1
|
Huang D, Liao J, Balcazar JL, Ye M, Wu R, Wang D, Alvarez PJJ, Yu P. Adaptive modification of antiviral defense systems in microbial community under Cr-induced stress. MICROBIOME 2025; 13:34. [PMID: 39891205 PMCID: PMC11786475 DOI: 10.1186/s40168-025-02030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/05/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND The prokaryotic antiviral defense systems are crucial for mediating prokaryote-virus interactions that influence microbiome functioning and evolutionary dynamics. Despite the prevalence and significance of prokaryotic antiviral defense systems, their responses to abiotic stress and ecological consequences remain poorly understood in soil ecosystems. We established microcosm systems with varying concentrations of hexavalent chromium (Cr(VI)) to investigate the adaptive modifications of prokaryotic antiviral defense systems under abiotic stress. RESULTS Utilizing hybrid metagenomic assembly with long-read and short-read sequencing, we discovered that antiviral defense systems were more diverse and prevalent in heavily polluted soils, which was corroborated by meta-analyses of public datasets from various heavy metal-contaminated sites. As the Cr(VI) concentration increased, prokaryotes with defense systems favoring prokaryote-virus mutualism gradually supplanted those with defense systems incurring high adaptive costs. Additionally, as Cr(VI) concentrations increased, enriched antiviral defense systems exhibited synchronization with microbial heavy metal resistance genes. Furthermore, the proportion of antiviral defense systems carried by mobile genetic elements (MGEs), including plasmids and viruses, increased by approximately 43% and 39%, respectively, with rising Cr concentrations. This trend is conducive to strengthening the dissemination and sharing of defense resources within microbial communities. CONCLUSIONS Overall, our study reveals the adaptive modification of prokaryotic antiviral defense systems in soil ecosystems under abiotic stress, as well as their positive contributions to establishing prokaryote-virus mutualism and the evolution of microbial heavy metal resistance. These findings advance our understanding of microbial adaptation in stressful environments and may inspire novel approaches for microbiome manipulation and bioremediation. Video Abstract.
Collapse
Affiliation(s)
- Dan Huang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24060, USA
| | | | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Ruonan Wu
- Earth and Biological Sciences Directorate, Pacific Northwest National Lab, Richland, WA, 99352, USA
| | - Dongsheng Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Roberts A, Spang D, Sanozky-Dawes R, Nethery MA, Barrangou R. Characterization of Ligilactobacillus salivarius CRISPR-Cas systems. mSphere 2024; 9:e0017124. [PMID: 38990000 PMCID: PMC11288051 DOI: 10.1128/msphere.00171-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Ligilactobacillus is a diverse genus among lactobacilli with phenotypes that reflect adaptation to various hosts. CRISPR-Cas systems are highly prevalent within lactobacilli, and Ligilactobacillus salivarius, the most abundant species of Ligilactobacillus, possesses both DNA- and RNA-targeting CRISPR-Cas systems. In this study, we explore the presence and functional properties of I-B, I-C, I-E, II-A, and III-A CRISPR-Cas systems in over 500 Ligilactobacillus genomes, emphasizing systems found in L. salivarius. We examined the I-E, II-A, and III-A CRISPR-Cas systems of two L. salivarius strains and observed occurrences of split cas genes and differences in CRISPR RNA maturation in native hosts. This prompted testing of the single Cas9 and multiprotein Cascade and Csm CRISPR-Cas effector complexes in a cell-free context to demonstrate the functionality of these systems. We also predicted self-targeting spacers within L. salivarius CRISPR-Cas systems and found that nearly a third of L. salivarius genomes possess unique self-targeting spacers that generally target elements other than prophages. With these two L. salivarius strains, we performed prophage induction coupled with RNA sequencing and discovered that the prophages residing within these strains are inducible and likely active elements, despite targeting by CRISPR-Cas systems. These findings deepen our comprehension of CRISPR-Cas systems in L. salivarius, further elucidating their relationship with associated prophages and providing a functional basis for the repurposing of these Cas effectors for bacterial manipulation. IMPORTANCE Ligilactobacillus salivarius is a diverse bacterial species widely used in the food and dietary supplement industries. In this study, we investigate the occurrence and diversity of their adaptive immune systems, CRISPR-Cas, in over 500 genomes. We establish their function and provide insights into their role in the interplay between the bacterial host and the predatory phages that infect them. Such findings expand our knowledge about these important CRISPR-Cas immune systems widespread across the bacterial tree of life and also provide a technical basis for the repurposing of these molecular machines for the development of molecular biology tools and the manipulation and engineering of bacteria and other life forms.
Collapse
Affiliation(s)
- Avery Roberts
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Daniel Spang
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Rosemary Sanozky-Dawes
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Nweze JE, Schweichhart JS, Angel R. Viral communities in millipede guts: Insights into the diversity and potential role in modulating the microbiome. Environ Microbiol 2024; 26:e16586. [PMID: 38356108 DOI: 10.1111/1462-2920.16586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Millipedes are important detritivores harbouring a diverse microbiome. Previous research focused on bacterial and archaeal diversity, while the virome remained neglected. We elucidated the DNA and RNA viral diversity in the hindguts of two model millipede species with distinct microbiomes: the tropical Epibolus pulchripes (methanogenic, dominated by Bacillota) and the temperate Glomeris connexa (non-methanogenic, dominated by Pseudomonadota). Based on metagenomic and metatranscriptomic assembled viral genomes, the viral communities differed markedly and preferentially infected the most abundant prokaryotic taxa. The majority of DNA viruses were Caudoviricetes (dsDNA), Cirlivirales (ssDNA) and Microviridae (ssDNA), while RNA viruses consisted of Leviviricetes (ssRNA), Potyviridae (ssRNA) and Eukaryotic viruses. A high abundance of subtypes I-C, I-B and II-C CRISPR-Cas systems was found, primarily from Pseudomonadota, Bacteroidota and Bacillota. In addition, auxiliary metabolic genes that modulate chitin degradation, vitamins and amino acid biosynthesis and sulphur metabolism were also detected. Lastly, we found low virus-to-microbe-ratios and a prevalence of lysogenic viruses, supporting a Piggyback-the-Winner dynamic in both hosts.
Collapse
Affiliation(s)
- Julius Eyiuche Nweze
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Johannes Sergej Schweichhart
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Roey Angel
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
| |
Collapse
|
4
|
Wimmer F, Englert F, Wandera KG, Alkhnbashi O, Collins S, Backofen R, Beisel C. Interrogating two extensively self-targeting Type I CRISPR-Cas systems in Xanthomonas albilineans reveals distinct anti-CRISPR proteins that block DNA degradation. Nucleic Acids Res 2024; 52:769-783. [PMID: 38015466 PMCID: PMC10810201 DOI: 10.1093/nar/gkad1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
CRISPR-Cas systems store fragments of invader DNA as spacers to recognize and clear those same invaders in the future. Spacers can also be acquired from the host's genomic DNA, leading to lethal self-targeting. While self-targeting can be circumvented through different mechanisms, natural examples remain poorly explored. Here, we investigate extensive self-targeting by two CRISPR-Cas systems encoding 24 self-targeting spacers in the plant pathogen Xanthomonas albilineans. We show that the native I-C and I-F1 systems are actively expressed and that CRISPR RNAs are properly processed. When expressed in Escherichia coli, each Cascade complex binds its PAM-flanked DNA target to block transcription, while the addition of Cas3 paired with genome targeting induces cell killing. While exploring how X. albilineans survives self-targeting, we predicted putative anti-CRISPR proteins (Acrs) encoded within the bacterium's genome. Screening of identified candidates with cell-free transcription-translation systems and in E. coli revealed two Acrs, which we named AcrIC11 and AcrIF12Xal, that inhibit the activity of Cas3 but not Cascade of the respective system. While AcrF12Xal is homologous to AcrIF12, AcrIC11 shares sequence and structural homology with the anti-restriction protein KlcA. These findings help explain tolerance of self-targeting through two CRISPR-Cas systems and expand the known suite of DNA degradation-inhibiting Acrs.
Collapse
Affiliation(s)
- Franziska Wimmer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Frank Englert
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Katharina G Wandera
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Omer S Alkhnbashi
- Information and Computer Science Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Intelligent Secure Systems (IRC-ISS), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Scott P Collins
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Rolf Backofen
- Bioinformatics group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Medical Faculty, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
5
|
Fang Z, Xu M, Shen S, Sun W, Yu Q, Wu Q, Xiang L, Weng Q. Prediction and characterization of prophages of Stenotrophomonas maltophilia reveals a remarkable phylogenetic diversity of prophages. Sci Rep 2023; 13:22941. [PMID: 38135742 PMCID: PMC10746704 DOI: 10.1038/s41598-023-50449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023] Open
Abstract
Prophages, which enables bacterial hosts to acquire novel traits, and increase genetic variation and evolutionary innovation, are considered to be one of the greatest drivers of bacterial diversity and evolution. Stenotrophomonas maltophilia is widely distributed and one of the most important multidrug resistant bacteria in hospitals. However, the distribution and genetic diversity of S. maltophilia prophages have not been elucidated. In this study, putative prophages were predicted in S. maltophilia genomes by using virus prediction tools, and the genetic diversity and phylogeny of S. maltophilia and the prophages they harbor were further analyzed. A total of 356 prophage regions were predicted from 88 S. maltophilia genomes. Among them, 144 were intact prophages, but 77.09% of the intact prophages did not match any known phage sequences in the public database. The number of prophage carried by S. maltophilia is related to its host habitat and is an important factor affecting the size of the host genome, but it is not related to the genetic diversity of the prophage. The prediction of auxiliary genes encoded by prophage showed that antibiotic resistance genes was not predicted for any of the prophages except for one questionable prophage, while 53 virulence genes and 169 carbohydrate active enzymes were predicted from 11.24 and 44.1% prophages, respectively. Most of the prophages (72.29%) mediated horizontal gene transfer of S. maltophilia genome, but only involved in 6.25% of the horizontal gene transfer events. In addition, CRISPR prediction indicated 97.75% S. maltophilia strains contained the CRISPR-Cas system containing 818 spacer sequences. However, these spacer sequences did not match any known S. maltophilia phages, and only a few S. maltophilia prophages. Comparative genomic analysis revealed a highly conserved and syntenic organization with genomic rearrangement between the prophages and the known related S. maltophilia phages. Our results indicate a high prevalence and genetic diversity of prophages in the genome of S. maltophilia, as well as the presence of a large number of uncharacterized phages. It provides an important complement to understanding the diversity and biological characteristics of phages, as well as the interactions and evolution between bacteria and phages.
Collapse
Affiliation(s)
- Zheng Fang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Man Xu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Shan Shen
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Weiwei Sun
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Qing Yu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Qingshan Wu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Lan Xiang
- Qiannan Normal University for Nationalities, Duyun, 558000, Guizhou, People's Republic of China
| | - Qingbei Weng
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, Guizhou, People's Republic of China.
- Qiannan Normal University for Nationalities, Duyun, 558000, Guizhou, People's Republic of China.
| |
Collapse
|
6
|
Khot V, Strous M, Dong X, Kiesser AK. Viral diversity and dynamics and CRISPR-Cas-mediated immunity in a robust alkaliphilic cyanobacterial consortium. Microbiol Spectr 2023; 11:e0221723. [PMID: 37819096 PMCID: PMC10715143 DOI: 10.1128/spectrum.02217-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/25/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Biotechnology applications utilizing the function of microbial communities have become increasingly important solutions as we strive for sustainable applications. Although viral infections are known to have a significant impact on microbial turnover and nutrient cycling, viral dynamics have remained largely overlooked in these engineered communities. Predatory perturbations to the functional stability of these microbial biotechnology applications must be investigated in order to design more robust applications. In this study, we closely examine virus-microbe dynamics in a model microbial community used in a biotechnology application. Our findings suggest that viral dynamics change significantly with environmental conditions and that microbial immunity may play an important role in maintaining functional stability. We present this study as a comprehensive template for other researchers interested in exploring predatory dynamics in engineered microbial communities.
Collapse
Affiliation(s)
- Varada Khot
- Department of Geoscience, University of Calgary, Calgary, Alberta, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, Alberta, Canada
| | - Xiaoli Dong
- Department of Geoscience, University of Calgary, Calgary, Alberta, Canada
- Public Health Laboratory, Alberta Precision Laboratories, Foothills Medical Centre, Calgary, Alberta, Canada
| | - Alyse K. Kiesser
- School of Engineering, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
7
|
Dougherty PE, Nielsen TK, Riber L, Lading HH, Forero-Junco LM, Kot W, Raaijmakers JM, Hansen LH. Widespread and largely unknown prophage activity, diversity, and function in two genera of wheat phyllosphere bacteria. THE ISME JOURNAL 2023; 17:2415-2425. [PMID: 37919394 PMCID: PMC10689766 DOI: 10.1038/s41396-023-01547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Environmental bacteria host an enormous number of prophages, but their diversity and natural functions remain largely elusive. Here, we investigate prophage activity and diversity in 63 Erwinia and Pseudomonas strains isolated from flag leaves of wheat grown in a single field. Introducing and validating Virion Induction Profiling Sequencing (VIP-Seq), we identify and quantify the activity of 120 spontaneously induced prophages, discovering that some phyllosphere bacteria produce more than 108 virions/mL in overnight cultures, with significant induction also observed in planta. Sequence analyses and plaque assays reveal E. aphidicola prophages contribute a majority of intraspecies genetic diversity and divide their bacterial hosts into antagonistic factions engaged in widespread microbial warfare, revealing the importance of prophage-mediated microdiversity. When comparing spontaneously active prophages with predicted prophages we also find insertion sequences are strongly correlated with non-active prophages. In conclusion, we discover widespread and largely unknown prophage diversity and function in phyllosphere bacteria.
Collapse
Affiliation(s)
- Peter Erdmann Dougherty
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Tue Kjærgaard Nielsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Helen Helgå Lading
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
8
|
Liu ZL, Hu EZ, Niu DK. Investigating the Relationship between CRISPR-Cas Content and Growth Rate in Bacteria. Microbiol Spectr 2023; 11:e0340922. [PMID: 37022199 PMCID: PMC10269591 DOI: 10.1128/spectrum.03409-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/11/2023] [Indexed: 04/07/2023] Open
Abstract
CRISPR-Cas systems provide adaptive immunity for prokaryotic cells by recognizing and eliminating the recurrent genetic invaders whose sequences had been captured in a prior infection and stored in the CRISPR arrays as spacers. However, the biological/environmental factors determining the efficiency of this immune system have yet to be fully characterized. Recent studies in cultured bacteria showed that slowing the growth rate of bacterial cells could promote their acquisition of novel spacers. This study examined the relationship between the CRISPR-Cas content and the minimal doubling time across the bacteria and the archaea domains. Every completely sequenced genome could be used to predict a minimal doubling time. With a large data set of 4,142 bacterial samples, we found that the predicted minimal doubling times are positively correlated with spacer number and other parameters of the CRISPR-Cas systems, like array number, Cas gene cluster number, and Cas gene number. Different data sets gave different results. Weak results were obtained in analyzing bacterial empirical minimal doubling times and the archaea domain. Still, the conclusion of more spacers in slowly grown prokaryotes was supported. In addition, we found that the minimal doubling times are negatively correlated with the occurrence of prophages, and the spacer numbers per array are negatively associated with the number of prophages. These observations support the existence of an evolutionary trade-off between bacterial growth and adaptive defense against virulent phages. IMPORTANCE Accumulating evidence indicates that slowing the growth of cultured bacteria could stimulate their CRISPR spacer acquisition. We observed a positive correlation between CRISPR-Cas content and cell cycle duration across the bacteria domain. This observation extends the physiological conclusion to an evolutionary one. In addition, the correlation provides evidence supporting the existence of a trade-off between bacterial growth/reproduction and antiviral resistance.
Collapse
Affiliation(s)
- Zhi-Ling Liu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - En-Ze Hu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
9
|
Silva AMA, Luz ACO, Xavier KVM, Barros MPS, Alves HB, Batista MVA, Leal-Balbino TC. Analysis of CRISPR/Cas Genetic Structure, Spacer Content and Molecular Epidemiology in Brazilian Acinetobacter baumannii Clinical Isolates. Pathogens 2023; 12:764. [PMID: 37375454 DOI: 10.3390/pathogens12060764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 06/29/2023] Open
Abstract
CRISPR/Cas is a molecular mechanism to prevent predatory viruses from invading bacteria via the insertion of small viral sequences (spacers) in its repetitive locus. The nature of spacer incorporation and the viral origins of spacers provide an overview of the genetic evolution of bacteria, their natural viral predators, and the mechanisms that prokaryotes may use to protect themselves, or to acquire mobile genetic elements such as plasmids. Here, we report on the CRISPR/Cas genetic structure, its spacer content, and strain epidemiology through MLST and CRISPR typing in Acinetobacter baumannii, an opportunistic pathogen intimately related to hospital infections and antimicrobial resistance. Results show distinct genetic characteristics, such as polymorphisms specific to ancestor direct repeats, a well-defined degenerate repeat, and a conserved leader sequence, as well as showing most spacers as targeting bacteriophages, and several self-targeting spacers, directed at prophages. There was a particular relationship between CRISPR/Cas and CC113 in the study of Brazilian isolates, and CRISPR-related typing techniques are interesting for subtyping strains with the same MLST profile. We want to emphasize the significance of descriptive genetic research on CRISPR loci, and we argue that spacer or CRISPR typing are helpful for small-scale investigations, preferably in conjunction with other molecular typing techniques such as MLST.
Collapse
Affiliation(s)
- Adrianne M A Silva
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife CEP 50740-465, Pernambuco, Brazil
| | - Ana C O Luz
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife CEP 50740-465, Pernambuco, Brazil
| | - Keyla V M Xavier
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife CEP 50740-465, Pernambuco, Brazil
| | - Maria P S Barros
- Laboratório de Bioprocessos, Centro de Tecnologias Estratégicas do Nordeste, Recife CEP 50740-545, Pernambuco, Brazil
| | - Hirisleide B Alves
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife CEP 50740-465, Pernambuco, Brazil
| | - Marcus V A Batista
- Laboratório de Genética Molecular e Biotecnologia, Centro de Ciências Biológicas e da Saúde-CCBS, Universidade Federal de Sergipe, Aracaju CEP 49060-108, Sergipe, Brazil
| | - Tereza C Leal-Balbino
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife CEP 50740-465, Pernambuco, Brazil
| |
Collapse
|
10
|
Makarova KS, Wolf YI, Koonin EV. In Silico Approaches for Prediction of Anti-CRISPR Proteins. J Mol Biol 2023; 435:168036. [PMID: 36868398 PMCID: PMC10073340 DOI: 10.1016/j.jmb.2023.168036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
Numerous viruses infecting bacteria and archaea encode CRISPR-Cas system inhibitors, known as anti-CRISPR proteins (Acr). The Acrs typically are highly specific for particular CRISPR variants, resulting in remarkable sequence and structural diversity and complicating accurate prediction and identification of Acrs. In addition to their intrinsic interest for understanding the coevolution of defense and counter-defense systems in prokaryotes, Acrs could be natural, potent on-off switches for CRISPR-based biotechnological tools, so their discovery, characterization and application are of major importance. Here we discuss the computational approaches for Acr prediction. Due to the enormous diversity and likely multiple origins of the Acrs, sequence similarity searches are of limited use. However, multiple features of protein and gene organization have been successfully harnessed to this end including small protein size and distinct amino acid compositions of the Acrs, association of acr genes in virus genomes with genes encoding helix-turn-helix proteins that regulate Acr expression (Acr-associated proteins, Aca), and presence of self-targeting CRISPR spacers in bacterial and archaeal genomes containing Acr-encoding proviruses. Productive approaches for Acr prediction also involve genome comparison of closely related viruses, of which one is resistant and the other one is sensitive to a particular CRISPR variant, and "guilt by association" whereby genes adjacent to a homolog of a known Aca are identified as candidate Acrs. The distinctive features of Acrs are employed for Acr prediction both by developing dedicated search algorithms and through machine learning. New approaches will be needed to identify novel types of Acrs that are likely to exist.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, USA.
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, USA
| |
Collapse
|
11
|
Unveil the Secret of the Bacteria and Phage Arms Race. Int J Mol Sci 2023; 24:ijms24054363. [PMID: 36901793 PMCID: PMC10002423 DOI: 10.3390/ijms24054363] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Bacteria have developed different mechanisms to defend against phages, such as preventing phages from being adsorbed on the surface of host bacteria; through the superinfection exclusion (Sie) block of phage's nucleic acid injection; by restricting modification (R-M) systems, CRISPR-Cas, aborting infection (Abi) and other defense systems to interfere with the replication of phage genes in the host; through the quorum sensing (QS) enhancement of phage's resistant effect. At the same time, phages have also evolved a variety of counter-defense strategies, such as degrading extracellular polymeric substances (EPS) that mask receptors or recognize new receptors, thereby regaining the ability to adsorb host cells; modifying its own genes to prevent the R-M systems from recognizing phage genes or evolving proteins that can inhibit the R-M complex; through the gene mutation itself, building nucleus-like compartments or evolving anti-CRISPR (Acr) proteins to resist CRISPR-Cas systems; and by producing antirepressors or blocking the combination of autoinducers (AIs) and its receptors to suppress the QS. The arms race between bacteria and phages is conducive to the coevolution between bacteria and phages. This review details bacterial anti-phage strategies and anti-defense strategies of phages and will provide basic theoretical support for phage therapy while deeply understanding the interaction mechanism between bacteria and phages.
Collapse
|
12
|
Barchi Y, Philippe C, Chaïb A, Oviedo-Hernandez F, Claisse O, Le Marrec C. Phage Encounters Recorded in CRISPR Arrays in the Genus Oenococcus. Viruses 2022; 15:15. [PMID: 36680056 PMCID: PMC9867325 DOI: 10.3390/v15010015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The Oenococcus genus comprises four recognized species, and members have been found in different types of beverages, including wine, kefir, cider and kombucha. In this work, we implemented two complementary strategies to assess whether oenococcal hosts of different species and habitats were connected through their bacteriophages. First, we investigated the diversity of CRISPR-Cas systems using a genome-mining approach, and CRISPR-endowed strains were identified in three species. A census of the spacers from the four identified CRISPR-Cas loci showed that each spacer space was mostly dominated by species-specific sequences. Yet, we characterized a limited records of potentially recent and also ancient infections between O. kitaharae and O. sicerae and phages of O. oeni, suggesting that some related phages have interacted in diverse ways with their Oenococcus hosts over evolutionary time. Second, phage-host interaction analyses were performed experimentally with a diversified panel of phages and strains. None of the tested phages could infect strains across the species barrier. Yet, some infections occurred between phages and hosts from distinct beverages in the O. oeni species.
Collapse
Affiliation(s)
| | | | | | | | | | - Claire Le Marrec
- UMR Oenologie 1366, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33882 Villenave d’Ornon, France
| |
Collapse
|
13
|
Distribution of CRISPR-Cas systems in the Burkholderiaceae family and its biological implications. Arch Microbiol 2022; 204:703. [DOI: 10.1007/s00203-022-03312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/20/2022] [Accepted: 10/29/2022] [Indexed: 11/14/2022]
|
14
|
Yoshida-Takashima Y, Takaki Y, Yoshida M, Zhang Y, Nunoura T, Takai K. Genomic insights into phage-host interaction in the deep-sea chemolithoautotrophic Campylobacterota, Nitratiruptor. ISME COMMUNICATIONS 2022; 2:108. [PMID: 37938718 PMCID: PMC9723563 DOI: 10.1038/s43705-022-00194-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2023]
Abstract
The genus Nitratiruptor represents one of the most numerically abundant chemolithoautotrophic Campylobacterota populations in the mixing zones of habitats between hydrothermal fluids and ambient seawater in deep-sea hydrothermal environments. We isolated and characterized four novel temperate phages (NrS-2, NrS-3, NrS-4, and NrS-5) having a siphoviral morphology, infecting Nitratiruptor strains from the Hatoma Knoll hydrothermal field in the southern-Okinawa Trough, Japan, and conducted comparative genomic analyses among Nitratiruptor strains and their phages. The Nitratiruptor temperate phages shared many potential core genes (e.g., integrase, Cro, two structural proteins, lysozyme, and MazG) with each other despite their diverse morphological and genetic features. Some homologs of coding sequences (CDSs) of the temperate phages were dispersed throughout the non-prophage regions of the Nitratiruptor genomes. In addition, several regions of the phage genome sequences matched to spacer sequences within clustered regularly interspaced short palindromic repeats (CRISPR) in Nitratiruptor genomes. Moreover, a restriction-modification system found in a temperate phage affected an epigenetic feature of its host. These results strongly suggested a coevolution of temperate phages and their host genomes via the acquisition of temperate phages, the CRISPR systems, the nucleotide substitution, and the epigenetic regulation during multiple phage infections in the deep-sea environments.
Collapse
Affiliation(s)
- Yukari Yoshida-Takashima
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan.
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Mitsuhiro Yoshida
- Deep-Sea Bioresource Research Group, Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Yi Zhang
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Takuro Nunoura
- Deep-Sea Bioresource Research Group, Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Ken Takai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| |
Collapse
|
15
|
Genomic Features of Pseudomonas putida PCL1760: A Biocontrol Agent Acting via Competition for Nutrient and Niche. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pseudomonasputida strain PCL1760 is a biocontrol agent protecting plants from pathogens via the mechanism of competition for nutrients and niches (CNN). To confirm this mechanism as well as to adapt the strain for biotechnological applications, full genome analysis was compared with the known biotechnological model, P. putida S12, and other related species, which were analyzed on different genomic databases. Moreover, the antibacterial activity of PCL1760 was tested against Staphylococcus aureus, Pseudomonas aeruginosa, and Pseudomonas syringae. No genetic systems involved in antibiosis were revealed among the secondary metabolite clusters of the strain of PCL1760. The only antagonistic effect was observed against P. syringae, which might be because of siderophore (yellow-greenish fluorescence), although less than 19% pyoverdin biosynthesis clusters were predicted using the AntiSMASH server. P. putida PCL1760 in comparison with the Pseudomonas simiae strain PCL1751, another biocontrol agent acting solely via CNN, which lost its ‘luxury’ genes necessary for antibiosis or parasitism/predation mechanisms, but carries genetic systems providing motility. Interestingly, immunity genes (CRISPR/Cas and prophages) showed PCL1760 to be robust in comparison with S12, while annotation on OrthoVenn2 showed PCL1760 to be amenable for genetic manipulations. It is tempting to state that rhizobacteria using the mechanism of CNN are distinguishable from biocontrol agents acting via antibiosis or parasitism/predation at the genomic level. This confirms the CNN of PCL1760 as the sole mechanism for biocontrol and we suggest the strain as a new model for genetic engineering.
Collapse
|
16
|
Vialetto E, Yu Y, Collins SP, Wandera KG, Barquist L, Beisel CL. A target expression threshold dictates invader defense and prevents autoimmunity by CRISPR-Cas13. Cell Host Microbe 2022; 30:1151-1162.e6. [PMID: 35690065 PMCID: PMC9590104 DOI: 10.1016/j.chom.2022.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/30/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022]
Abstract
CRISPR-Cas systems must enact robust immunity against foreign genetic material without inducing cytotoxic autoimmunity. For type VI systems that use Cas13 nucleases and recognize RNA targets, immune activation requires extensive CRISPR RNA (crRNA) guide-target complementarity and a target-flanking motif. Here, we report a third requirement shaping the immune response: the expression of the target transcript exceeding a threshold. We found that endogenous non-essential transcripts targeted by crRNAs rarely elicited autoimmunity. Instead, autoimmune induction required over-expressing the targeted transcripts above a threshold. A genome-wide screen confirmed target expression levels as a global determinant of cytotoxic autoimmunity and revealed that this threshold shifts with each guide-target pair. This threshold further ensured defense against a lytic bacteriophage yet allowed the tolerance of a targeted beneficial gene expressed from an invading plasmid. These findings establish target expression levels as an additional criterion for immune defense by RNA-targeting CRISPR-Cas systems, preventing autoimmunity and distinguishing pathogenic and benign invaders.
Collapse
Affiliation(s)
- Elena Vialetto
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Yanying Yu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Scott P Collins
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Katharina G Wandera
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany; Medical Faculty, University of Würzburg, 97080 Würzburg, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA; Medical Faculty, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
17
|
Wu Q, Cui L, Liu Y, Li R, Dai M, Xia Z, Wu M. CRISPR-Cas systems target endogenous genes to impact bacterial physiology and alter mammalian immune responses. MOLECULAR BIOMEDICINE 2022; 3:22. [PMID: 35854035 PMCID: PMC9296731 DOI: 10.1186/s43556-022-00084-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
CRISPR-Cas systems are an immune defense mechanism that is widespread in archaea and bacteria against invasive phages or foreign genetic elements. In the last decade, CRISPR-Cas systems have been a leading gene-editing tool for agriculture (plant engineering), biotechnology, and human health (e.g., diagnosis and treatment of cancers and genetic diseases), benefitted from unprecedented discoveries of basic bacterial research. However, the functional complexity of CRISPR systems is far beyond the original scope of immune defense. CRISPR-Cas systems are implicated in influencing the expression of physiology and virulence genes and subsequently altering the formation of bacterial biofilm, drug resistance, invasive potency as well as bacterial own physiological characteristics. Moreover, increasing evidence supports that bacterial CRISPR-Cas systems might intriguingly influence mammalian immune responses through targeting endogenous genes, especially those relating to virulence; however, unfortunately, their underlying mechanisms are largely unclear. Nevertheless, the interaction between bacterial CRISPR-Cas systems and eukaryotic cells is complex with numerous mysteries that necessitate further investigation efforts. Here, we summarize the non-canonical functions of CRISPR-Cas that potentially impact bacterial physiology, pathogenicity, antimicrobial resistance, and thereby altering the courses of mammalian immune responses.
Collapse
Affiliation(s)
- Qun Wu
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA
| | - Luqing Cui
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Yingying Liu
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA
| | - Rongpeng Li
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Menghong Dai
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.
| | - Zhenwei Xia
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA.
| |
Collapse
|
18
|
Zaayman M, Wheatley RM. Fitness costs of CRISPR-Cas systems in bacteria. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35849532 DOI: 10.1099/mic.0.001209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
CRISPR-Cas systems provide bacteria with both specificity and adaptability in defence against invading genetic elements. From a theoretical perspective, CRISPR-Cas systems confer many benefits. However, they are observed at an unexpectedly low prevalence across the bacterial domain. While these defence systems can be gained horizontally, fitness costs may lead to selection against their carriage. Understanding the source of CRISPR-related fitness costs will help us to understand the evolutionary dynamics of CRISPR-Cas systems and their role in shaping bacterial genome evolution. Here, we review our current understanding of the potential fitness costs associated with CRISPR-Cas systems. In addition to potentially restricting the acquisition of genetic material that could confer fitness benefits, we explore five alternative biological factors that from a theoretical perspective may influence the fitness costs associated with CRISPR-Cas system carriage: (1) the repertoire of defence mechanisms a bacterium has available to it, (2) the potential for a metabolic burden, (3) larger-scale population and environmental factors, (4) the phenomenon of self-targeting spacers, and (5) alternative non-defence roles for CRISPR-Cas.
Collapse
|
19
|
Gut virome profiling identifies a widespread bacteriophage family associated with metabolic syndrome. Nat Commun 2022; 13:3594. [PMID: 35739117 PMCID: PMC9226167 DOI: 10.1038/s41467-022-31390-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
There is significant interest in altering the course of cardiometabolic disease development via gut microbiomes. Nevertheless, the highly abundant phage members of the complex gut ecosystem -which impact gut bacteria- remain understudied. Here, we show gut virome changes associated with metabolic syndrome (MetS), a highly prevalent clinical condition preceding cardiometabolic disease, in 196 participants by combined sequencing of bulk whole genome and virus like particle communities. MetS gut viromes exhibit decreased richness and diversity. They are enriched in phages infecting Streptococcaceae and Bacteroidaceae and depleted in those infecting Bifidobacteriaceae. Differential abundance analysis identifies eighteen viral clusters (VCs) as significantly associated with either MetS or healthy viromes. Among these are a MetS-associated Roseburia VC that is related to healthy control-associated Faecalibacterium and Oscillibacter VCs. Further analysis of these VCs revealed the Candidatus Heliusviridae, a highly widespread gut phage lineage found in 90+% of participants. The identification of the temperate Ca. Heliusviridae provides a starting point to studies of phage effects on gut bacteria and the role that this plays in MetS.
Collapse
|
20
|
Chen H, Mayer A, Balasubramanian V. A scaling law in CRISPR repertoire sizes arises from the avoidance of autoimmunity. Curr Biol 2022; 32:2897-2907.e5. [PMID: 35659862 DOI: 10.1016/j.cub.2022.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/13/2022] [Accepted: 05/09/2022] [Indexed: 12/28/2022]
Abstract
Some prokaryotes possess CRISPR-Cas systems that use DNA segments called spacers, which are acquired from invading phages, to guide immune defense. Here, we propose that cross-reactive CRISPR targeting can, however, lead to "heterologous autoimmunity," whereby foreign spacers guide self-targeting in a spacer-length-dependent fashion. Balancing antiviral defense against autoimmunity predicts a scaling relation between spacer length and CRISPR repertoire size. We find evidence for this scaling through a comparative analysis of sequenced prokaryotic genomes and show that this association also holds at the level of CRISPR types. By contrast, the scaling is absent in strains with nonfunctional CRISPR loci. Finally, we demonstrate that stochastic spacer loss can explain variations around the scaling relation, even between strains of the same species. Our results suggest that heterologous autoimmunity is a selective factor shaping the evolution of CRISPR-Cas systems, analogous to the trade-offs between immune specificity, breadth, and autoimmunity that constrain the diversity of adaptive immune systems in vertebrates.
Collapse
Affiliation(s)
- Hanrong Chen
- David Rittenhouse Laboratory, Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA; Laboratory of Metagenomic Technologies and Microbial Systems, Genome Institute of Singapore, Singapore 138672, Singapore.
| | - Andreas Mayer
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| | - Vijay Balasubramanian
- David Rittenhouse Laboratory, Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA; Theoretische Natuurkunde, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
21
|
Bowers RM, Nayfach S, Schulz F, Jungbluth SP, Ruhl IA, Sheremet A, Lee J, Goudeau D, Eloe-Fadrosh EA, Stepanauskas R, Malmstrom RR, Kyrpides NC, Dunfield PF, Woyke T. Dissecting the dominant hot spring microbial populations based on community-wide sampling at single-cell genomic resolution. THE ISME JOURNAL 2022; 16:1337-1347. [PMID: 34969995 PMCID: PMC9039060 DOI: 10.1038/s41396-021-01178-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023]
Abstract
With advances in DNA sequencing and miniaturized molecular biology workflows, rapid and affordable sequencing of single-cell genomes has become a reality. Compared to 16S rRNA gene surveys and shotgun metagenomics, large-scale application of single-cell genomics to whole microbial communities provides an integrated snapshot of community composition and function, directly links mobile elements to their hosts, and enables analysis of population heterogeneity of the dominant community members. To that end, we sequenced nearly 500 single-cell genomes from a low diversity hot spring sediment sample from Dewar Creek, British Columbia, and compared this approach to 16S rRNA gene amplicon and shotgun metagenomics applied to the same sample. We found that the broad taxonomic profiles were similar across the three sequencing approaches, though several lineages were missing from the 16S rRNA gene amplicon dataset, likely the result of primer mismatches. At the functional level, we detected a large array of mobile genetic elements present in the single-cell genomes but absent from the corresponding same species metagenome-assembled genomes. Moreover, we performed a single-cell population genomic analysis of the three most abundant community members, revealing differences in population structure based on mutation and recombination profiles. While the average pairwise nucleotide identities were similar across the dominant species-level lineages, we observed differences in the extent of recombination between these dominant populations. Most intriguingly, the creek's Hydrogenobacter sp. population appeared to be so recombinogenic that it more closely resembled a sexual species than a clonally evolving microbe. Together, this work demonstrates that a randomized single-cell approach can be useful for the exploration of previously uncultivated microbes from community composition to population structure.
Collapse
Affiliation(s)
- Robert M. Bowers
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Stephen Nayfach
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Frederik Schulz
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Sean P. Jungbluth
- grid.184769.50000 0001 2231 4551Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Ilona A. Ruhl
- grid.22072.350000 0004 1936 7697Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada ,grid.419357.d0000 0001 2199 3636National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Andriy Sheremet
- grid.22072.350000 0004 1936 7697Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
| | - Janey Lee
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Danielle Goudeau
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Emiley A. Eloe-Fadrosh
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Ramunas Stepanauskas
- grid.296275.d0000 0000 9516 4913Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME USA
| | - Rex R. Malmstrom
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Nikos C. Kyrpides
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Peter F. Dunfield
- grid.22072.350000 0004 1936 7697Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
| | - Tanja Woyke
- U.S. Department of Energy, Joint Genome Institute, Berkeley, CA, USA.
| |
Collapse
|
22
|
McKenzie RE, Keizer EM, Vink JNA, van Lopik J, Büke F, Kalkman V, Fleck C, Tans SJ, Brouns SJJ. Single cell variability of CRISPR-Cas interference and adaptation. Mol Syst Biol 2022; 18:e10680. [PMID: 35467080 PMCID: PMC10561596 DOI: 10.15252/msb.202110680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/26/2022] Open
Abstract
While CRISPR-Cas defence mechanisms have been studied on a population level, their temporal dynamics and variability in individual cells have remained unknown. Using a microfluidic device, time-lapse microscopy and mathematical modelling, we studied invader clearance in Escherichia coli across multiple generations. We observed that CRISPR interference is fast with a narrow distribution of clearance times. In contrast, for invaders with escaping PAM mutations we found large cell-to-cell variability, which originates from primed CRISPR adaptation. Faster growth and cell division and higher levels of Cascade increase the chance of clearance by interference, while slower growth is associated with increased chances of clearance by priming. Our findings suggest that Cascade binding to the mutated invader DNA, rather than spacer integration, is the main source of priming heterogeneity. The highly stochastic nature of primed CRISPR adaptation implies that only subpopulations of bacteria are able to respond quickly to invading threats. We conjecture that CRISPR-Cas dynamics and heterogeneity at the cellular level are crucial to understanding the strategy of bacteria in their competition with other species and phages.
Collapse
Affiliation(s)
- Rebecca E McKenzie
- Department of BionanoscienceDelft University of TechnologyDelftThe Netherlands
- Kavli Institute of NanoscienceDelftThe Netherlands
- AMOLFAmsterdamThe Netherlands
| | - Emma M Keizer
- Biometris, Department of Mathematical and Statistical MethodsWageningen UniversityWageningenThe Netherlands
| | - Jochem N A Vink
- Department of BionanoscienceDelft University of TechnologyDelftThe Netherlands
- Kavli Institute of NanoscienceDelftThe Netherlands
| | - Jasper van Lopik
- Department of BionanoscienceDelft University of TechnologyDelftThe Netherlands
- Kavli Institute of NanoscienceDelftThe Netherlands
| | - Ferhat Büke
- Department of BionanoscienceDelft University of TechnologyDelftThe Netherlands
- Kavli Institute of NanoscienceDelftThe Netherlands
- AMOLFAmsterdamThe Netherlands
| | - Vera Kalkman
- Department of BionanoscienceDelft University of TechnologyDelftThe Netherlands
- Kavli Institute of NanoscienceDelftThe Netherlands
| | - Christian Fleck
- Freiburg Center for Data Analysis and Modeling (FDM)Spatial Systems Biology GroupUniversity of FreiburgFreiburgGermany
| | - Sander J Tans
- Department of BionanoscienceDelft University of TechnologyDelftThe Netherlands
- Kavli Institute of NanoscienceDelftThe Netherlands
- AMOLFAmsterdamThe Netherlands
| | - Stan J J Brouns
- Department of BionanoscienceDelft University of TechnologyDelftThe Netherlands
- Kavli Institute of NanoscienceDelftThe Netherlands
| |
Collapse
|
23
|
Rybnicky GA, Fackler NA, Karim AS, Köpke M, Jewett MC. Spacer2PAM: A computational framework to guide experimental determination of functional CRISPR-Cas system PAM sequences. Nucleic Acids Res 2022; 50:3523-3534. [PMID: 35258601 PMCID: PMC8990532 DOI: 10.1093/nar/gkac142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
RNA-guided nucleases from CRISPR-Cas systems expand opportunities for precise, targeted genome modification. Endogenous CRISPR-Cas systems in many prokaryotes are attractive to circumvent expression, functionality, and unintended activity hurdles posed by heterologous CRISPR-Cas effectors. However, each CRISPR-Cas system recognizes a unique set of protospacer adjacent motifs (PAMs), which requires identification by extensive screening of randomized DNA libraries. This challenge hinders development of endogenous CRISPR-Cas systems, especially those based on multi-protein effectors and in organisms that are slow-growing or have transformation idiosyncrasies. To address this challenge, we present Spacer2PAM, an easy-to-use, easy-to-interpret R package built to predict and guide experimental determination of functional PAM sequences for any CRISPR-Cas system given its corresponding CRISPR array as input. Spacer2PAM can be used in a 'Quick' method to generate a single PAM prediction or in a 'Comprehensive' method to inform targeted PAM libraries small enough to screen in difficult to transform organisms. We demonstrate Spacer2PAM by predicting PAM sequences for industrially relevant organisms and experimentally identifying seven PAM sequences that mediate interference from the Spacer2PAM-informed PAM library for the type I-B CRISPR-Cas system from Clostridium autoethanogenum. We anticipate that Spacer2PAM will facilitate the use of endogenous CRISPR-Cas systems for industrial biotechnology and synthetic biology.
Collapse
Affiliation(s)
- Grant A Rybnicky
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA,Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA,Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, 60208, USA
| | | | - Ashty S Karim
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA,Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA,Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | | | - Michael C Jewett
- To whom correspondence should be addressed. Tel: +1 847 467 5007; Fax: +1 847 467 5007;
| |
Collapse
|
24
|
Correlation between type IIIA CRISPR-Cas system and SCCmec in Staphylococcus epidermidis. Arch Microbiol 2021; 203:6275-6286. [PMID: 34668031 DOI: 10.1007/s00203-021-02595-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022]
Abstract
A subculture of S.epidermidis strain ATCC35984 that is amenable to genetically manipulate was occasionally found in our laboratory. This mutant exhibited susceptibility to methicillin in contrast to its parent strain. To unveil the underlying mechanism, whole-genome sequencing of the mutant was performed. A comparative analysis revealed that a large DNA fragment encompassing the CRISPR-Cas system, type I R-M system and the SCCmec element was deleted from the mutant. The large chromosomal deletion associated with CRISPR-Cas system was also observed to occur spontaneously in S. epidermidis in another independent laboratory, or artificially induced by introducing engineering crRNAs in other bacterial species. These findings imply the CRISPR-Cas systems can affect bacterial genome remodeling through deletion of the integrated MGEs (mobile genetic elements). Further bioinformatics analysis identified a higher carriage rate of SCCmec element in the S. epidermidis strains harboring the CRISPR-Cas system. MLST typing and phylogenetic analysis of those CRIPSR-Cas-positive S. epidermidis strains revealed multiple origins. In addition, distinct types of SCCmec carried in those strains suggested that acquisition of this MGE originated from multiple independent recombination events. Intriguingly, CRISPR-Cas systems are found to be always located in the vicinity of orfX gene among staphylococci. Allelic analysis of CRISPR loci flanking cas genes disclosed that the loci distal to the orfX gene are considerably stable and conserved, which probably serve as recombination hotspot between CRISPR-Cas system and phage or plasmid. Therefore, the findings generally support the notion that incomplete immune protection of CRISPR-Cas system can promote dissemination of its neighboring SCCmec element.
Collapse
|
25
|
Vink JNA, Baijens JHL, Brouns SJJ. PAM-repeat associations and spacer selection preferences in single and co-occurring CRISPR-Cas systems. Genome Biol 2021; 22:281. [PMID: 34593010 PMCID: PMC8482600 DOI: 10.1186/s13059-021-02495-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The adaptive CRISPR-Cas immune system stores sequences from past invaders as spacers in CRISPR arrays and thereby provides direct evidence that links invaders to hosts. Mapping CRISPR spacers has revealed many aspects of CRISPR-Cas biology, including target requirements such as the protospacer adjacent motif (PAM). However, studies have so far been limited by a low number of mapped spacers in the database. RESULTS By using vast metagenomic sequence databases, we map approximately one-third of more than 200,000 unique CRISPR spacers from a variety of microbes and derive a catalog of more than two hundred unique PAM sequences associated with specific CRISPR-Cas subtypes. These PAMs are further used to correctly assign the orientation of CRISPR arrays, revealing conserved patterns between the last nucleotides of the CRISPR repeat and PAM. We could also deduce CRISPR-Cas subtype-specific preferences for targeting either template or coding strand of open reading frames. While some DNA-targeting systems (type I-E and type II systems) prefer the template strand and avoid mRNA, other DNA- and RNA-targeting systems (types I-A and I-B and type III systems) prefer the coding strand and mRNA. In addition, we find large-scale evidence that both CRISPR-Cas adaptation machinery and CRISPR arrays are shared between different CRISPR-Cas systems. This could lead to simultaneous DNA and RNA targeting of invaders, which may be effective at combating mobile genetic invaders. CONCLUSIONS This study has broad implications for our understanding of how CRISPR-Cas systems work in a wide range of organisms for which only the genome sequence is known.
Collapse
Affiliation(s)
- Jochem N A Vink
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
- Kavli Institute of Nanoscience, Delft, The Netherlands
| | - Jan H L Baijens
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
- Kavli Institute of Nanoscience, Delft, The Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands.
- Kavli Institute of Nanoscience, Delft, The Netherlands.
| |
Collapse
|
26
|
Comprehensive Scanning of Prophages in Lactobacillus: Distribution, Diversity, Antibiotic Resistance Genes, and Linkages with CRISPR-Cas Systems. mSystems 2021; 6:e0121120. [PMID: 34060909 PMCID: PMC8269257 DOI: 10.1128/msystems.01211-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Prophage integration, release, and dissemination exert various effects on host bacteria. In the genus Lactobacillus, they may cause bacteriophage contamination during fermentation and even regulate bacterial populations in the gut. However, little is known about their distribution, genetic architecture, and relationships with their hosts. Here, we conducted prophage prediction analysis on 1,472 genomes from 16 different Lactobacillus species and found prophage fragments in almost all lactobacilli (99.8%), with 1,459 predicted intact prophages identified in 64.1% of the strains. We present an uneven prophage distribution among Lactobacillus species; multihabitat species retained more prophages in their genomes than restricted-habitat species. Characterization of the genome features, average nucleotide identity, and landscape visualization presented a high genome diversity of Lactobacillus prophages. We detected antibiotic resistance genes in more than 10% of Lactobacillus prophages and validated that the occurrence of resistance genes conferred by prophage integration was possibly associated with phenotypic resistance in Lactobacillus plantarum. Furthermore, our broad and comprehensive examination of the distribution of CRISPR-Cas systems across the genomes predicted type I and type III systems as potential antagonistic elements of Lactobacillus prophage. IMPORTANCE Lactobacilli are inherent microorganisms in the human gut and are widely used in the food processing industries due to their probiotic properties. Prophages were reportedly hidden in numerous Lactobacillus genomes and can potentially contaminate entire batches of fermentation or modulate the intestinal microecology once they are released. Therefore, a comprehensive scanning of prophages in Lactobacillus is essential for the safety evaluation and application development of probiotic candidates. We show that prophages are widely distributed among lactobacilli; however, intact prophages are more common in multihabitat species and display wide variations in genome feature, integration site, and genomic organization. Our data of the prophage-mediated antibiotic resistance genes (ARGs) and the resistance phenotype of lactobacilli provide evidence for deciphering the putative role of prophages as vectors of the ARGs. Furthermore, understanding the association between prophages and CRISPR-Cas systems is crucial to appreciate the coevolution of phages and Lactobacillus.
Collapse
|
27
|
Taylor HN, Laderman E, Armbrust M, Hallmark T, Keiser D, Bondy-Denomy J, Jackson RN. Positioning Diverse Type IV Structures and Functions Within Class 1 CRISPR-Cas Systems. Front Microbiol 2021; 12:671522. [PMID: 34093491 PMCID: PMC8175902 DOI: 10.3389/fmicb.2021.671522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022] Open
Abstract
Type IV CRISPR systems encode CRISPR associated (Cas)-like proteins that combine with small RNAs to form multi-subunit ribonucleoprotein complexes. However, the lack of Cas nucleases, integrases, and other genetic features commonly observed in most CRISPR systems has made it difficult to predict type IV mechanisms of action and biological function. Here we summarize recent bioinformatic and experimental advancements that collectively provide the first glimpses into the function of specific type IV subtypes. We also provide a bioinformatic and structural analysis of type IV-specific proteins within the context of multi-subunit (class 1) CRISPR systems, informing future studies aimed at elucidating the function of these cryptic systems.
Collapse
Affiliation(s)
- Hannah N. Taylor
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Eric Laderman
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
| | - Matt Armbrust
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Thomson Hallmark
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Dylan Keiser
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
| | - Ryan N. Jackson
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| |
Collapse
|
28
|
Abstract
CRISPR-Cas systems provide bacteria and archaea with adaptive, heritable immunity against their viruses (bacteriophages and phages) and other parasitic genetic elements. CRISPR-Cas systems are highly diverse, and we are only beginning to understand their relative importance in phage defense. In this review, we will discuss when and why CRISPR-Cas immunity against phages evolves, and how this, in turn, selects for the evolution of immune evasion by phages. Finally, we will discuss our current understanding of if, and when, we observe coevolution between CRISPR-Cas systems and phages, and how this may be influenced by the mechanism of CRISPR-Cas immunity.
Collapse
|
29
|
Duru IC, Bucur FI, Andreevskaya M, Nikparvar B, Ylinen A, Grigore-Gurgu L, Rode TM, Crauwels P, Laine P, Paulin L, Løvdal T, Riedel CU, Bar N, Borda D, Nicolau AI, Auvinen P. High-pressure processing-induced transcriptome response during recovery of Listeria monocytogenes. BMC Genomics 2021; 22:117. [PMID: 33579201 PMCID: PMC7881616 DOI: 10.1186/s12864-021-07407-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Background High-pressure processing (HPP) is a commonly used technique in the food industry to inactivate pathogens, including L. monocytogenes. It has been shown that L. monocytogenes is able to recover from HPP injuries and can start to grow again during long-term cold storage. To date, the gene expression profiling of L. monocytogenes during HPP damage recovery at cooling temperature has not been studied. In order identify key genes that play a role in recovery of the damage caused by HPP treatment, we performed RNA-sequencing (RNA-seq) for two L. monocytogenes strains (barotolerant RO15 and barosensitive ScottA) at nine selected time points (up to 48 h) after treatment with two pressure levels (200 and 400 MPa). Results The results showed that a general stress response was activated by SigB after HPP treatment. In addition, the phosphotransferase system (PTS; mostly fructose-, mannose-, galactitol-, cellobiose-, and ascorbate-specific PTS systems), protein folding, and cobalamin biosynthesis were the most upregulated genes during HPP damage recovery. We observed that cell-division-related genes (divIC, dicIVA, ftsE, and ftsX) were downregulated. By contrast, peptidoglycan-synthesis genes (murG, murC, and pbp2A) were upregulated. This indicates that cell-wall repair occurs as a part of HPP damage recovery. We also observed that prophage genes, including anti-CRISPR genes, were induced by HPP. Interestingly, a large amount of RNA-seq data (up to 85%) was mapped to Rli47, which is a non-coding RNA that is upregulated after HPP. Thus, we predicted that Rli47 plays a role in HPP damage recovery in L. monocytogenes. Moreover, gene-deletion experiments showed that amongst peptidoglycan biosynthesis genes, pbp2A mutants are more sensitive to HPP. Conclusions We identified several genes and mechanisms that may play a role in recovery from HPP damage of L. monocytogenes. Our study contributes to new information on pathogen inactivation by HPP. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07407-6.
Collapse
Affiliation(s)
- Ilhan Cem Duru
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Florentina Ionela Bucur
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | | | - Bahareh Nikparvar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anne Ylinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Tone Mari Rode
- Department of Process Technology, Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, N-4068, Stavanger, Norway
| | - Peter Crauwels
- Institute of Microbiology and Biotechnology, Ulm, University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Pia Laine
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Trond Løvdal
- Department of Process Technology, Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, N-4068, Stavanger, Norway
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, Ulm, University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Nadav Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Daniela Borda
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Anca Ioana Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|