1
|
Xu G, Yang H, Qiu J, Reboud J, Zhen L, Ren W, Xu H, Cooper JM, Gu H. Sequence terminus dependent PCR for site-specific mutation and modification detection. Nat Commun 2023; 14:1169. [PMID: 36859350 PMCID: PMC9978023 DOI: 10.1038/s41467-023-36884-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
The detection of changes in nucleic acid sequences at specific sites remains a critical challenge in epigenetics, diagnostics and therapeutics. To date, such assays often require extensive time, expertise and infrastructure for their implementation, limiting their application in clinical settings. Here we demonstrate a generalizable method, named Specific Terminal Mediated Polymerase Chain Reaction (STEM-PCR) for the detection of DNA modifications at specific sites, in a similar way as DNA sequencing techniques, but using simple and widely accessible PCR-based workflows. We apply the technique to both for site-specific methylation and co-methylation analysis, importantly using a bisulfite-free process - so providing an ease of sample processing coupled with a sensitivity 20-fold better than current gold-standard techniques. To demonstrate the clinical applicability through the detection of single base mutations with high sensitivity and no-cross reaction with the wild-type background, we show the bisulfite-free detection of SEPTIN9 and SFRP2 gene methylation in patients (as key biomarkers in the prognosis and diagnosis of tumours).
Collapse
Affiliation(s)
- Gaolian Xu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Hao Yang
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiani Qiu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Julien Reboud
- Division of Biomedical Engineering, University of Glasgow, G12 8LT, Glasgow, United Kingdom
| | - Linqing Zhen
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wei Ren
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Hong Xu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Jonathan M Cooper
- Division of Biomedical Engineering, University of Glasgow, G12 8LT, Glasgow, United Kingdom.
| | - Hongchen Gu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
2
|
Dong N, Wang W, Qin Y, Wang Y, Shan H. Sensitive lateral flow assay for bisulfite-free DNA methylation detection based on the restriction endonuclease GlaI and rolling circle amplification. Anal Chim Acta 2022; 1227:340307. [DOI: 10.1016/j.aca.2022.340307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 01/22/2023]
|
3
|
Zeng H, He B, Yi C. Compilation of Modern Technologies To Map Genome-Wide Cytosine Modifications in DNA. Chembiochem 2019; 20:1898-1905. [PMID: 30809902 DOI: 10.1002/cbic.201900035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Indexed: 12/19/2022]
Abstract
Over the past few decades, various DNA modification detection methods have been developed; many of the high-resolution methods are based on bisulfite treatment, which leads to DNA degradation, to a degree. Thus, novel bisulfite-free approaches have been developed in recent years and shown to be useful for epigenome analysis in otherwise difficult-to-handle, but important, DNA samples, such as hmC-seal and hmC-CATCH. Herein, an overview of advances in the development of epigenome sequencing methods for these important DNA modifications is provided.
Collapse
Affiliation(s)
- Hu Zeng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Department of Chemical Biology and, Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
| | - Bo He
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Department of Chemical Biology and, Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Department of Chemical Biology and, Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
4
|
|
5
|
von Watzdorf J, Marx A. 6-Substituted 2-Aminopurine-2'-deoxyribonucleoside 5'-Triphosphates that Trace Cytosine Methylation. Chembiochem 2016; 17:1532-40. [PMID: 27253512 PMCID: PMC5095873 DOI: 10.1002/cbic.201600245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Indexed: 12/26/2022]
Abstract
Gene expression is extensively regulated by the occurrence and distribution of the epigenetic marker 2′‐deoxy 5‐methylcytosine (5mC) in genomic DNA. Because of its effects on tumorigenesis there is an important link to human health. In addition, detection of 5mC can serve as an outstanding biomarker for diagnostics as well as for disease therapy. Our previous studies have already shown that, by processing O6‐alkylated 2′‐deoxyguanosine triphosphate (dGTP) analogues, DNA polymerases are able to sense the presence of a single 5mC unit in a template. Here we present the synthesis and evaluation of an extended toolbox of 6‐substituted 2‐aminopurine‐2′‐deoxyribonucleoside 5′‐triphosphates modified at position 6 with various functionalities. We found that sensing of 5‐methylation by this class of nucleotides is more general, not being restricted to O6‐alkyl modification of dGTP but also applying to other functionalities.
Collapse
Affiliation(s)
- Janina von Watzdorf
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.
| |
Collapse
|
6
|
von Watzdorf J, Leitner K, Marx A. Modified Nucleotides for Discrimination between Cytosine and the Epigenetic Marker 5-Methylcytosine. Angew Chem Int Ed Engl 2016; 55:3229-32. [PMID: 26835661 PMCID: PMC4949677 DOI: 10.1002/anie.201511520] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Indexed: 12/31/2022]
Abstract
5‐Methyl‐2′‐deoxycytosine, the most common epigenetic marker of DNA in eukaryotic cells, plays a key role in gene regulation and affects various cellular processes such as development and carcinogenesis. Therefore, the detection of 5mC can serve as an important biomarker for diagnostics. Here we describe that modified dGTP analogues as well as modified primers are able to sense the presence or absence of a single methylation of C, even though this modification does not interfere directly with Watson–Crick nucleobase pairing. By screening several modified nucleotide scaffolds, O6‐modified 2′‐deoxyguanosine analogues were identified as discriminating between C and 5mC. These modified nucleotides might find application in site‐specific 5mC detection, for example, through real‐time PCR approaches.
Collapse
Affiliation(s)
- Janina von Watzdorf
- Fachbereich Chemie, Graduiertenschule Chemische, Biologie Konstanz, Universität Konstanz, Universitätsstrasse 10, 78457, Konstanz, Deutschland
| | - Kim Leitner
- Fachbereich Chemie, Graduiertenschule Chemische, Biologie Konstanz, Universität Konstanz, Universitätsstrasse 10, 78457, Konstanz, Deutschland
| | - Andreas Marx
- Fachbereich Chemie, Graduiertenschule Chemische, Biologie Konstanz, Universität Konstanz, Universitätsstrasse 10, 78457, Konstanz, Deutschland.
| |
Collapse
|
7
|
von Watzdorf J, Leitner K, Marx A. Modifizierte Nukleotide für die Diskriminierung zwischen Cytosin und dem epigenetischen Marker 5-Methylcytosin. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Janina von Watzdorf
- Fachbereich Chemie, Graduiertenschule Chemische Biologie Konstanz; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Kim Leitner
- Fachbereich Chemie, Graduiertenschule Chemische Biologie Konstanz; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Andreas Marx
- Fachbereich Chemie, Graduiertenschule Chemische Biologie Konstanz; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| |
Collapse
|
8
|
Schenkel LC, Rodenhiser DI, Ainsworth PJ, Paré G, Sadikovic B. DNA methylation analysis in constitutional disorders: Clinical implications of the epigenome. Crit Rev Clin Lab Sci 2016; 53:147-65. [PMID: 26758403 DOI: 10.3109/10408363.2015.1113496] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Genomic, chromosomal, and gene-specific changes in the DNA sequence underpin both phenotypic variations in populations as well as disease associations, and the application of genomic technologies for the identification of constitutional (inherited) or somatic (acquired) alterations in DNA sequence forms a cornerstone of clinical and molecular genetics. In addition to the disruption of primary DNA sequence, the modulation of DNA function by epigenetic phenomena, in particular by DNA methylation, has long been known to play a role in the regulation of gene expression and consequent pathogenesis. However, these epigenetic factors have been identified only in a handful of pediatric conditions, including imprinting disorders. Technological advances in the past decade that have revolutionized clinical genomics are now rapidly being applied to the emerging discipline of clinical epigenomics. Here, we present an overview of epigenetic mechanisms with a focus on DNA modifications, including the molecular mechanisms of DNA methylation and subtypes of DNA modifications, and we describe the classic and emerging genomic technologies that are being applied to this study. This review focuses primarily on constitutional epigenomic conditions associated with a spectrum of developmental and intellectual disabilities. Epigenomic disorders are discussed in the context of global genomic disorders, imprinting disorders, and single gene disorders. We include a section focused on integration of genetic and epigenetic mechanisms together with their effect on clinical phenotypes. Finally, we summarize emerging epigenomic technologies and their impact on diagnostic aspects of constitutional genetic and epigenetic disorders.
Collapse
Affiliation(s)
| | - David I Rodenhiser
- b Departments of Biochemistry , Oncology and Paediatrics, Western University , London , ON , Canada .,c London Regional Cancer Program, London Health Sciences Centre , London , ON , Canada .,e Children's Health Research Institute , London , ON , Canada
| | - Peter J Ainsworth
- a Departments of Pathology and Laboratory Medicine .,b Departments of Biochemistry , Oncology and Paediatrics, Western University , London , ON , Canada .,c London Regional Cancer Program, London Health Sciences Centre , London , ON , Canada .,d Molecular Genetics Laboratory, London Health Sciences Centre , London , ON , Canada .,e Children's Health Research Institute , London , ON , Canada
| | - Guillaume Paré
- f Department of Pathology and Molecular Medicine , and.,g Department of Clinical Epidemiology and Biostatistics , McMaster University , Hamilton , ON , Canada
| | - Bekim Sadikovic
- a Departments of Pathology and Laboratory Medicine .,c London Regional Cancer Program, London Health Sciences Centre , London , ON , Canada .,d Molecular Genetics Laboratory, London Health Sciences Centre , London , ON , Canada .,e Children's Health Research Institute , London , ON , Canada
| |
Collapse
|
9
|
Hu Y, Morota G, Rosa GJM, Gianola D. Prediction of Plant Height in Arabidopsis thaliana Using DNA Methylation Data. Genetics 2015; 201:779-93. [PMID: 26253546 PMCID: PMC4596684 DOI: 10.1534/genetics.115.177204] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/02/2015] [Indexed: 12/18/2022] Open
Abstract
Prediction of complex traits using molecular genetic information is an active area in quantitative genetics research. In the postgenomic era, many types of -omic (e.g., transcriptomic, epigenomic, methylomic, and proteomic) data are becoming increasingly available. Therefore, evaluating the utility of this massive amount of information in prediction of complex traits is of interest. DNA methylation, the covalent change of a DNA molecule without affecting its underlying sequence, is one quantifiable form of epigenetic modification. We used methylation information for predicting plant height (PH) in Arabidopsis thaliana nonparametrically, using reproducing kernel Hilbert spaces (RKHS) regression. Also, we used different criteria for selecting smaller sets of probes, to assess how representative probes could be used in prediction instead of using all probes, which may lessen computational burden and lower experimental costs. Methylation information was used for describing epigenetic similarities between individuals through a kernel matrix, and the performance of predicting PH using this similarity matrix was reasonably good. The predictive correlation reached 0.53 and the same value was attained when only preselected probes were used for prediction. We created a kernel that mimics the genomic relationship matrix in genomic best linear unbiased prediction (G-BLUP) and estimated that, in this particular data set, epigenetic variation accounted for 65% of the phenotypic variance. Our results suggest that methylation information can be useful in whole-genome prediction of complex traits and that it may help to enhance understanding of complex traits when epigenetics is under examination.
Collapse
Affiliation(s)
- Yaodong Hu
- Department of Animal Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Gota Morota
- Department of Animal Science, University of Nebraska, Lincoln, Nebraska 68583
| | - Guilherme J M Rosa
- Department of Animal Sciences, University of Wisconsin, Madison, Wisconsin 53706 Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin 53706
| | - Daniel Gianola
- Department of Animal Sciences, University of Wisconsin, Madison, Wisconsin 53706 Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin 53706 Department of Dairy Science, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
10
|
Aschenbrenner J, Drum M, Topal H, Wieland M, Marx A. Direct sensing of 5-methylcytosine by polymerase chain reaction. Angew Chem Int Ed Engl 2014; 53:8154-8. [PMID: 24923910 PMCID: PMC4499253 DOI: 10.1002/anie.201403745] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Indexed: 12/22/2022]
Abstract
The epigenetic control of genes by the methylation of cytosine resulting in 5-methylcytosine (5mC) has fundamental implications for human development and disease. Analysis of alterations in DNA methylation patterns is an emerging tool for cancer diagnostics and prognostics. Here we report that two thermostable DNA polymerases, namely the DNA polymerase KlenTaq derived from Thermus aquaticus and the KOD DNA polymerase from Thermococcus kodakaraensis, are able to extend 3'-mismatched primer strands more efficiently from 5 mC than from unmethylated C. This feature was advanced by generating a DNA polymerase mutant with further improved 5mC/C discrimination properties and its successful application in a novel methylation-specific PCR approach directly from untreated human genomic DNA.
Collapse
Affiliation(s)
- Joos Aschenbrenner
- Department of Chemistry, Konstanz Research School Chemical Biology, University of KonstanzUniversitätsstrasse 10, 78457 Konstanz (Germany)
| | - Matthias Drum
- Department of Chemistry, Konstanz Research School Chemical Biology, University of KonstanzUniversitätsstrasse 10, 78457 Konstanz (Germany)
| | - Hüsnü Topal
- Department of Chemistry, Konstanz Research School Chemical Biology, University of KonstanzUniversitätsstrasse 10, 78457 Konstanz (Germany)
| | - Markus Wieland
- Department of Chemistry, Konstanz Research School Chemical Biology, University of KonstanzUniversitätsstrasse 10, 78457 Konstanz (Germany)
| | - Andreas Marx
- Department of Chemistry, Konstanz Research School Chemical Biology, University of KonstanzUniversitätsstrasse 10, 78457 Konstanz (Germany)
| |
Collapse
|
11
|
Aschenbrenner J, Drum M, Topal H, Wieland M, Marx A. Detektion von 5-Methylcytosin in unbehandelter genomischer DNA durch Polymerasekettenreaktion. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Abstract
Epigenetics has undergone an explosion in the past decade. DNA methylation, consisting of the addition of a methyl group at the fifth position of cytosine (5-methylcytosine, 5-mC) in a CpG dinucleotide, is a well-recognized epigenetic mark with important functions in cellular development and pathogenesis. Numerous studies have focused on the characterization of DNA methylation marks associated with disease development as they may serve as useful biomarkers for diagnosis, prognosis, and prediction of response to therapy. Recently, novel cytosine modifications with potential regulatory roles such as 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-foC), and 5-carboxylcytosine (5-caC) have been discovered. Study of the functions of 5-mC and its oxidation derivatives promotes the understanding of the mechanism underlying association of epigenetic modifications with disease biology. In this respect, much has been accomplished in the development of methods for the discovery, detection, and location analysis of 5-mC and its oxidation derivatives. In this review, we focus on the recent advances for the global detection and location study of 5-mC and its oxidation derivatives 5-hmC, 5-foC, and 5-caC.
Collapse
|
13
|
Phutikanit N, Suwimonteerabutr J, Harrison D, D'Occhio M, Carroll B, Techakumphu M. Different DNA methylation patterns detected by the Amplified Methylation Polymorphism Polymerase Chain Reaction (AMP PCR) technique among various cell types of bulls. Acta Vet Scand 2010; 52:18. [PMID: 20202223 PMCID: PMC2848048 DOI: 10.1186/1751-0147-52-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Accepted: 03/05/2010] [Indexed: 12/03/2022] Open
Abstract
Background The purpose of this study was to apply an arbitrarily primed methylation sensitive polymerase chain reaction (PCR) assay called Amplified Methylation Polymorphism Polymerase Chain Reaction (AMP PCR) to investigate the methylation profiles of somatic and germ cells obtained from Holstein bulls. Methods Genomic DNA was extracted from sperm, leukocytes and fibroblasts obtained from three bulls and digested with a methylation sensitive endonuclease (HpaII). The native genomic and enzyme treated DNA samples were used as templates in an arbitrarily primed-PCR assay with 30 sets of single short oligonucleotide primer. The PCR products were separated on silver stained denaturing polyacrylamide gels. Three types of PCR markers; digestion resistant-, digestion sensitive-, and digestion dependent markers, were analyzed based on the presence/absence polymorphism of the markers between the two templates. Results Approximately 1,000 PCR markers per sample were produced from 27 sets of primer and most of them (>90%) were digestion resistant markers. The highest percentage of digestion resistant markers was found in leukocytic DNA (94.8%) and the lowest in fibroblastic DNA (92.3%, P ≤ 0.05). Spermatozoa contained a higher number of digestion sensitive markers when compared with the others (3.6% vs. 2.2% and 2.6% in leukocytes and fibroblasts respectively, P ≤ 0.05). Conclusions The powerfulness of the AMP PCR assay was the generation of methylation-associated markers without any prior knowledge of the genomic sequence. The data obtained from different primers provided an overview of genome wide DNA methylation content in different cell types. By using this technique, we found that DNA methylation profile is tissue-specific. Male germ cells were hypomethylated at the HpaII locations when compared with somatic cells, while the chromatin of the well-characterized somatic cells was heavily methylated when compared with that of the versatile somatic cells.
Collapse
|
14
|
Laird PW. Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 2010; 11:191-203. [DOI: 10.1038/nrg2732] [Citation(s) in RCA: 1072] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Pontecorvo G, De Felice B, Carfagna M. Variability of DNA methylation pattern in somatic and germ cells in male newt (Amphibia, Urodela) Triturus cristatus carnifex. FEBS Lett 1998; 432:77-81. [PMID: 9710255 DOI: 10.1016/s0014-5793(98)00798-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In a survey of several mammalian genomes, namely humans, rodents and bovines, the differences in the 5-methylcytosine (m5C) content show that repeated DNA sequences from sperm were undermethylated and from various somatic tissues were heavily methylated. This report shows a pattern of methylation in male newt (Amphibia, Urodela) Triturus cristatus carnifex (T. c. c.) unlike that so far described by other authors in mammals. Using methylation sensitive and insensitive enzymes (HpaII and MspI) and successive 3' terminal labelling (fill-in), we found a greater degree of DNA methylation in premeiotic germ and sperm cells compared to somatic tissue such as hepatocytes. Furthermore the degree of total DNA methylation in spermatozoa appears somewhere between premeiotic germ cells and somatic tissue. Blot hybridization shows that two highly conserved repetitive sequences in amphibian T. c. c., pTvm1 and pTvm8, contribute significantly to the degree of DNA methylation, suggesting a function for these sequences, such as a role in transcriptional regulation.
Collapse
Affiliation(s)
- G Pontecorvo
- Faculty of Biological Science, Department of Life Sciences, II University of Naples, Caserta, Italy
| | | | | |
Collapse
|
16
|
McClelland M, Nelson M, Raschke E. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res 1994; 22:3640-59. [PMID: 7937074 PMCID: PMC308336 DOI: 10.1093/nar/22.17.3640] [Citation(s) in RCA: 300] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Restriction endonucleases have site-specific interactions with DNA that can often be inhibited by site-specific DNA methylation and other site-specific DNA modifications. However, such inhibition cannot generally be predicted. The empirically acquired data on these effects are tabulated for over 320 restriction endonucleases. In addition, a table of known site-specific DNA modification methyltransferases and their specificities is presented along with EMBL database accession numbers for cloned genes.
Collapse
Affiliation(s)
- M McClelland
- California Institute of Biological Research, La Jolla 92037
| | | | | |
Collapse
|
17
|
McClelland M, Nelson M. Effect of site-specific methylation on DNA modification methyltransferases and restriction endonucleases. Nucleic Acids Res 1992; 20 Suppl:2145-57. [PMID: 1317957 PMCID: PMC333989 DOI: 10.1093/nar/20.suppl.2145] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- M McClelland
- California Institute of Biological Research, La Jolla, CA 92037
| | | |
Collapse
|
18
|
Nelson M, McClelland M. Site-specific methylation: effect on DNA modification methyltransferases and restriction endonucleases. Nucleic Acids Res 1991; 19 Suppl:2045-71. [PMID: 1645875 PMCID: PMC331346 DOI: 10.1093/nar/19.suppl.2045] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- M Nelson
- California Institute of Biological Research, La Jolla 92037
| | | |
Collapse
|
19
|
Sentis C, Santos J, Robledo M, Fern�ndez-Piqueras J. Differential sensitivity of constitutive and facultative heterochromatin in orthopteran chromosomes to digestion by DNaseI. Genetica 1990. [DOI: 10.1007/bf00360870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Kessler C, Manta V. Specificity of restriction endonucleases and DNA modification methyltransferases a review (Edition 3). Gene 1990; 92:1-248. [PMID: 2172084 DOI: 10.1016/0378-1119(90)90486-b] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The properties and sources of all known class-I, class-II and class-III restriction endonucleases (ENases) and DNA modification methyltransferases (MTases) are listed and newly subclassified according to their sequence specificity. In addition, the enzymes are distinguished in a novel manner according to sequence specificity, cleavage position and methylation sensitivity. Furthermore, new nomenclature rules are proposed for unambiguously defined enzyme names. In the various Tables, the enzymes are cross-indexed alphabetically according to their names (Table I), classified according to their recognition sequence homologies (Table II), and characterized within Table II by the cleavage and methylation positions, the number of recognition sites on the DNA of the bacteriophages lambda, phi X174, and M13mp7, the viruses Ad2 and SV40, the plasmids pBR322 and pBR328, and the microorganisms from which they originate. Other tabulated properties of the ENases include relaxed specificities (integrated within Table II), the structure of the generated fragment ends (Table III), interconversion of restriction sites (Table IV) and the sensitivity to different kinds of DNA methylation (Table V). Table VI shows the influence of class-II MTases on the activity of class-II ENases with at least partially overlapping recognition sequences. Table VII lists all class-II restriction endonucleases and MTases which are commercially available. The information given in Table V focuses on the influence of methylation of the recognition sequences on the activity of ENases. This information might be useful for the design of cloning experiments especially in Escherichia coli containing M.EcodamI and M.EcodcmI [H16, M21, U3] or for studying the level and distribution of site-specific methylation in cellular DNA, e.g., 5'- (M)CpG-3' in mammals, 5'-(M)CpNpG-3' in plants or 5'-GpA(M)pTpC-3' in enterobacteria [B29, E4, M30, V4, V13, W24]. In Table IV a cross index for the interconversion of two- and four-nt 5'-protruding ends into new recognition sequences is complied. This was obtained by the fill-in reaction with the Klenow (large) fragment of the E. coli DNA polymerase I (PolIk), or additional nuclease S1 treatment followed by ligation of the modified fragment termini [P3]. Interconversion of restriction sites generates novel cloning sites without the need of linkers. This should improve the flexibility of genetic engineering experiments [K56, P3].(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C Kessler
- Boehringer Mannheim GmbH, Biochemical Research Center, Penzberg, F.R.G
| | | |
Collapse
|
21
|
Rocamora N, Agell N. Methylation of chick UbI and UbII polyubiquitin genes and their differential expression during spermatogenesis. Biochem J 1990; 267:821-9. [PMID: 2160238 PMCID: PMC1131372 DOI: 10.1042/bj2670821] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Northern analysis demonstrated that levels of ubiquitin transcript increased during the chicken testis maturation process, in agreement with the previously published increase of ubiquitin during this differentiation process. Specific probes for four different ubiquitin genes (two polyubiquitins, UbI and UbII, and two ubiquitin-fusion genes, UbCep52 and UbCep80) allowed us to analyse the expression of each individual gene. UbI polyubiquitin gene was expressed in all the tissues tested, and its transcript was the most abundant ubiquitin RNA in all of them. Unspliced UbI transcript, already detected in stressed chicken-embryo fibroblast, was also present in immature testis and reticulocytes. UbII, a chicken polyubiquitin gene not previously found expressed and not heat-shock-inducible, was specifically stimulated during the testis maturation process. Two minor ubiquitin fusion transcripts of 0.6 and 0.7 kb, corresponding to UbCep52 and UbCep80 respectively, were also found in chicken testis. Although differentially expressed, it was found that UbI and UbII chicken polyubiquitin genes had an HTF ('HpaII tiny fragments') island (CpG-rich and constitutively unmethylated region) in their 5' proximal non-coding region. In addition, we demonstrated the coexistence of 3' and/or 5' relatively distal methylated sites together with these 5' proximal HTF islands in both chicken polyubiquitin genes. 3' and 5' distal UbI CCGG sites were specifically hypermethylated in mature testis, whereas a 3' distal UbII CCGG site was found to be about 50% methylated in all DNAs tested.
Collapse
Affiliation(s)
- N Rocamora
- Department of Physiological Sciences, Faculty of Medicine, University of Barcelona, Spain
| | | |
Collapse
|
22
|
Reddy PM, Reddy PR. Differential regulation of DNA methylation in rat testis and its regulation by gonadotropic hormones. JOURNAL OF STEROID BIOCHEMISTRY 1990; 35:173-8. [PMID: 2308334 DOI: 10.1016/0022-4731(90)90271-s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Eukaryotic DNA methylation occurs exclusively at the 5'-position of cytosine and has been implicated in the regulation of gene expression. Using high-performance liquid chromatography, the methylation of testis DNA during its development, in different cell populations and during regulation by gonadotropic hormones, were studied. The 5-mC content of testis DNA increased significantly from days 30 to days 150, while in 2-yr-old testis 5-mC content decreased significantly. Among various populations of testicular cells, pachytene spermatocyte DNA contained a significantly high amount of 5-mC when compared to spermatogonia, spermatids and mature sperm DNA. However, the 5-mC content of elongated spermatids was significantly less when compared to the above four fractions. Administration of follicle stimulating hormone to immature rats caused hypomethylation of seminiferous tubular DNA while luteinizing hormone caused similar effects in Leydig cells. These results indicate that in testis, DNA methylation is differentially regulated during development and is controlled by gonadotropic hormones.
Collapse
Affiliation(s)
- P M Reddy
- School of Life Sciences, University of Hyderabad, India
| | | |
Collapse
|
23
|
Nelson M, McClelland M. Effect of site-specific methylation on DNA modification methyltransferases and restriction endonucleases. Nucleic Acids Res 1989; 17 Suppl:r389-415. [PMID: 2541418 PMCID: PMC334788 DOI: 10.1093/nar/17.suppl.r389] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- M Nelson
- Department of Biochemistry, University of Chicago, IL 60637
| | | |
Collapse
|
24
|
McClelland M, Nelson M. The effect of site-specific DNA methylation on restriction endonucleases and DNA modification methyltransferases--a review. Gene 1988; 74:291-304. [PMID: 2854811 DOI: 10.1016/0378-1119(88)90305-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- M McClelland
- Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637
| | | |
Collapse
|
25
|
Alberti S, Herzenberg LA. DNA methylation prevents transfection of genes for specific surface antigens. Proc Natl Acad Sci U S A 1988; 85:8391-4. [PMID: 3054885 PMCID: PMC282463 DOI: 10.1073/pnas.85.22.8391] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sperm and trophoblast are among the few nucleated human cells that do not express HLA class I antigens. DNA methylation, which is proposed to be a tight mechanism of regulation, may be necessary to turn off these genes. We have investigated the transfectability of HLA class I genes and of the genes for the T-cell differentiation antigens Leu-1 (CD5) and Leu-2 (CD8) in mouse L cells by using human sperm cells and choriocarcinoma cell lines, tumors of trophoblastic origin, as sources of DNA. It was found that DNA from one choriocarcinoma line (JAR) does not transfect genes for HLA, Leu-1, or Leu-2 and that DNA from two other choriocarcinoma lines (BeWo and Ima) transfects only some of the surface markers. Sperm DNA transfects genes for all the surface antigens tested except Leu-1. DNA from control cells and from the line SCH transfects all the markers studied. Southern blots show that all cell types contain apparently intact genes encoding HLA, Leu-1, and Leu-2 and reveal differences in the DNA methylation patterns of genes from different sources of DNA. We treated JAR (the cell line with the lowest transfecting ability) with 5-azacytidine and obtained demethylation of its DNA. This demethylated DNA transfects genes for both HLA class I antigens and Leu-2. Further culture of JAR cells in the absence of 5-azacytidine results in remethylation of their DNA and decreased ability to transfect these surface antigens. These findings indicate that DNA methylation affects the efficiency of transfection of surface antigen genes in L cells.
Collapse
Affiliation(s)
- S Alberti
- Department of Genetics, Stanford University, CA 94305
| | | |
Collapse
|
26
|
Abstract
We examined the inheritance of 5-methylcytosine residues at a centromere-linked locus in the basidiomycete Coprinus cinereus. Although methylated and unmethylated tracts were inherited both mitotically and meiotically the lengths of these tracts were variable. This variation was not confined to any one phase of the life cycle of the organism, and it usually involved the simultaneous de novo methylation of at least four HpaII-MspI sites. We also found that the higher levels of methylation at this locus were transmitted through meiosis, regardless of the level of methylation of the homologous chromosome.
Collapse
|
27
|
Nelson M, McClelland M. The effect of site-specific methylation on restriction-modification enzymes. Nucleic Acids Res 1987; 15 Suppl:r219-30. [PMID: 3033612 PMCID: PMC339887 DOI: 10.1093/nar/15.suppl.r219] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
28
|
Rossant J, Sanford JP, Chapman VM, Andrews GK. Undermethylation of structural gene sequences in extraembryonic lineages of the mouse. Dev Biol 1986; 117:567-73. [PMID: 2428685 DOI: 10.1016/0012-1606(86)90325-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The first two lineages to differentiate in the mouse embryo are the trophectoderm and primitive endoderm, which give rise to various extraembryonic structures only. Previous work has shown that all derivatives of these two lineages share the property of undermethylation of repetitive DNA sequences, both satellite and dispersed. Here we show that this undermethylation is not a peculiarity of these repetitive elements but is also a feature of structural gene sequences within both lineages. alpha-Fetoprotein, albumin, and major urinary protein gene sequences all showed extensive undermethylation at MspI restriction sites in extraembryonic lineages, which did not correlate with their expression in these tissues. The same sequences were heavily methylated in embryonic tissues as early as 7.5 days of development. There are, therefore, major global differences in DNA methylation between the earliest cell lineages to be established in the mouse embryo. The significance of these differences for cellular commitment events remains to be elucidated.
Collapse
|
29
|
Call KM, Jensen JC, Liber HL, Thilly WG. Studies of mutagenicity and clastogenicity of 5-azacytidine in human lymphoblasts and Salmonella typhimurium. Mutat Res 1986; 160:249-57. [PMID: 2421158 DOI: 10.1016/0027-5107(86)90135-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
5-Azacytidine (5-AzaC) induced mutation in the TK+/- human lymphoblastoid line, TK6, at both the thymidine kinase (tk) locus as measured by resistance to trifluorothymidine (F3TdR), and the hypoxanthine-guanine phosphoribosyltransferase (hgprt) locus, as measured by resistance to 6-thioguanine (6TG). F3TdRR and 6TGR mutant fractions induced by 5-AzaC were observed after a normal phenotypic expression time and remained stable. Interestingly, 5-AzaC was 5-10 times more mutagenic at the tk locus than the hgprt locus. However, F3TdRR colonies from 5-AzaC-treated cultures behaved like TK-deficient mutants induced by other chemical mutagens. The TK or HGPRT phenotype had no effect on the toxicity of 5-AzaC, thus eliminating differential toxicity as a potential cause for the observed higher mutability at the tk locus. 5-AzaC did not induce F3TdRR cells in the parental TK+/+ lymphoblastoid line, indicating that 5-AzaC-induced F3TdRR variants were not due to a dominant alteration in gene expression. 5-AzaC did not induce chromosomal aberrations in TK6 cells, eliminating clastogenic events as a potential cause for the higher mutability at the tk locus. 5-AzaC was also found to be mutagenic in a forward mutation assay to 8-azaguanine resistance in Salmonella typhimurium.
Collapse
|
30
|
Abstract
The properties and sources of all known restriction endonucleases and methylases are listed. The enzymes are cross-indexed (Table I), classified according to their recognition sequence homologies (Table II), and characterized within Table II by the cleavage and methylation positions, the number of recognition sites on the double-stranded DNA of the bacteriophages lambda, phi X174 and M13mp7, the viruses Ad2 and SV40, the plasmids pBR322 and pBR328, and the microorganisms from which they originate. Other tabulated properties of the restriction endonucleases include relaxed specificities (integrated into Table II), the structure of the generated fragment ends (Table III), and the sensitivity to different kinds of DNA methylation (Table V). In Table IV the conversion of two- and four-base 5'-protruding ends into new recognition sequences is compiled which is obtained by the fill-in reaction with Klenow fragment of the Escherichia coli DNA polymerase I or additional nuclease S1 treatment followed by ligation of the modified fragment termini [P3]. Interconversion of restriction sites generates novel cloning sites without the need of linkers. This should improve the flexibility of genetic engineering experiments. Table VI classifies the restriction methylases according to the nature of the methylated base(s) within their recognition sequences. This table also comprises restriction endonucleases which are known to be inhibited or activated by the modified nucleotides. The detailed sequences of those overlapping restriction sites are also included which become resistant to cleavage after the sequential action of corresponding restriction methylases and endonucleases [N11, M21]. By this approach large DNA fragments can be generated which is helpful in the construction of genomic libraries. The data given in both Tables IV and VI allow the design of novel sequence specificities. These procedures complement the creation of universal cleavage specificities applying class IIS enzymes and bivalent DNA adapter molecules [P17, S82].
Collapse
|
31
|
Abstract
We examined the inheritance of 5-methylcytosine residues at a centromere-linked locus in the basidiomycete Coprinus cinereus. Although methylated and unmethylated tracts were inherited both mitotically and meiotically the lengths of these tracts were variable. This variation was not confined to any one phase of the life cycle of the organism, and it usually involved the simultaneous de novo methylation of at least four HpaII-MspI sites. We also found that the higher levels of methylation at this locus were transmitted through meiosis, regardless of the level of methylation of the homologous chromosome.
Collapse
|
32
|
Philipsen JN, Gruber M, Ab G. Expression-linked demethylation of 5-methylcytosines in the chicken vitellogenin gene region. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 826:186-94. [PMID: 3000448 DOI: 10.1016/0167-4781(85)90005-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have studied the methylation status of the estradiol-controlled chicken vitellogenin (Vtg) gene, which is expressed in the liver. A 30-kb region was investigated, containing 17 HpaII and 18 HhaI sites, of which 21 are in the 22-kb gene. Of these 21 sites, 9 were found to be demethylated in laying-hen liver relative to immature chicken liver. Outside the transcribed region, only one site was found to be relatively undermethylated in laying-hen liver. This site, at 0.6 kb in front of the gene, is, as shown earlier, also demethylated in rooster or immature chicken liver upon primary hormone stimulation, as well as in the non-expressing estradiol target organ oviduct. In this respect, this site sharply contrasts with those in the transcribed region, which appear to become demethylated only upon prolonged transcription of the gene.
Collapse
|
33
|
Kessler C, Neumaier PS, Wolf W. Recognition sequences of restriction endonucleases and methylases--a review. Gene 1985; 33:1-102. [PMID: 2985469 DOI: 10.1016/0378-1119(85)90119-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The properties and sources of all known endonucleases and methylases acting site-specifically on DNA are listed. The enzymes are crossindexed (Table I), classified according to homologies within their recognition sequences (Table II), and characterized within Table II by the cleavage and methylation positions, the number of recognition sites on the DNA of the bacteriophages lambda, phi X174 and M13mp7, the viruses Ad2 and SV40, the plasmids pBR322 and pBR328 and the microorganisms from which they originate. Other tabulated properties of the restriction endonucleases include relaxed specificities (Table III), the structure of the restriction fragment ends (Table IV), and the sensitivity to different kinds of DNA methylation (Table V). Table VI classifies the methylases according to the nature of the methylated base(s) within their recognition sequences. This table also comprises those restriction endonucleases, which are known to be inhibited by the modified nucleotides. Furthermore, this review includes a restriction map of bacteriophage lambda DNA based on sequence data. Table VII lists the exact nucleotide positions of the cleavage sites, the length of the generated fragments ordered according to size, and the effects of the Escherichia coli dam- and dcmI-coded methylases M X Eco dam and M X Eco dcmI on the particular recognition sites.
Collapse
|
34
|
Sperling K, Kerem BS, Goitein R, Kottusch V, Cedar H, Marcus M. DNase I sensitivity in facultative and constitutive heterochromatin. Chromosoma 1985; 93:38-42. [PMID: 3905296 DOI: 10.1007/bf01259444] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In situ nick translation allows the detection of DNase I sensitive and insensitive regions in fixed mammalian mitotic chromosomes. We have determined the difference in DNase I sensitivity between the active and inactive X chromosomes in Microtus agrestis (rodent) cells, along both their euchromatic and constitutive heterochromatic regions. In addition, we analysed the DNase I sensitivity of the constitutive heterochromatic regions in mouse chromosomes. In Microtus agrestis female cells the active X chromosome is sensitive to DNase I along its euchromatic region while the inactive X chromosome is insensitive except for an early replicating region at its distal end. The late replicating constitutive heterochromatic regions, however, in both the active and inactive X chromosome are sensitive to DNase I. In mouse cells on the other hand, the constitutive heterochromatin is insensitive to DNase I both in mitotic chromosomes and interphase nuclei.
Collapse
|
35
|
Sanford J, Forrester L, Chapman V, Chandley A, Hastie N. Methylation patterns of repetitive DNA sequences in germ cells of Mus musculus. Nucleic Acids Res 1984; 12:2823-36. [PMID: 6709503 PMCID: PMC318708 DOI: 10.1093/nar/12.6.2823] [Citation(s) in RCA: 105] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The major and the minor satellite sequences of Mus musculus were undermethylated in both sperm and oocyte DNAs relative to the amount of undermethylation observed in adult somatic tissue DNA. This hypomethylation was specific for satellite sequences in sperm DNA. Dispersed repetitive and low copy sequences show a high degree of methylation in sperm DNA; however, a dispersed repetitive sequence was undermethylated in oocyte DNA. This finding suggests a difference in the amount of total genomic DNA methylation between sperm and oocyte DNA. The methylation levels of the minor satellite sequences did not change during spermiogenesis, and were not associated with the onset of meiosis or a specific stage in sperm development.
Collapse
|
36
|
|
37
|
Christman JK. DNA methylation in friend erythroleukemia cells: the effects of chemically induced differentiation and of treatment with inhibitors of DNA methylation. Curr Top Microbiol Immunol 1984; 108:49-78. [PMID: 6201322 DOI: 10.1007/978-3-642-69370-0_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
38
|
Rahe B, Erickson RP, Quinto M. Methylation of unique sequence DNA during spermatogenesis in mice. Nucleic Acids Res 1983; 11:7947-59. [PMID: 6196723 PMCID: PMC326551 DOI: 10.1093/nar/11.22.7947] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In order to study whether changes in methylation of unique sequence DNA were related to meiosis, DNA was purified from F9 embryonal carcinoma (a "primordial germ cell" equivalent), germ cells from immature testes (containing germ cells up to early spermatocytes), sperm, and appropriate somatic tissues. Restriction was performed with the isoschizomers Msp I and Hpa II, and Eco RI as a control. Electrophoresis and Southern transfers were followed by hybridization to a mouse major beta-globin clone (f7), a mouse pancreatic amylase clone (pMPa21), a type I, histocompatibility-2 clone (pH-2D-4), and a spermatid cDNA clone (pPM 459). The variably methylated sites were all hypomethylated in the embryonal carcinoma DNA and hypermethylated in DNA from immature testes and sperm, irrespective of the transcription state of the gene. The pattern in control tissues generally conformed to an inverse correlation of methylation with transcription. These results suggest that hypermethylation of sperm DNA persists from hypermethylation of these sequences early in testicular development, independent of gene expression.
Collapse
|
39
|
Abstract
Inactivation of the X chromosome during mammalian spermatogenesis has been postulated to occur by the same mechanism that controls female somatic X chromosome inactivation. We have used DNA-mediated transformation of HPRT- cells to test this idea, because it has been shown previously that inactive X chromosome DNA from somatic cells will not transform HPRT- cells. Isolated DNA from the mature sperm of five mammals (human, mouse, horse, bull, rabbit) were all capable of HPRT transformation, and transformants were confirmed electrophoretically. Measures were taken to ensure that the transformation frequencies observed could not be due to somatic contamination. The positive HPRT transformation result indicates that mature sperm X chromosomal DNA is not modified in the same manner as that of female inactive X chromosomal DNA. Since there is evidence for methylation of the somatic inactive X chromosome, it is possible that methylation, at least for the genes studied, is not involved in sperm X chromosome inactivation.
Collapse
|
40
|
Abstract
The lower amount of 5 methylcytosine in DNA from bull sperm relative to DNA of other bovine tissues is a result of the absence of this minor base from several of the satellite DNAs in sperm. This applies particularly to the 1.715, 1.711b and 1.709 satellites and less so to the 1.706 and 1.711a satellites. Mouse sperm DNA is also partially undermethylated.
Collapse
|
41
|
McClelland M. The effect of site specific methylation on restriction endonuclease cleavage (update). Nucleic Acids Res 1983; 11:r169-73. [PMID: 6306558 PMCID: PMC325706 DOI: 10.1093/nar/11.1.235-c] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
42
|
Cloning of the MspI modification enzyme. The site of modification and its effects on cleavage by MspI and HpaII. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)33184-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
43
|
Jagiello G, Tantravahi U, Fang JS, Erlanger BF. DNA methylation patterns of human pachytene spermatocytes. Exp Cell Res 1982; 141:253-9. [PMID: 6754392 DOI: 10.1016/0014-4827(82)90213-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
44
|
Shmookler Reis RJ, Goldstein S. Interclonal variation in methylation patterns for expressed and non-expressed genes. Nucleic Acids Res 1982; 10:4293-304. [PMID: 6896910 PMCID: PMC320800 DOI: 10.1093/nar/10.14.4293] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A mass culture of human diploid fibroblasts, and eight clones isolated from that mass culture, were examined for methylation patterns in several regions of DNA. Plasmid-inserted cDNA sequences were used as probes for alpha-hCG, beta-globin, A gamma- and G gamma-globin, and beta- and gamma-actin gene regions. Each probe revealed a different clone-specific pattern of DNA methylation, indicating a striking degree of inter-clonal heterogeneity, for those gene regions which are not normally expressed in diploid fibroblasts (alpha-hCG, gamma-globin and beta-globin). Intra-clonal variation was also evident in many instances, implying that heterogeneity could arise de novo in pure cell clones during serial passage. Thus methylation patterns, in particular for repressed genes, appear to be unstably inherited in these cells, and this instability may lead to random derepression in some cell lineages during mitotic growth.
Collapse
|
45
|
Pages M, Roizes G. Tissue specificity and organisation of CpG methylation in calf satellite DNA I. Nucleic Acids Res 1982; 10:565-76. [PMID: 6278421 PMCID: PMC326158 DOI: 10.1093/nar/10.2.565] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Examination of bovine satellite DNA I methylation within CpG dinucleotides has been made by restriction analysis. It is shown that variations in the methylation patterns occur between different tissues (brain, liver, thymus and sperm) . Some of the 8 Hpa II sites present per repeat are clearly undermethylated in sperm as compared to other tissues. Methylation is considered therefore, as a highly specific event. It is also shown that there is a spatial specificity in the methylation pattern of the 3 Hha I sites in all tissues. These results are discussed in the light of methylation and satellite DNA functions.
Collapse
|
46
|
|
47
|
Abstract
The DNA of higher eukaryotes contains one minor base, namely 5-methylcytosine. The distribution of this minor base between different species and different DNA fractions will be considered together with the actual sequences methylated. The properties of the enzyme responsible for DNA modification will be reviewed, particular note being paid to the efficiency of methylation of different DNA substrates. Various possible functions of the 5-methylcytosine in DNA will be considered and particular attention will be paid to the finding that specific modified bases present in DNA not undergoing transcription are absent in the same genes when these are being actively transcribed.
Collapse
|
48
|
McClelland M. The effect of sequence specific DNA methylation on restriction endonuclease cleavage. Nucleic Acids Res 1981; 9:5859-66. [PMID: 6273810 PMCID: PMC327569 DOI: 10.1093/nar/9.22.5859] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Sequence specific DNA methylation sometimes results in the protection of some or all of a restriction endonucleases' cleavage sites. This is usually, but not always, the result of methylation of one or both strands of DNA at the site characteristic of the corresponding "cognate" modification methylase. The known effects of sequence specific methylation on restriction endonucleases are compiled.
Collapse
|
49
|
Sturm KS, Taylor JH. Distribution of 5-methylcytosine in the DNA of somatic and germline cells from bovine tissues. Nucleic Acids Res 1981; 9:4537-46. [PMID: 6272210 PMCID: PMC327456 DOI: 10.1093/nar/9.18.4537] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Genomic DNA of calf thymus contains 1.5 times as much 5-methylcytosine as similar sperm DNA, but the major EcoRI repeat fragment from satellite I of thymus contains ten times as much 5-methylcytosine as the corresponding fragment from sperm DNA. Restriction enzyme analyses of the total DNA and the satellite I fragment show that three HpaII sites in the fragment are completely unmethylated in sperm but fully methylated in thymus DNA. Under-methylation of many sites in the satellite DNAs can probably account for the lower level of methylation of sperm DNA rather than hemimethylation as previously suggested. These results are also discussed in relation to maintenance and de novo (initiation-type) methylases.
Collapse
|
50
|
Abstract
The development of spermatozoon (sperm) from a spermatid involves a complex process of differentiation during which a variety of new gene products appear. It has been generally assumed that no genetic transcription occurs after meiosis and, if this were so, that all the new sperm proteins would have to to be transcribed from stored messenger RNA. However, the biochemical evidence suggests that there is no abrupt change in the rate of RNA synthesis during meiosis and that qualitative changes in RNA synthesis, to the extent that they are known, favor the likelihood of continuing messenger RNA synthesis. Experimental analyses of distorted transmission ratios of t-alleles and unbalanced chromosomal states in makes also suggest that genes are expressed in haploid nuclei after meiosis. It is probable that spermatozoa are functionally equivalent in most respects because of intercellular bridges that create a continuous cytoplasm between developing spermatozoa, facilitating an exchange of most postmeiotic gene products. Plasma membrane proteins which are potential antigens might not be shared across the intercellular bridges but the evidence to date for haploid expression of sperm antigens is poor.
Collapse
|