Dahlberg JE. An overview of retrovirus replication and classification.
ADVANCES IN VETERINARY SCIENCE AND COMPARATIVE MEDICINE 1988;
32:1-35. [PMID:
2847500 DOI:
10.1016/b978-0-12-039232-2.50005-0]
[Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This introductory chapter has presented an overview of how retroviruses replicate and how they are classified within the family Retroviridae. The genomic structure of retroviruses, so reminiscent of bacterial transposons and other similar genetic elements, and reverse transcriptase, which leads to the reverse flow of genetic information from RNA to DNA, are responsible for many of the properties of these viruses which make them both fascinating and important as causes of cancer and other diseases. The requirement for integration shared by most retroviruses leads directly to most of the phenomena resulting from their interaction with target cells. Certainly latency, at the level of the organism, is one such property relevant to how we think of vaccines and therapeutic reagents. The ability of retroviruses to acquire oncogenes from cellular DNA has greatly facilitated our understanding of the genetics of neoplasia. Additionally, the use of retroviral vectors to introduce new genes into genetically defective animals is a consequence of the genetic organization of retroviruses. Classification of viruses at the species level is difficult for several reasons. In particular, viruses do not sexually reproduce in any conventional sense, and it is difficult to identify a population of virions which make up a genetically distinct pool. Thus, the definition of individual species is often controversial and is not necessarily aided by the criteria used to define larger phylogenetic groups. In the latter case, retroviruses have distinctive morphological and biochemical features which allow their classification at the family, subfamily, genus, and subgenus levels. Additional classification occurs by accounting for factors such as host range, cross neutralization, ability to compete in interspecies radioimmunoassays, and genetic homology detected by hybridization under conditions of relaxed stringency. Direct comparison of nucleotide sequences offers the hope that mathematical criteria will be developed that can define the level of differences characteristic of individual species, genuses, and subfamilies.
Collapse