins Rhp51 and Rad22 in Schizosaccharomyces pombe. J Biol Chem 2002; 277:30264-70. [PMID: 12050150 DOI: 10.1074/jbc.m202517200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, Rad51 and Rad52 are two key components of homologous recombination and recombinational repair. These two proteins interact with each other. Here we investigated the role of interaction between Rhp51 and Rad22, the fission yeast homologs of Rad51 and Rad52, respectively, on the function of each protein. We identified a direct association between the two proteins and their self-interactions both in vivo and in vitro. We also determined the binding domains of each protein that mediate these interactions. To characterize the role of Rhp51-Rad22 interaction, we used random mutagenesis to identify the mutants Rhp51 and Rad22, which cannot interact each other. Interestingly, we found that mutant Rhp51 protein, which cannot interact with either Rad22 or Rti1 (G282D), lost its DNA repair ability. In contrast, mutant Rad22 proteins, which cannot specifically bind to Rhp51 (S379L and P381L), maintained their DNA repair ability. These results suggest that the interaction between Rhp51 and Rad22 is crucial for the recombinational repair function of Rhp51. However, the significance of this interaction on the function of Rad22 remains to be characterized further.
Collapse
Affiliation(s)
- Woo Jae Kim
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | |
Collapse
|
12
|
Kim WJ, Lee H, Park EJ, Hong SH, Park SD. Role of ATP-binding motifs on DNA-binding activity and biological function of Rhp51, a Rad51 homologue in fission yeast. Biochem J 2002; 364:869-74. [PMID: 12049653 PMCID: PMC1222638 DOI: 10.1042/bj20020214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rhp51, a RecA and Rad51 homologue of Schizosaccharomyces pombe, plays a pivotal role in homologous recombination and recombinational repair. It has a set of the well-conserved type A and type B ATP-binding motifs, which are highly conserved in all RecA homologues. In a previous study [Kim, Lee, Park, Park and Park (2001) Nucleic Acids Res. 29, 1724-1732], we reported that a single mutation of the conserved lysine in A motif [Lys(155)-->Ala (K155A)] destroyed the DNA repair ability of Rhp51 and that overexpression of this mutant protein conferred dominant negativity. In the present paper, we investigated DNA-binding properties of recombinant Rhp51 and its mutant proteins. Purified Rhp51 protein showed ATP-dependent double- and single-strand DNA-binding activities. To characterize the role of ATP-binding motifs, we generated Rhp51 K155A and Rhp51 Asp(244)-->Gln (D244Q), which have a single amino acid substitution in A and B motifs respectively. Interestingly, K155A and D244Q mutations impaired ATP-dependent DNA binding in a different manner. K155A lost the DNA binding itself, whereas D244Q maintained the binding ability but lost the ATP dependency. However, despite the difference in DNA-binding ability, both mutations failed to rescue the methylmethane sulphonate and UV sensitivity of the rhp51Delta mutant. Together, these results suggested that not only the DNA binding but also the ATP dependence in DNA binding is required for proper in vivo functioning of Rhp51.
Collapse
Affiliation(s)
- Woo J Kim
- School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | |
Collapse
|
13
|
Current awareness on yeast. Yeast 2001; 18:1091-8. [PMID: 11481679 DOI: 10.1002/yea.688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|