de la Fuente M, Hernanz A, Navarro R. IR and Raman study on the interactions of the 5'-GMP and 5'-CMP phosphate groups with Mg(II), Ca(II), Sr(II), Ba(II), Cr(III), Co(II), Cu(II), Zn(II), Cd(II), Al(III) and Ga(III).
J Biol Inorg Chem 2004;
9:973-86. [PMID:
15452776 DOI:
10.1007/s00775-004-0593-5]
[Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Accepted: 08/04/2004] [Indexed: 10/26/2022]
Abstract
The chief motive behind this research is the interest provoked by the presence of metal ions as necessary stabilizers of the negative charges of phosphate groups in nucleic acids. The effect that the presence of different metal ions produces on the band principally assigned to the nu(s) PO(3)(2-) mode has been studied using FT-IR and FT-Raman spectroscopy. The results obtained reveal the diagnostic capacity of these techniques in determining the type of metal ion interaction with respect to the mononucleotides that form DNA and RNA, providing a tool for improving the knowledge of the stabilizing or destabilizing effects of these ions on such macromolecules. The metal complexes of the ribonucleotides 5'-CMP and 5'-GMP with Mg(II), Ca(II), Sr(II), Ba(II), Cr(III), Co(II), Cu(II), Zn(II), Cd(II), Al(III) and Ga(III) were obtained in this study. After studying and analyzing the IR and Raman spectra of all these complexes and comparing them with the spectra of the corresponding disodium salts, it was verified that, independently of the type of nucleotide involved, the presence of the metal in the vicinity of the phosphate group produces an alteration in the aforementioned nu(s) PO(3)(2-) band. This effect is related to the type of interaction that the phosphate group has with the metal. Three components are observed: (1) one near 983-975 cm(-1) (detectable in IR and Raman), associated with phosphate groups in an electrostatic type of interaction with the metal ion, separated by two or more water molecules; (2) another near 989-985 cm(-1) (only in IR), associated with phosphate groups in indirect interaction through the water molecules of the coordination sphere of the metal ions; and (3) the IR and Raman bands near 1014-1001 cm(-1), which represent phosphate groups directly bonded to the metal ion. These results are supported by the behavior of 5'-CMP in aqueous solution in the presence of Mg(II) ions.
Collapse