1
|
Li B, Tan S, Yu X, Wang Y. Bufalin: A promising therapeutic drug against the cisplatin-resistance of ovarian cancer by targeting the USP36/c-Myc axis. Biochem Biophys Res Commun 2024; 733:150440. [PMID: 39067250 DOI: 10.1016/j.bbrc.2024.150440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Cisplatin (DPP) resistance is a severe obstacle to ovarian cancer (OC) treatment. Our research aims to uncover the therapeutic effect and the underlying mechanism of Bufalin against DDP resistance. The cell viability, proliferation capacity, γH2AX expression, and apoptosis ratio were quantified via CCK8 assay, colony formation assay, immunofluorescence, and flow cytometry analysis respectively. Xenografting experiment was performed to detect the tumor growth. Molecular docking was applied to mimic the combination of Bufalin and USP36 protein, and Western blotting was conducted to measure the Bax, Bcl-2, γH2AX, USP36, and c-Myc expression. The c-Myc ubiquitination and half-life were detected via ubiquitination assay and cycloheximide chasing assay. Bufalin treatment notably suppressed the cell viability and colony numbers, and increased the apoptosis ratio and γH2AX level in the DDP treatment group. Bufalin therapy also notably inhibited tumor growth, Bax, Bcl-2, and γH2AX expression in vivo. Moreover, the Bufalin application remarkedly reduced the c-Myc expression and half-life and increased the c-Myc ubiquitination via interaction and subsequent down-regulation of USP36. Knockdown of USP36 reversed the antiproliferative effect and proapoptotic capacity of Bufalin therapy in the DDP treatment group. In conclusion, Bufalin can overcome the DDP resistance in vitro and in vivo via the USP36/c-Myc axis, which innovatively suggests the therapeutic potential of Bufalin against DDP resistance ovarian cancer.
Collapse
Affiliation(s)
- Bing Li
- Department of Gynaecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Shu Tan
- Department of Gynaecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Xi Yu
- Department of Gynaecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Yan Wang
- Department of Gynaecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
2
|
Qiu F, Li Y, Zhou L, Wu Y, Wu Y, Fan Z, Wang Y, Qin D, Li C. Mapping and visualization of global research progress on deubiquitinases in ovarian cancer: a bibliometric analysis. Front Pharmacol 2024; 15:1445037. [PMID: 39329115 PMCID: PMC11424541 DOI: 10.3389/fphar.2024.1445037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Background Ovarian cancer is a highly aggressive malignancy with limited therapeutic options and a poor prognosis. Deubiquitinating enzymes (DUBs) have emerged as critical regulators of protein ubiquitination and proteasomal degradation, influencing various cellular processes relevant to cancer pathogenesis. In this study, the research progress between ovarian cancer and DUBs was mapped and visualized using bibliometrics, and the expression patterns and biological roles of DUBs in ovarian cancer were summarized. Methods Studies related to DUBs in ovarian cancer were extracted from the Web of Science Core Collection (WoSCC) database. VOSviewer 1.6.20, CiteSpace 6.3.R1, and R4.3.3 were used for bibliometric analysis and visualization. Results For analysis 243 articles were included in this study. The number of publications on DUBs in ovarian cancer has gradually increased each year. China, the United States, and the United Kingdom are at the center of this field of research. The Johns Hopkins University, Genentech, and Roche Holding are the main research institutions. David Komander, Zhihua Liu, and Richard Roden are the top authors in this field. The top five journals with the largest publication volumes in this field are Biochemical and Biophysical Research Communications, Journal of Biological Chemistry, PLOS One, Nature Communications, and Oncotarget. Keyword burst analysis identified five research areas: "deubiquitinating enzyme," "expression," "activation," "degradation," and "ubiquitin." In addition, we summarized the expression profiles and biological roles of DUBs in ovarian cancer, highlighting their roles in tumor initiation, growth, chemoresistance, and metastasis. Conclusion An overview of the research progress is provided in this study on DUBs in ovarian cancer over the last three decades. It offers insight into the most cited papers and authors, core journals, and identified new trends.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yuntong Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Lile Zhou
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunzhao Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, London, United Kingdom
| | - Zhilei Fan
- School of Public Health, Fudan University, Shanghai, China
| | - Yingying Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongjun Qin
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaoqun Li
- Department of Histology and Embryology, Shanghai Key Laboratory of Cell Engineering, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Ramirez-Otero MA, Costanzo V. "Bridging the DNA divide": Understanding the interplay between replication- gaps and homologous recombination proteins RAD51 and BRCA1/2. DNA Repair (Amst) 2024; 141:103738. [PMID: 39084178 DOI: 10.1016/j.dnarep.2024.103738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
A key but often neglected component of genomic instability is the emergence of single-stranded DNA (ssDNA) gaps during DNA replication in the absence of functional homologous recombination (HR) proteins, such as RAD51 and BRCA1/2. Research in prokaryotes has shed light on the dual role of RAD51's bacterial ortholog, RecA, in HR and the protection of replication forks, emphasizing its essential role in preventing the formation of ssDNA gaps, which is vital for cellular viability. This phenomenon was corroborated in eukaryotic cells deficient in HR, where the formation of ssDNA gaps within newly synthesized DNA and their subsequent processing by the MRE11 nuclease were observed. Without functional HR proteins, cells employ alternative ssDNA gap-filling mechanisms to ensure survival, though this compensatory response can compromise genomic stability. A notable example is the involvement of the translesion synthesis (TLS) polymerase POLζ, along with the repair protein POLθ, in the suppression of replicative ssDNA gaps. Persistent ssDNA gaps may result in replication fork collapse, chromosomal anomalies, and cell death, which contribute to cancer progression and resistance to therapy. Elucidating the processes that avert ssDNA gaps and safeguard replication forks is critical for enhancing cancer treatment approaches by exploiting the vulnerabilities of cancer cells in these pathways.
Collapse
Affiliation(s)
| | - Vincenzo Costanzo
- IFOM ETS - The AIRC Institute of Molecular Oncology, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
4
|
Zhuang T, Zhang S, Liu D, Li Z, Li X, Li J, Yang P, Zhang C, Cui J, Fu M, Shen F, Yuan L, Zhang Z, Su P, Zhu J, Yang H. USP36 promotes tumorigenesis and tamoxifen resistance in breast cancer by deubiquitinating and stabilizing ERα. J Exp Clin Cancer Res 2024; 43:249. [PMID: 39215346 PMCID: PMC11365244 DOI: 10.1186/s13046-024-03160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Breast cancer is the most prevalent cancer in women globally. Over-activated estrogen receptor (ER) α signaling is considered the main factor in luminal breast cancers, which can be effectively managed with selective estrogen receptor modulators (SERMs) like tamoxifen. However, approximately 30-40% of ER + breast cancer cases are recurrent after tamoxifen therapy. This implies that the treatment of breast cancer is still hindered by resistance to tamoxifen. Recent studies have suggested that post-translational modifications of ERα play a significant role in endocrine resistance. The stability of both ERα protein and its transcriptome is regulated by a balance between E3 ubiquitin ligases and deubiquitinases. According to the current knowledge, approximately 100 deubiquitinases are encoded in the human genome, but it remains unclear which deubiquitinases play a critical role in estrogen signaling and endocrine resistance. Thus, decoding the key deubiquitinases that significantly impact estrogen signaling, including the control of ERα expression and stability, is critical for the improvement of breast cancer therapeutics. METHODS We used several ER positive breast cancer cell lines, DUB siRNA library screening, xenograft models, endocrine-resistant (ERα-Y537S) model and performed immunoblotting, real time PCR, RNA sequencing, immunofluorescence, and luciferase activity assay to investigate the function of USP36 in breast cancer progression and tamoxifen resistance. RESULTS In this study, we identify Ubiquitin-specific peptidase 36 (USP36) as a key deubiquitinase involved in ERα signaling and the advancement of breast cancer by deubiquitinases siRNA library screening. In vitro and in vivo studies showed that USP36, but not its catalytically inactive mutant (C131A), could promote breast cancer progression through ERα signaling. Conversely, silencing USP36 inhibited tumorigenesis. In models resistant to endocrine therapy, silencing USP36 destabilized the resistant form of ERα (Y537S) and restored sensitivity to tamoxifen. Molecular studies indicated that USP36 inhibited K48-linked polyubiquitination of ERα and enhanced the ERα transcriptome. It is interesting to note that our results suggest USP36 as a novel biomarker for treatment of breast cancer. CONCLUSION Our study revealed the possibility that inhibiting USP36 combined with tamoxifen could provide a potential therapy for breast cancer.
Collapse
Affiliation(s)
- Ting Zhuang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Shuqing Zhang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Dongyi Liu
- Department of Anaesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, P.R. China
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, P.R. China
| | - Zhongbo Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Xin Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Jiaoyan Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Penghe Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Chenmiao Zhang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Jiayao Cui
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Mingxi Fu
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Fangyu Shen
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Lei Yuan
- School of International Education, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Zhao Zhang
- The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450003, Henan Province, P.R. China
| | - Peng Su
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China.
| | - Jian Zhu
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, P.R. China.
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110000, P.R. China.
| | - Huijie Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China.
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China.
| |
Collapse
|
5
|
Gao B, Qiao Y, Zhu S, Yang N, Zou SS, Liu YJ, Chen J. USP36 inhibits apoptosis by deubiquitinating cIAP1 and survivin in colorectal cancer cells. J Biol Chem 2024; 300:107463. [PMID: 38876304 PMCID: PMC11268115 DOI: 10.1016/j.jbc.2024.107463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/19/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024] Open
Abstract
Chemotherapeutic agents for treating colorectal cancer (CRC) primarily induce apoptosis in tumor cells. The ubiquitin-proteasome system is critical for apoptosis regulation. Deubiquitinating enzymes (DUBs) remove ubiquitin from substrates to reverse ubiquitination. Although over 100 DUB members have been discovered, the biological functions of only a small proportion of DUBs have been characterized. Here, we aimed to systematically identify the DUBs that contribute to the development of CRC. Among the DUBs, ubiquitin-specific protease 36 (USP36) is upregulated in CRC. We showed that the knockdown of USP36 induces intrinsic and extrinsic apoptosis. Through gene silencing and coimmunoprecipitation techniques, we identified survivin and cIAP1 as USP36 targets. Mechanistically, USP36 binds and removes lysine-11-linked ubiquitin chains from cIAP1 and lysine-48-linked ubiquitin chains from survivin to abolish protein degradation. Overexpression of USP36 disrupts the formation of the XIAP-second mitochondria-derived activator of caspase complex and promotes receptor-interacting protein kinase 1 ubiquitination, validating USP36 as an inhibitor to intrinsic and extrinsic apoptosis through deubiquitinating survivin and cIAP1. Therefore, our results suggest that USP36 is involved in CRC progression and is a potential therapeutic target.
Collapse
Affiliation(s)
- Bao Gao
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China; Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuan Qiao
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Shan Zhu
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China; Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ning Yang
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Shan-Shan Zou
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yong-Jun Liu
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Jingtao Chen
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China; Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
6
|
Yang Y, Li Y, Sears RC, Sun XX, Dai MS. SUMOylation regulation of ribosome biogenesis: Emerging roles for USP36. FRONTIERS IN RNA RESEARCH 2024; 2:1389104. [PMID: 38764604 PMCID: PMC11101209 DOI: 10.3389/frnar.2024.1389104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Ribosome biogenesis is essential for cell growth, proliferation, and animal development. Its deregulation leads to various human disorders such as ribosomopathies and cancer. Thus, tight regulation of ribosome biogenesis is crucial for normal cell homeostasis. Emerging evidence suggests that posttranslational modifications such as ubiquitination and SUMOylation play a crucial role in regulating ribosome biogenesis. Our recent studies reveal that USP36, a nucleolar deubiquitinating enzyme (DUB), acts also as a SUMO ligase to regulate nucleolar protein group SUMOylation, thereby being essential for ribosome biogenesis. Here, we provide an overview of the current understanding of the SUMOylation regulation of ribosome biogenesis and discuss the role of USP36 in nucleolar SUMOylation.
Collapse
Affiliation(s)
- Yunhan Yang
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Yanping Li
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Rosalie C. Sears
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Xiao-Xin Sun
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Mu-Shui Dai
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
7
|
Guan S, Chen X, Wei Y, Wang F, Xie W, Chen Y, Liang H, Zhu X, Yang Y, Fang W, Huang Y, Zhao H, Zhang X, Liu S, Zhuang W, Huang M, Wang X, Zhang L. Germline USP36 Mutation Confers Resistance to EGFR-TKIs by Upregulating MLLT3 Expression in Patients with Non-Small Cell Lung Cancer. Clin Cancer Res 2024; 30:1382-1396. [PMID: 38261467 DOI: 10.1158/1078-0432.ccr-23-2357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
PURPOSE Although somatic mutations were explored in depth, limited biomarkers were found to predict the resistance of EGFR tyrosine kinase inhibitors (EGFR-TKI). Previous studies reported N6-methyladenosine (m6A) levels regulated response of EGFR-TKIs; whether the germline variants located in m6A sites affected resistance of EGFR-TKIs is still unknown. EXPERIMENTAL DESIGN Patients with non-small cell lung cancer (NSCLC) with EGFR-activating mutation were enrolled to investigate predictors for response of EGFR-TKIs using a genome-wide-variant-m6A analysis. Bioinformatics analysis and series of molecular biology assays were used to uncover the underlying mechanism. RESULTS We identified the germline mutation USP36 rs3744797 (C > A, K814N) was associated with survival of patients with NSCLC treated with gefitinib [median progression-free survival (PFS): CC vs. CA, 16.30 vs. 10.50 months, P < 0.0001, HR = 2.45] and erlotinib (median PFS: CC vs. CA, 14.13 vs. 9.47 months, P = 0.041, HR = 2.63). Functionally, the C > A change significantly upregulated USP36 expression by reducing its m6A level. Meanwhile, rs3744797_A (USP36 MUT) was found to facilitate proliferation, migration, and resistance to EGFR-TKIs via upregulating MLLT3 expression in vitro and in vivo. More importantly, MLLT3 and USP36 levels are tightly correlated in patients with NSCLC, which were associated with prognosis of patients. Mechanistically, USP36 MUT stabilized MLLT3 by deubiquitinating MLLT3 in nucleoli and consequently activating its downstream signaling (HIF1α and Snai). Furthermore, inhibition of MLLT3 alleviated USP36 variant-induced EGFR-TKIs resistance in EGFR-mutant NSCLC. CONCLUSIONS These findings characterized rs3744797 as an oncogenic variant in mediating EGFR-TKI resistance and tumor aggressiveness through deubiquitinating MLLT3, highlighting the variant as a predictive biomarker for EGFR-TKI response in NSCLC.
Collapse
Affiliation(s)
- Shaoxing Guan
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangzhou, P.R. China
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, Guangdong Province, P.R. China
| | - Xi Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yuru Wei
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangzhou, P.R. China
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, Guangdong Province, P.R. China
| | - Fei Wang
- Ersha Department of Pharmacy, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Wen Xie
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| | - Youhao Chen
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangzhou, P.R. China
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, Guangdong Province, P.R. China
| | - Heng Liang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangzhou, P.R. China
| | - Xia Zhu
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangzhou, P.R. China
| | - Yunpeng Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Wenfeng Fang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yan Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Hongyun Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xiaoxu Zhang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangzhou, P.R. China
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, Guangdong Province, P.R. China
| | - Shu Liu
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangzhou, P.R. China
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, Guangdong Province, P.R. China
| | - Wei Zhuang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangzhou, P.R. China
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China
| | - Min Huang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangzhou, P.R. China
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, Guangdong Province, P.R. China
| | - Xueding Wang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangzhou, P.R. China
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, Guangdong Province, P.R. China
| | - Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| |
Collapse
|
8
|
Hu Y, Luo M. Cinobufotalin regulates the USP36/c-Myc axis to suppress malignant phenotypes of colon cancer cells in vitro and in vivo. Aging (Albany NY) 2024; 16:5526-5544. [PMID: 38517383 PMCID: PMC11006458 DOI: 10.18632/aging.205661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/04/2024] [Indexed: 03/23/2024]
Abstract
Ubiquitin-specific protease 36 (USP36) has been reported to exhibit oncogenic effects in various malignancies, but the function of USP36 in colon cancer progression remains indefinite. Herein, we aimed to determine the role and mechanism of USP36 in malignant phenotypes of colon cancer cells and explore the potential drug targeting USP36. Bioinformatics analyses indicated that USP36 is highly expressed and significantly related to tumor stages in colon cancer. Besides, USP36 was further up-regulated in oxaliplatin (Oxa)-resistant colon cancer cells. Colony formation, Edu staining, Transwell, wound healing, sphere formation, and CCK-8 assays were conducted and showed that the proliferation, Oxa-resistance, migration, stemness, and invasion of HCT116 cells were promoted after overexpressing USP36, while suppressed by USP36 knockdown. Mechanically, USP36 enhances c-Myc protein stabilization in HCT116 cells via deubiquitination. AutoDock tool and ubiquitin-AMC hydrolysis assay identified cinobufotalin (CBF), an anti-tumor drug, maybe a USP36 inhibitor by inhibiting its deubiquitination activity. CBF significantly prohibited proliferation, migration, invasion, and stemness of HCT116 cells and reversed Oxa-resistance, whereas enforced expression of USP36 blocked these effects. Moreover, in vivo analyses confirmed the oncogenic role of USP36 and the therapeutic potential of CBF in the malignancy of colon cancer. In conclusion, CBF may be a promising therapeutic agent for colon cancer due to its regulation of the USP36/c-Myc axis.
Collapse
Affiliation(s)
- Yongjun Hu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ming Luo
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
9
|
Yan Y, Zhou S, Chen X, Yi Q, Feng S, Zhao Z, Liu Y, Liang Q, Xu Z, Li Z, Sun L. Suppression of ITPKB degradation by Trim25 confers TMZ resistance in glioblastoma through ROS homeostasis. Signal Transduct Target Ther 2024; 9:58. [PMID: 38438346 PMCID: PMC10912509 DOI: 10.1038/s41392-024-01763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/05/2024] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
Temozolomide (TMZ) represents a standard-of-care chemotherapeutic agent in glioblastoma (GBM). However, the development of drug resistance constitutes a significant hurdle in the treatment of malignant glioma. Although specific innovative approaches, such as immunotherapy, have shown favorable clinical outcomes, the inherent invasiveness of most gliomas continues to make them challenging to treat. Consequently, there is an urgent need to identify effective therapeutic targets for gliomas to overcome chemoresistance and facilitate drug development. This investigation used mass spectrometry to examine the proteomic profiles of six pairs of GBM patients who underwent standard-of-care treatment and surgery for both primary and recurrent tumors. A total of 648 proteins exhibiting significant differential expression were identified. Gene Set Enrichment Analysis (GSEA) unveiled notable alterations in pathways related to METABOLISM_OF_LIPIDS and BIOLOGICAL_OXIDATIONS between the primary and recurrent groups. Validation through glioma tissue arrays and the Xiangya cohort confirmed substantial upregulation of inositol 1,4,5-triphosphate (IP3) kinase B (ITPKB) in the recurrence group, correlating with poor survival in glioma patients. In TMZ-resistant cells, the depletion of ITPKB led to an increase in reactive oxygen species (ROS) related to NADPH oxidase (NOX) activity and restored cell sensitivity to TMZ. Mechanistically, the decreased phosphorylation of the E3 ligase Trim25 at the S100 position in recurrent GBM samples accounted for the weakened ITPKB ubiquitination. This, in turn, elevated ITPKB stability and impaired ROS production. Furthermore, ITPKB depletion or the ITPKB inhibitor GNF362 effectively overcome TMZ chemoresistance in a glioma xenograft mouse model. These findings reveal a novel mechanism underlying TMZ resistance and propose ITPKB as a promising therapeutic target for TMZ-resistant GBM.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shangjun Zhou
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Songshan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zijin Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Zhi Li
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China.
- Institute of Cancer Research, National Clinical Research Center for Geriatric Disorders (Xiangya), Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Lunquan Sun
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China.
- Institute of Cancer Research, National Clinical Research Center for Geriatric Disorders (Xiangya), Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
10
|
Li J, Yang D, Lin Y, Xu W, Zhao SM, Wang C. OTUD3 suppresses the mTORC1 signaling by deubiquitinating KPTN. Front Pharmacol 2024; 14:1337732. [PMID: 38288086 PMCID: PMC10822905 DOI: 10.3389/fphar.2023.1337732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
Background: Ubiquitination and deubiquitination modifications play pivotal roles in eukaryotic life processes, regulating protein dynamics via the ubiquitin-proteasome pathway. Dysregulation can impact disease development, including cancer and neurodegenerative disorders. Increasing evidence highlights their role in tumorigenesis, modulating key proteins. OTUD3, a deubiquitinase, stabilizes PTEN, suppressing tumor growth by inhibiting PI3K-AKT signaling. Yet, further OTUD3 substrates remain underexplored. Methods: We employed the In vivo ubiquitination assay to investigate the ubiquitination role of OTUD3 on KPTN within the cellular context. Additionally, CRISPR/Cas9 editing and Immunofluorescence were utilized to study the impact of OTUD3 on the mTOR signaling pathway in cells. Furthermore, Cell proliferation assay and NMR were employed to explore the effects of OTUD3 on cellular growth and proliferation. Results: OTUD3 serves as a deubiquitinase for KPTN. OTUD3 interacts with KPTN, facilitated by the OTU domain within OTUD3. Further investigations confirmed KPTN's ubiquitination modification, primarily at lysine residue 49. Ubiquitination experiments demonstrated OTUD3's ability to mediate KPTN's deubiquitination without affecting its protein levels. This suggests KPTN's ubiquitination is a function-regulated, non-degradable modification. Under various amino acid starvation or stimulation conditions, overexpressing OTUD3 reduces mTORC1 signaling activation, while knocking out OTUD3 further enhances it. Notably, OTUD3's regulation of mTORC1 signaling relies on its deubiquitinase activity, and this effect is observed even in PTEN KO cells, confirming its independence from PTEN, a reported substrate. OTUD3 also promotes GATOR1's lysosomal localization, a process requiring KPTN's involvement. Ultimately, OTUD3 affects cellular metabolic pool products by downregulating the mTORC1 pathway, significantly inhibiting tumor cell growth and proliferation. Discussion: Our experiments shed light on an alternative perspective regarding the intrinsic functions of OTUD3 in inhibiting tumor development. We propose a novel mechanism involving KPTN-mediated regulation of the mTORC1 signaling pathway, offering fresh insights into the occurrence and progression of tumor diseases driven by related genes. This may inspire new approaches for drug screening and cancer treatment, potentially guiding future therapies for relevant tumors.
Collapse
Affiliation(s)
- Jiatao Li
- Institutes of Biomedical Sciences, Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Dan Yang
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Lin
- Institutes of Biomedical Sciences, Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Xu
- Institutes of Biomedical Sciences, Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shi-min Zhao
- Institutes of Biomedical Sciences, Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Chenji Wang
- Institutes of Biomedical Sciences, Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Xia D, Zhu X, Wang Y, Gong P, Su HS, Xu X. Implications of ubiquitination and the maintenance of replication fork stability in cancer therapy. Biosci Rep 2023; 43:BSR20222591. [PMID: 37728310 PMCID: PMC10550789 DOI: 10.1042/bsr20222591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023] Open
Abstract
DNA replication forks are subject to intricate surveillance and strict regulation by sophisticated cellular machinery. Such close regulation is necessary to ensure the accurate duplication of genetic information and to tackle the diverse endogenous and exogenous stresses that impede this process. Stalled replication forks are vulnerable to collapse, which is a major cause of genomic instability and carcinogenesis. Replication stress responses, which are organized via a series of coordinated molecular events, stabilize stalled replication forks and carry out fork reversal and restoration. DNA damage tolerance and repair pathways such as homologous recombination and Fanconi anemia also contribute to replication fork stabilization. The signaling network that mediates the transduction and interplay of these pathways is regulated by a series of post-translational modifications, including ubiquitination, which affects the activity, stability, and interactome of substrates. In particular, the ubiquitination of replication protein A and proliferating cell nuclear antigen at stalled replication forks promotes the recruitment of downstream regulators. In this review, we describe the ubiquitination-mediated signaling cascades that regulate replication fork progression and stabilization. In addition, we discuss the targeting of replication fork stability and ubiquitination system components as a potential therapeutic approach for the treatment of cancer.
Collapse
Affiliation(s)
- Donghui Xia
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM), Dehua Hospital, Dehua, Quanzhou 362500, China
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuefei Zhu
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors and Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Ying Wang
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Peng Gong
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors and Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Hong-Shu Su
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM), Dehua Hospital, Dehua, Quanzhou 362500, China
| | - Xingzhi Xu
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM), Dehua Hospital, Dehua, Quanzhou 362500, China
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
12
|
Igarashi T, Mazevet M, Yasuhara T, Yano K, Mochizuki A, Nishino M, Yoshida T, Yoshida Y, Takamatsu N, Yoshimi A, Shiraishi K, Horinouchi H, Kohno T, Hamamoto R, Adachi J, Zou L, Shiotani B. An ATR-PrimPol pathway confers tolerance to oncogenic KRAS-induced and heterochromatin-associated replication stress. Nat Commun 2023; 14:4991. [PMID: 37591859 PMCID: PMC10435487 DOI: 10.1038/s41467-023-40578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
Activation of the KRAS oncogene is a source of replication stress, but how this stress is generated and how it is tolerated by cancer cells remain poorly understood. Here we show that induction of KRASG12V expression in untransformed cells triggers H3K27me3 and HP1-associated chromatin compaction in an RNA transcription dependent manner, resulting in replication fork slowing and cell death. Furthermore, elevated ATR expression is necessary and sufficient for tolerance of KRASG12V-induced replication stress to expand replication stress-tolerant cells (RSTCs). PrimPol is phosphorylated at Ser255, a potential Chk1 substrate site, under KRASG12V-induced replication stress and promotes repriming to maintain fork progression and cell survival in an ATR/Chk1-dependent manner. However, ssDNA gaps are generated at heterochromatin by PrimPol-dependent repriming, leading to genomic instability. These results reveal a role of ATR-PrimPol in enabling precancerous cells to survive KRAS-induced replication stress and expand clonally with accumulation of genomic instability.
Collapse
Affiliation(s)
- Taichi Igarashi
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Biosciences, School of Science, Kitasato University, Minami-ku, Sagamihara-city, Kanagawa, 252-0373, Japan
| | - Marianne Mazevet
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takaaki Yasuhara
- Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akifumi Mochizuki
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Makoto Nishino
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yukihiro Yoshida
- Department of Thoracic Surgery, National Cancer Center Hospital, Chuo-ku, Tokyo, 104-0045, Japan
| | - Nobuhiko Takamatsu
- Department of Biosciences, School of Science, Kitasato University, Minami-ku, Sagamihara-city, Kanagawa, 252-0373, Japan
| | - Akihide Yoshimi
- Department of Biosciences, School of Science, Kitasato University, Minami-ku, Sagamihara-city, Kanagawa, 252-0373, Japan
- Division of Cancer RNA Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki-city, Osaka, 567-0085, Japan
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
13
|
Boldinova EO, Makarova AV. Regulation of Human DNA Primase-Polymerase PrimPol. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1139-1155. [PMID: 37758313 DOI: 10.1134/s0006297923080084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 10/03/2023]
Abstract
Transmission of genetic information depends on successful completion of DNA replication. Genomic DNA is subjected to damage on a daily basis. DNA lesions create obstacles for DNA polymerases and can lead to the replication blockage, formation of DNA breaks, cell cycle arrest, and apoptosis. Cells have evolutionary adapted to DNA damage by developing mechanisms allowing elimination of lesions prior to DNA replication (DNA repair) and helping to bypass lesions during DNA synthesis (DNA damage tolerance). The second group of mechanisms includes the restart of DNA synthesis at the sites of DNA damage by DNA primase-polymerase PrimPol. Human PrimPol was described in 2013. The properties and functions of this enzyme have been extensively studied in recent years, but very little is known about the regulation of PrimPol and association between the enzyme dysfunction and diseases. In this review, we described the mechanisms of human PrimPol regulation in the context of DNA replication, discussed in detail interactions of PrimPol with other proteins, and proposed possible pathways for the regulation of human PrimPol activity. The article also addresses the association of PrimPol dysfunction with human diseases.
Collapse
Affiliation(s)
- Elizaveta O Boldinova
- Kurchatov Institute National Research Centre, Moscow, 123182, Russia.
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alena V Makarova
- Kurchatov Institute National Research Centre, Moscow, 123182, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
14
|
Deng L, Thakur A, Peng J, Song L, Li Z. Multi-omics analysis of DNA replication-associated primase polymerase (PRIMPOL) in pan-cancer: a potential target for prognosis and immune response. Eur J Med Res 2023; 28:207. [PMID: 37391787 DOI: 10.1186/s40001-023-01181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND It is critical to understand the mechanisms of human cancers in order to develop the effective anti-cancer therapeutic strategies. Recent studies indicated that primase polymerase (PRIMPOL) is strongly associated with the development of human cancers. Nevertheless, a systematic pan-cancer analysis of PRIMPOL remains to be further clarified. METHOD Comprehensive multi-omics bioinformatics algorithms, such as TIMER2.0, GEPIA2.0 and cBioPortal, were utilized to evaluate the biological roles of PRIMPOL in pan-cancer, including the expression profiles, genomic alterations, prognostic values and immune regulation. RESULTS PRIMPOL was upregulated in glioblastoma multiforme and kidney renal clear cell carcinoma. The brain lower grade glioma patients with enhanced PRIMPOL expression displayed poor prognostic values. We also demonstrated the PRIMPOL's immunomodulating effects on pan-cancer as well as its genomic changes and methylation levels. The aberrant expression of PRIMPOL was linked to various cancer-associated pathways, including DNA damage response, DNA repair, and angiogenesis, according to single-cell sequencing and function enrichment. CONCLUSIONS This pan-cancer analysis offers a thorough review of the functional roles of PRIMPOL in human cancers, suggesting PRIMPOL as a potentially important biomarker for the progression and immunotherapy of various cancers.
Collapse
Affiliation(s)
- Langmei Deng
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May, Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liying Song
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhilan Li
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan, China.
| |
Collapse
|
15
|
Saldanha J, Rageul J, Patel JA, Kim H. The Adaptive Mechanisms and Checkpoint Responses to a Stressed DNA Replication Fork. Int J Mol Sci 2023; 24:10488. [PMID: 37445667 PMCID: PMC10341514 DOI: 10.3390/ijms241310488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
DNA replication is a tightly controlled process that ensures the faithful duplication of the genome. However, DNA damage arising from both endogenous and exogenous assaults gives rise to DNA replication stress associated with replication fork slowing or stalling. Therefore, protecting the stressed fork while prompting its recovery to complete DNA replication is critical for safeguarding genomic integrity and cell survival. Specifically, the plasticity of the replication fork in engaging distinct DNA damage tolerance mechanisms, including fork reversal, repriming, and translesion DNA synthesis, enables cells to overcome a variety of replication obstacles. Furthermore, stretches of single-stranded DNA generated upon fork stalling trigger the activation of the ATR kinase, which coordinates the cellular responses to replication stress by stabilizing the replication fork, promoting DNA repair, and controlling cell cycle and replication origin firing. Deregulation of the ATR checkpoint and aberrant levels of chronic replication stress is a common characteristic of cancer and a point of vulnerability being exploited in cancer therapy. Here, we discuss the various adaptive responses of a replication fork to replication stress and the roles of ATR signaling that bring fork stabilization mechanisms together. We also review how this knowledge is being harnessed for the development of checkpoint inhibitors to trigger the replication catastrophe of cancer cells.
Collapse
Affiliation(s)
- Joanne Saldanha
- The Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Julie Rageul
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jinal A. Patel
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hyungjin Kim
- The Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
16
|
Lee JS, Ko CS, Seo YW. Oat AsDA1-2D enhances heat stress tolerance and negatively regulates seed-storage globulin. JOURNAL OF PLANT PHYSIOLOGY 2023; 284:153981. [PMID: 37054580 DOI: 10.1016/j.jplph.2023.153981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The importance of oats has increased because of their high nutritional value and health benefits in the human diet. High-temperature stress during the reproductive growth period has a detrimental effect on grain morphology by changing the structure and concentration of several seed-storage proteins. DA1, a conserved ubiquitin-proteasome pathway component, plays an important role in regulating grain size by controlling cell proliferation in maternal integuments during the grain-filling stage. However, there have been no reports or studies on oat DA1 genes. In this study, we identified three DA1-like genes (AsDA1-2D, AsDA1-5A, and AsDA1-1D) using genome-wide analysis. Among these, AsDA1-2D was found to be responsible for high-temperature stress tolerance via a yeast thermotolerance assay. The physical interaction of AsDA1-2D with oat-storage-globulin (AsGL-4D) and a protease inhibitor (AsPI-4D) was observed using yeast two-hybrid screening. A subcellular localization assay revealed that AsDA1-2D and its interacting proteins are localized in the cytosol and plasma membrane. An in vitro pull-down assay showed that AsDA1-2D forms a complex with both AsPI-4D and AsGL-4D. An in vitro cell-free degradation assay showed that AsGL-4D was degraded by AsDA1-2D under high-temperature conditions and that AsPI-4D inhibited the function of AsDA1-2D. These results suggest that AsDA1-2D acts as a cysteine protease and negatively regulates oat-grain-storage-globulin under heat stress.
Collapse
Affiliation(s)
- Joo Sun Lee
- Department of Plant Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Chan Seop Ko
- Department of Plant Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu, Jeongeup, 56212, Republic of Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Ojeong Plant Breeding Research Center, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
17
|
Min Y, Park HB, Baek KH, Hwang S. Cellular Functions of Deubiquitinating Enzymes in Ovarian Adenocarcinoma. Genes (Basel) 2023; 14:genes14040886. [PMID: 37107644 PMCID: PMC10137459 DOI: 10.3390/genes14040886] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
In ovarian cancer patients, the 5-year survival rate is 90% for stages I and II, but only 30% for stages III and IV. Unfortunately, as 75% of the patients are diagnosed at stages III and IV, many experience a recurrence. To ameliorate this, it is necessary to develop new biomarkers for early diagnosis and treatment. The ubiquitin-proteasome system is a post-translational modification that plays an important role in regulating protein stability through ubiquitination. In particular, deubiquitinating enzymes (DUBs) regulate protein stability through deubiquitinating substrate proteins. In this review, DUBs and substrates regulated by these enzymes are summarized based on their functions in ovarian cancer cells. This would be useful for the discovery of biomarkers for ovarian cancer and developing new therapeutic candidates.
Collapse
Affiliation(s)
- Yosuk Min
- Department of Biomedical Science, CHA University, Seongnam 13488, Gyeonggi-do, Republic of Korea
| | - Hong-Beom Park
- Department of Biomedical Science, CHA University, Seongnam 13488, Gyeonggi-do, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Seongnam 13488, Gyeonggi-do, Republic of Korea
| | - Sohyun Hwang
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Gyeonggi-do, Republic of Korea
- CHA Future Medicine Research Institute, CHA Bundang Medical Center, Seongnam 13496, Gyeonggi-do, Republic of Korea
| |
Collapse
|
18
|
Li Y, Carey TS, Feng CH, Zhu HM, Sun XX, Dai MS. The Ubiquitin-specific Protease USP36 Associates with the Microprocessor Complex and Regulates miRNA Biogenesis by SUMOylating DGCR8. CANCER RESEARCH COMMUNICATIONS 2023; 3:459-470. [PMID: 36950067 PMCID: PMC10026737 DOI: 10.1158/2767-9764.crc-22-0344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
miRNA biogenesis is a cellular process that produces mature miRNAs from their primary transcripts, pri-miRNAs, via two RNAse III enzyme complexes: the Drosha-DGCR8 microprocessor complex in the nucleus and the Dicer-TRBP complex in the cytoplasm. Emerging evidence suggests that miRNA biogenesis is tightly regulated by posttranscriptional and posttranslational modifications and aberrant miRNA biogenesis is associated with various human diseases including cancer. DGCR8 has been shown to be modified by SUMOylation. Yet, the SUMO ligase mediating DGCR8 SUMOylation is currently unknown. Here, we report that USP36, a nucleolar ubiquitin-specific protease essential for ribosome biogenesis, is a novel regulator of DGCR8. USP36 interacts with the microprocessor complex and promotes DGCR8 SUMOylation, specifically modified by SUMO2. USP36-mediated SUMOylation does not affect the levels of DGCR8 and the formation of the Drosha-DGCR8 complex, but promotes the binding of DGCR8 to pri-miRNAs. Consistently, abolishing DGCR8 SUMOylation significantly attenuates its binding to pri-miRNAs and knockdown of USP36 attenuates pri-miRNA processing, resulting in marked reduction of tested mature miRNAs. Induced expression of a SUMOylation-defective mutant of DGCR8 inhibits cell proliferation. Together, these results suggest that USP36 plays an important role in regulating miRNA biogenesis by SUMOylating DGCR8. Significance This study identifies that USP36 mediates DGCR8 SUMOylation by SUMO2 and is critical for miRNA biogenesis. As USP36 is frequently overexpressed in various human cancers, our study suggests that deregulated USP36-miRNA biogenesis pathway may contribute to tumorigenesis.
Collapse
Affiliation(s)
- Yanping Li
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Timothy S. Carey
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Catherine H. Feng
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Hong-Ming Zhu
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
19
|
Wu H, Jiao Y, Zhou C, Guo X, Wu Z, Lv Q. miR-140-3p/usp36 axis mediates ubiquitination to regulate PKM2 and suppressed the malignant biological behavior of breast cancer through Warburg effect. Cell Cycle 2023; 22:680-692. [PMID: 36305548 PMCID: PMC9980702 DOI: 10.1080/15384101.2022.2139554] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/03/2022] Open
Abstract
Breast cancer is a phenomenon in which breast epithelial cells proliferate out of control under the action of various carcinogenic factors. However, the role of USP36 in breast cancer is unknown. We analyzed the expression of USP36 in breast cancer and its association with poor prognosis in breast cancer patients. The effect of USP36 on malignant biological behavior of breast cancer was verified by cell functional experiments. The upstream regulatory mechanism of USP36 was analyzed by Western blot and quantitative RT-qPCR. The influence of USP36 on the Warburg effect of breast cancer was analyzed by detecting the metabolism of cellular energy substances. We found that USP36 is highly expressed in breast tumor tissues and breast cancer cell lines. High expression of USP36 predicts poor prognosis in patients with breast cancer. Effectively reducing the expression of USP36 can significantly inhibit the proliferation, invasion and migration of breast cancer cells, and promote the apoptosis of breast cancer cells. Meanwhile, inhibiting the expression of USP36 can significantly inhibit the production of ATP, lactate, pyruvate and glucose uptake in breast cancer cells. miR-140-3p is an upstream regulator of USP36, which can partially reverse the regulatory effect of USP36 on breast cancer cells. Importantly, USP36 regulates the expression of PKM2 through ubiquitination, which plays a role in regulating the Warburg effect. We confirmed that miR-140-3p regulates the expression of USP36, which mediates ubiquitination and regulates the expression of PKM2, and regulates the malignant biological behavior of breast cancer through the energy metabolism process.
Collapse
Affiliation(s)
- Hao Wu
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yile Jiao
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Zhou
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyi Guo
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenru Wu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Lv
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Zhang W, Luo J, Xiao Z, Zang Y, Li X, Zhou Y, Zhou J, Tian Z, Zhu J, Zhao X. USP36 facilitates esophageal squamous carcinoma progression via stabilizing YAP. Cell Death Dis 2022; 13:1021. [PMID: 36470870 PMCID: PMC9722938 DOI: 10.1038/s41419-022-05474-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Esophageal squamous carcinoma (ESCC) is the major subtype of esophageal cancer in China, accounting for 90% of cases. Recent studies revealed that abnormalities in the Hippo/YAP axis are pervasive in ESCC and are recognized as the important driver of ESCC progression. Since the activity of Hippo signaling is controlled by phosphorylation cascade, it is a mystery why the major effector YAP is still over-activated when the cascade is inhibited. Several studies suggested that in addition to phosphorylation, other protein modifications such as ubiquitination also play important roles in manipulating Hippo/YAP signaling activity. Since YAP protein stability is controlled via an appropriate balance between E3 ubiquitin ligases and deubiquitinases, we performed deubiquitinase siRNA screening and identified USP36 as a deubiquitinase significantly related to Hippo/YAP signaling activity and ESCC progression. USP36 expression was elevated in ESCC samples and correlated with poor differentiation. USP36 expression was correlated with YAP protein levels in ESCC samples. Molecular studies demonstrated that USP36 associated with the YAP protein and enhanced YAP protein stability by blocking the K48-linked polyubiquitination of YAP. In conclusion, our study revealed a novel deubiquitinase in regulating Hippo signaling in ESCC, which could be an encouraging drug target for Hippo-driven ESCC.
Collapse
Affiliation(s)
- Wenhao Zhang
- grid.27255.370000 0004 1761 1174Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong Province, People’s Republic of China
| | - Junwen Luo
- grid.27255.370000 0004 1761 1174Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong Province, People’s Republic of China
| | - Zhaohua Xiao
- grid.27255.370000 0004 1761 1174Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong Province, People’s Republic of China
| | - Yifeng Zang
- grid.27255.370000 0004 1761 1174Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong Province, People’s Republic of China
| | - Xin Li
- grid.412990.70000 0004 1808 322XXinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Yougjia Zhou
- grid.27255.370000 0004 1761 1174Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong Province, People’s Republic of China
| | - Jie Zhou
- grid.27255.370000 0004 1761 1174Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong Province, People’s Republic of China
| | - Zhongxian Tian
- grid.27255.370000 0004 1761 1174Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong Province, People’s Republic of China ,grid.27255.370000 0004 1761 1174Key Laboratory of Thoracic Cancer in Universities of Shandong, Shandong University, Shandong Province, People’s Republic of China
| | - Jian Zhu
- grid.27255.370000 0004 1761 1174Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong Province, People’s Republic of China
| | - Xiaogang Zhao
- grid.27255.370000 0004 1761 1174Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong Province, People’s Republic of China ,grid.27255.370000 0004 1761 1174Key Laboratory of Thoracic Cancer in Universities of Shandong, Shandong University, Shandong Province, People’s Republic of China
| |
Collapse
|
21
|
Chen S, Cai K, Zheng D, Liu Y, Li L, He Z, Sun C, Yu C. RHBDL2 promotes the proliferation, migration, and invasion of pancreatic cancer by stabilizing the N1ICD via the OTUD7B and activating the Notch signaling pathway. Cell Death Dis 2022; 13:945. [PMID: 36351890 PMCID: PMC9646733 DOI: 10.1038/s41419-022-05379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
Pancreatic cancer (PC) is one of the most malignant types of cancer, and is characterized by early metastasis, limited response to chemotherapeutics, and poor prognosis. Therefore, there is an urgent need to explore new therapeutic strategies for PC treatment. Human rhomboid-like 2 (RHBDL2) is differentially expressed in cervical and breast cancer. However, the correlation between RHBDL2 and PC remains unclear. We found that RHBDL2 is highly expressed in human PC cells and tissues and is significantly associated with distant metastasis and poor survival of patients with PC. Gain- and loss-of-function assays indicated that RHBDL2 could accelerate PC cell proliferation and mobility in vitro and in vivo. The RNA-Seq results suggest that RHBDL2 may be involved in the activation of Notch signaling pathway. IMR-1 could restore the proliferation and metastatic capacity of PC cells mediated by RHBDL2. RHBDL2 interacted with and cleaved Notch1, resulting in the release of N1ICD. RHBDL2 decreased the ubiquitination level of N1ICD and collaborated with Ovarian tumor domain-containing 7B (OTUD7B) to stabilize N1ICD via the ubiquitin-proteasome pathway. RHBDL2 facilitated PC cell proliferation and mobility by stabilizing the N1ICD via the OTUD7B and activating the Notch signaling pathway. Thus, targeting this novel pathway may be a potential therapeutic strategy for PC.
Collapse
Affiliation(s)
- Shiyu Chen
- grid.452244.1Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004 China ,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou 550004 China ,Guizhou Provincial Clinical Medical Research Center of Hepatobiliary Surgery, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891Department of Translational Medicine, College of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891Guizhou Medical University, Guiyang, Guizhou 550004 China
| | - Kun Cai
- grid.452244.1Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004 China ,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou 550004 China ,Guizhou Provincial Clinical Medical Research Center of Hepatobiliary Surgery, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891Guizhou Medical University, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891Department of Surgery, College of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004 China
| | - Dijie Zheng
- grid.452244.1Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004 China ,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou 550004 China ,Guizhou Provincial Clinical Medical Research Center of Hepatobiliary Surgery, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891Guizhou Medical University, Guiyang, Guizhou 550004 China
| | - Yanqing Liu
- grid.452244.1Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004 China ,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou 550004 China ,Guizhou Provincial Clinical Medical Research Center of Hepatobiliary Surgery, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891Department of Translational Medicine, College of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891Guizhou Medical University, Guiyang, Guizhou 550004 China
| | - Lin Li
- grid.452244.1Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004 China ,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou 550004 China ,Guizhou Provincial Clinical Medical Research Center of Hepatobiliary Surgery, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891Department of Translational Medicine, College of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891Guizhou Medical University, Guiyang, Guizhou 550004 China
| | - Zhiwei He
- grid.452244.1Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004 China ,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou 550004 China ,Guizhou Provincial Clinical Medical Research Center of Hepatobiliary Surgery, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891Guizhou Medical University, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891Department of Surgery, College of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004 China
| | - Chengyi Sun
- grid.452244.1Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004 China ,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou 550004 China ,Guizhou Provincial Clinical Medical Research Center of Hepatobiliary Surgery, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891Guizhou Medical University, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891Department of Surgery, College of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004 China
| | - Chao Yu
- grid.452244.1Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004 China ,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou 550004 China ,Guizhou Provincial Clinical Medical Research Center of Hepatobiliary Surgery, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891Guizhou Medical University, Guiyang, Guizhou 550004 China ,grid.413458.f0000 0000 9330 9891Department of Surgery, College of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004 China
| |
Collapse
|
22
|
Ling H, Cao CH, Han K, Lv YR, Ma XD, Cao JH, Chen JW, Li S, Lin JL, Fang YJ, Pan ZZ, Xie D, Wang FW. CEP63 upregulates YAP1 to promote colorectal cancer progression through stabilizing RNA binding protein FXR1. Oncogene 2022; 41:4433-4445. [PMID: 35989368 DOI: 10.1038/s41388-022-02439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022]
Abstract
Abnormal regulation of centrosome components can induce chromosome instability and tumorigenesis. Centrosomal protein 63 (CEP63) is a vital member for assembling centrosome. Yet, the involvement of CEP63 in cancer pathogenesis remains unclear. Here we identify CEP63 as an important mediator for RNA-binding proteins (RBPs) to facilitate regulation on their RNA targets in colorectal cancer (CRC). We demonstrate that CEP63 protein is upregulated in a large cohort of colorectal cancer tissues and predicts poor prognosis, and USP36 is identified for stabilizing CEP63 by enhancing its K48-dependent deubiquitination. CEP63 overexpression promotes the proliferation and tumor growth of CRC cells in vitro and in vivo. Furthermore, we find that CEP63 can promote cancer stem-like cell properties by enhancing YAP1 expression through binding with and inhibiting the K63-ubiquitylation degradation of RBP FXR1 in CRC cells. Importantly, we further verify that the KH domain of FXR1 is necessary for the interaction between CEP63 and FXR1. Moreover, microtube motor proteins can form a complex with CEP63 and FXR1 to mediate the regulation of FXR1 on RNA targets. Additionally, we also confirm that CEP63 can bind and regulate multiple RBPs. In conclusion, our findings unveil an unrecognized CEP63/RBPs/RNA axis that CEP63 may perform as an adapter facilitating the formation of RBPs complex to regulate RNA progression and discover the role of CEP63 involved in signal transduction and RNA regulation, providing potential therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Han Ling
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Chen-Hui Cao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Kai Han
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yong-Rui Lv
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Xiao-Dan Ma
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Jing-Hua Cao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Jie-Wei Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Si Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Jin-Long Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Yu-Jing Fang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhi-Zhong Pan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Dan Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China. .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Feng-Wei Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| |
Collapse
|
23
|
Xu Z, Peng B, Kang F, Zhang W, Xiao M, Li J, Hong Q, Cai Y, Liu W, Yan Y, Peng J. The Roles of Drug Metabolism-Related ADH1B in Immune Regulation and Therapeutic Response of Ovarian Cancer. Front Cell Dev Biol 2022; 10:877254. [PMID: 35756990 PMCID: PMC9218672 DOI: 10.3389/fcell.2022.877254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/29/2022] [Indexed: 12/19/2022] Open
Abstract
Background: The different pharmacological effects of drugs in different people can be explained by the polymorphisms of drug metabolism-related genes. Emerging studies have realized the importance of drug metabolism-related genes in the treatment and prognosis of cancers, including ovarian cancer (OV). In this study, using comprehensive bioinformatics and western blot, we identified that the drug metabolism-related gene, ADH1B, was significantly down-regulated in OV cells and tissues. The patients with a high level of ADH1B presented a good prognosis. We also found a negative correlation between ADH1B expression and the activity of chemotherapeutic agents, such as cyclophosphamide. In addition, positive correlations were observed between ADH1B expression and multiple immune checkpoints, including LAG3 and HAVCR2. The immune infiltration analysis further indicated that aberrantly expressed ADH1B might have important roles in regulating the infiltration of macrophages and neutrophils in OV tissues. Then, the co-expression analysis was conducted and the top three enriched KEGG pathways were spliceosome, RNA transport, and DNA replication. In conclusion, the drug metabolism-related gene ADH1B and its interactive network play an essential role in the immune regulation and therapeutic response and maybe identified as promising therapeutic targets for OV patients.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fanhua Kang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Wenqin Zhang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Muzhang Xiao
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jianbo Li
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Qianhui Hong
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Liu
- Department of Orthopedic Surgery, The Second Hospital University of South China, Hengyang, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, Xiangya Changde Hospital, Changde, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Liu T, Ma L, Song L, Yan B, Zhang S, Wang B, Zuo N, Sun X, Deng Y, Ren Q, Li Y, Zhou J, Liu Q, Wei L. CENPM upregulation by E5 oncoprotein of human papillomavirus promotes radiosensitivity in head and neck squamous cell carcinoma. Oral Oncol 2022; 129:105858. [DOI: 10.1016/j.oraloncology.2022.105858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/10/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
|
25
|
Jiang H, Wang Y, Wang J, Wang Y, Wang S, He E, Guo J, Xie Y, Wang J, Li X, Peng Z, Wang M, Hou J, Liu Z. Posttranslational modification of Aurora A-NSD2 loop contributes to drug resistance in t(4;14) multiple myeloma. Clin Transl Med 2022; 12:e744. [PMID: 35389552 PMCID: PMC8989081 DOI: 10.1002/ctm2.744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Background t(4;14)(p16;q32) cytogenetic abnormality renders high level of histone methyltransferase NSD2 in multiple myeloma (MM) patients, and predicts poor clinical prognosis, but mechanisms of NSD2 in promoting chemoresistance have not been well elucidated. Methods An epigenetics compound library containing 181 compounds was used to screen inhibitors possessing a prior synergistic effect with bortezomib (BTZ) in vitro. Molecular biology techniques were applied to uncover underlying mechanisms. Transcriptome profile assay was performed by RNA‐seq. NSG mouse‐based xenograft model and intra‐bone model were applied to qualify the synergistic effect in vivo. Results We identified an Aurora kinase A inhibitor (MLN8237) possessed a significant synergistic effect with BTZ on t(4;14) positive MM cells. Aurora A protein level positively correlated with NSD2 level, and gain‐ and loss‐of‐functions of Aurora A correspondingly altered NSD2 protein and H3K36me2 levels. Mechanistically, Aurora A phosphorylated NSD2 at S56 residue to protect the protein from cleavage and degradation, thus methylation of Aurora A and phosphorylation of NSD2 bilaterally formed a positive regulating loop. Transcriptome profile assay of MM cells with AURKA depletion identified IL6R, STC2 and TCEA2 as the downstream target genes responsible for BTZ‐resistance (BR). Clinically, higher expressions of these genes correlated with poorer outcomes of MM patients. Combined administration of MLN8237 and BTZ significantly suppressed tumour growth in LP‐1 cells derived xenografts, and remarkably alleviated bone lesion in femurs of NSG mice. Conclusions Aurora A phosphorylates NSD2 at S56 residue to enhance NSD2 methyltransferase activity and form a positive regulating loop in promoting MM chemoresistance, thus pharmacologically targeting Aurora A sensitizes t(4;14) positive MM to the proteasome inhibitors treatment. Our study uncovers a previously unknown reason of MM patients with t(4;14) engendering chemoresistance, and provides a theoretical basis for developing new treatment strategy for MM patients with different genomic backgrounds.
Collapse
Affiliation(s)
- Hongmei Jiang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Yixuan Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Jingjing Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Yafei Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Sheng Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Enyang He
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Jing Guo
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ying Xie
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Jingya Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Xin Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Ziyi Peng
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Mengqi Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Jian Hou
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiang Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
26
|
Mehta KPM, Thada V, Zhao R, Krishnamoorthy A, Leser M, Lindsey Rose K, Cortez D. CHK1 phosphorylates PRIMPOL to promote replication stress tolerance. SCIENCE ADVANCES 2022; 8:eabm0314. [PMID: 35353580 PMCID: PMC8967226 DOI: 10.1126/sciadv.abm0314] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/07/2022] [Indexed: 05/02/2023]
Abstract
Replication-coupled DNA repair and damage tolerance mechanisms overcome replication stress challenges and complete DNA synthesis. These pathways include fork reversal, translesion synthesis, and repriming by specialized polymerases such as PRIMPOL. Here, we investigated how these pathways are used and regulated in response to varying replication stresses. Blocking lagging-strand priming using a POLα inhibitor slows both leading- and lagging-strand synthesis due in part to RAD51-, HLTF-, and ZRANB3-mediated, but SMARCAL1-independent, fork reversal. ATR is activated, but CHK1 signaling is dampened compared to stalling both the leading and lagging strands with hydroxyurea. Increasing CHK1 activation by overexpressing CLASPIN in POLα-inhibited cells promotes replication elongation through PRIMPOL-dependent repriming. CHK1 phosphorylates PRIMPOL to promote repriming irrespective of the type of replication stress, and this phosphorylation is important for cellular resistance to DNA damage. However, PRIMPOL activation comes at the expense of single-strand gap formation, and constitutive PRIMPOL activity results in reduced cell fitness.
Collapse
Affiliation(s)
| | - Vaughn Thada
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | - Runxiang Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | - Archana Krishnamoorthy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | - Micheal Leser
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | - Kristie Lindsey Rose
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | | |
Collapse
|
27
|
Díaz-Talavera A, Montero-Conde C, Leandro-García LJ, Robledo M. PrimPol: A Breakthrough among DNA Replication Enzymes and a Potential New Target for Cancer Therapy. Biomolecules 2022; 12:248. [PMID: 35204749 PMCID: PMC8961649 DOI: 10.3390/biom12020248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
DNA replication can encounter blocking obstacles, leading to replication stress and genome instability. There are several mechanisms for evading this blockade. One mechanism consists of repriming ahead of the obstacles, creating a new starting point; in humans, PrimPol is responsible for carrying out this task. PrimPol is a primase that operates in both the nucleus and mitochondria. In contrast with conventional primases, PrimPol is a DNA primase able to initiate DNA synthesis de novo using deoxynucleotides, discriminating against ribonucleotides. In vitro, PrimPol can act as a DNA primase, elongating primers that PrimPol itself sythesizes, or as translesion synthesis (TLS) DNA polymerase, elongating pre-existing primers across lesions. However, the lack of evidence for PrimPol polymerase activity in vivo suggests that PrimPol only acts as a DNA primase. Here, we provide a comprehensive review of human PrimPol covering its biochemical properties and structure, in vivo function and regulation, and the processes that take place to fill the gap-containing lesion that PrimPol leaves behind. Finally, we explore the available data on human PrimPol expression in different tissues in physiological conditions and its role in cancer.
Collapse
Affiliation(s)
- Alberto Díaz-Talavera
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (C.M.-C.); (L.J.L.-G.); (M.R.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Cristina Montero-Conde
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (C.M.-C.); (L.J.L.-G.); (M.R.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Luis Javier Leandro-García
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (C.M.-C.); (L.J.L.-G.); (M.R.)
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (C.M.-C.); (L.J.L.-G.); (M.R.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
28
|
Li X, Yang C, Luo N, Yang Y, Guo Y, Chen P, Cun B. Ubiquitination and degradation of MGMT by TRIM72 increases the sensitivity of uveal melanoma cells to Dacarbazine treatment. Cancer Biomark 2021; 34:275-284. [PMID: 34958003 DOI: 10.3233/cbm-210345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults with high metastasis rates. The O6-methylguanine DNA methyl transferase (MGMT) is involved in chemoresistance of Dacarbazine (DTIC) treatment. Our previous study found that the combination of oncolytic adenovirus H101 and DTIC in the treatment of UM cells shows a synergistic antitumor effect mainly though down-regulation of MGMT. MGMT knockdown by shRNAs increases the sensitivity of uveal melanoma cells to DTIC treatment. The protein hemostasis of MGMT is important for the antitumor effect of DTIC. Tripartite motif-containing protein 72 (TRIM72) belongs to the tripartite motif (TRIM) proteins family and was identified as a novel E3 ligase for MGMT, which interacts with and mediates the ubiquitination of MGMT. TRIM72 knockdown increases the protein levels of MGMT, while reduces the ubiquitination of MGMT. Further study indicated that MGMT is highly expressed in UM cells, and the protein levels of MGMT and TRIM72 shows a negative correlation. UM cells that ectopically expressing TRIM72 shows increased sensitivity to DTIC treatment, which is consistent with the antitumor affect exhibited by H101. These results suggest that TRIM72 is a promising therapeutic target for UM treatment.
Collapse
Affiliation(s)
- Xun Li
- Department of Clinical Skills Center, Kunming Medical University, Kunming, Yunnan, China.,Department of Clinical Skills Center, Kunming Medical University, Kunming, Yunnan, China
| | - Cong Yang
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Clinical Skills Center, Kunming Medical University, Kunming, Yunnan, China
| | - Ning Luo
- Department of Clinical Skills Center, Kunming Medical University, Kunming, Yunnan, China
| | - Yunzhi Yang
- Department of Clinical Skills Center, Kunming Medical University, Kunming, Yunnan, China
| | - Yan Guo
- Department of Clinical Skills Center, Kunming Medical University, Kunming, Yunnan, China
| | - Ping Chen
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Biyun Cun
- Department of Clinical Skills Center, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
29
|
Xu R, Lu T, Zhao J, Li Q, Wang J, Peng B, Liu J, Zhang P, Qu L, Chang X, Yao L, Zhang L. Identification of ubiquitinated substrate proteins and their gene expression patterns in lung adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1692. [PMID: 34988201 PMCID: PMC8667112 DOI: 10.21037/atm-21-5645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022]
Abstract
Background Lung cancer is a malignant disease with the highest cancer-related mortality rate. In lung adenocarcinoma (LUAD), protein ubiquitination can regulate multiple biological processes. A LUAD ubiquitylome analysis has not yet been reported. Methods We used for the first time ion mobility into liquid chromatography-mass spectrometry to perform accurate and reliable ubiquitylome and proteomic analysis of clinical LUAD and normal tissues and combined it with transcriptome data obtained from public databases. Ubiquitinated protein substrates and their gene expression pattern landscapes in LUAD were identified using bioinformatics methods. Results Our data revealed a ubiquitination landscape in LUAD and identified characteristic protein ubiquitination motifs. We found that the ubiquitinated peptide motifs in LUAD were completely different from those of previously published lung squamous cell carcinoma (LUSC). Moreover, we identified two gene expression patterns of ubiquitinated proteins and revealed that survival differences between these patterns may be correlated with the tumor immune infiltrating microenvironment. Finally, we constructed a prognostic predictive model to quantify the relationship between expression patterns and survival. We found a relationship between the patient-applied model score and multiple drug sensitivity. Therefore, our model can serve as a guide for LUAD clinical treatment. Conclusions Our work addresses the lack of ubiquitylome studies in LUAD and provides new perspectives for subsequent research and clinical treatment.
Collapse
Affiliation(s)
- Ran Xu
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Tong Lu
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Jiaying Zhao
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Qi Li
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Jun Wang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Bo Peng
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Jian Liu
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Pengfei Zhang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Lidong Qu
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Xiaoyan Chang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Lingqi Yao
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Linyou Zhang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
30
|
Yang L, Zheng S, Liu Q, Liu T, Zhang Q, Han X, Tuerxun A, Lu X. Plasma‑derived exosomal pyruvate kinase isoenzyme type M2 accelerates the proliferation and motility of oesophageal squamous cell carcinoma cells. Oncol Rep 2021; 46:216. [PMID: 34396437 PMCID: PMC8377463 DOI: 10.3892/or.2021.8167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/17/2021] [Indexed: 01/15/2023] Open
Abstract
Exosomal pyruvate kinase isoenzyme type M2 (PKM2) has been found to play a key role in the progression of human hepatocarcinoma. However, exosomal PKM2 (especially plasma‑derived exosomal PKM2), in patients with oesophageal squamous cell carcinoma (ESCC) has not been well defined. In the present study, plasma‑derived exosomes were isolated from healthy controls and patients with ESCC, and identified by transmission electronic microscopy, western blotting, nano‑flow cytometry, nanoparticle tracking and phagocytosis analysis; exosomal PKM2 was detected by western blotting and ELISA. In addition, changes in cellular proliferation and motility in recipient cells (Eca109) were assessed using Cell Counting Kit‑8, colony formation, wound‑healing and Transwell assays. The PKM2 content was higher in exosomes from patients with ESCC than in those from healthy donors. Furthermore, exosomes from patients with ESCC enhanced the proliferation and motility of ESCC cells in vitro. Notably, PKM2 was found to be transferred by exosomes, and was able to act by activating STAT3. To verify the association between PKM2 and STAT3, immunohistochemistry was employed to analyse the protein levels of PKM2 and pSTAT3Tyr705. These data revealed that PKM2 and pSTAT3Tyr705 were upregulated and associated with overall survival in patients with ESCC. Therefore, the present study highlights that exosomes from patients with ESCC enhance the migration and invasiveness of ESCC cells by transferring PKM2.
Collapse
Affiliation(s)
- Lifei Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
- First Department of Lung Cancer Chemotherapy, Cancer Hospital Affiliated with Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 83000, P.R. China
| | - Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Tao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 83000, P.R. China
| | - Qiqi Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Xiujuan Han
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Aerziguli Tuerxun
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
- XinJiang Branch of Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumqi, Xinjiang Uygur Autonomous Region 83000, P.R. China
| |
Collapse
|
31
|
Bainbridge LJ, Teague R, Doherty AJ. Repriming DNA synthesis: an intrinsic restart pathway that maintains efficient genome replication. Nucleic Acids Res 2021; 49:4831-4847. [PMID: 33744934 PMCID: PMC8136793 DOI: 10.1093/nar/gkab176] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/25/2022] Open
Abstract
To bypass a diverse range of fork stalling impediments encountered during genome replication, cells possess a variety of DNA damage tolerance (DDT) mechanisms including translesion synthesis, template switching, and fork reversal. These pathways function to bypass obstacles and allow efficient DNA synthesis to be maintained. In addition, lagging strand obstacles can also be circumvented by downstream priming during Okazaki fragment generation, leaving gaps to be filled post-replication. Whether repriming occurs on the leading strand has been intensely debated over the past half-century. Early studies indicated that both DNA strands were synthesised discontinuously. Although later studies suggested that leading strand synthesis was continuous, leading to the preferred semi-discontinuous replication model. However, more recently it has been established that replicative primases can perform leading strand repriming in prokaryotes. An analogous fork restart mechanism has also been identified in most eukaryotes, which possess a specialist primase called PrimPol that conducts repriming downstream of stalling lesions and structures. PrimPol also plays a more general role in maintaining efficient fork progression. Here, we review and discuss the historical evidence and recent discoveries that substantiate repriming as an intrinsic replication restart pathway for maintaining efficient genome duplication across all domains of life.
Collapse
Affiliation(s)
- Lewis J Bainbridge
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, UK
| | - Rebecca Teague
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, UK
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, UK
| |
Collapse
|
32
|
Qiu W, Cai X, Xu K, Song S, Xiao Z, Hou Y, Qi X, Liu F, Chen Y, Yang H, Chu L, Liu J. PRL1 Promotes Glioblastoma Invasion and Tumorigenesis via Activating USP36-Mediated Snail2 Deubiquitination. Front Oncol 2021; 11:795633. [PMID: 35111679 PMCID: PMC8801937 DOI: 10.3389/fonc.2021.795633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Regenerating liver phosphatase 1 (PRL1) is an established oncogene in various cancers, although its biological function and the underlying mechanisms in glioblastoma multiforme (GBM) remain unclear. Here, we showed that PRL1 was significantly upregulated in glioma tissues and cell lines, and positively correlated with the tumor grade. Consistently, ectopic expression of PRL1 in glioma cell lines significantly enhanced their tumorigenicity and invasion both in vitro and in vivo by promoting epithelial-mesenchymal transition (EMT). Conversely, knocking down PRL1 blocked EMT in GBM cells, and inhibited their invasion, migration and tumorigenic growth. Additionally, PRL1 also stabilized Snail2 through its deubiquitination by activating USP36, thus revealing Snail2 as a crucial mediator of the oncogenic effects of PRL1 in GBM pathogenesis. Finally, PRL1 protein levels were positively correlated with that of Snail2 and predicted poor outcome of GBMs. Collectively, our data support that PRL1 promotes GBM progression by activating USP36-mediated Snail2 deubiquitination. This novel PRL1/USP36/Snail2 axis may be a promising therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Wenjin Qiu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiaomin Cai
- Department of Neurosurgery, School of Medicine, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Kaya Xu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shibin Song
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zumu Xiao
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yunan Hou
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Feng Liu
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yimin Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hua Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Liangzhao Chu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Jian Liu, ; Liangzhao Chu,
| | - Jian Liu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
- *Correspondence: Jian Liu, ; Liangzhao Chu,
| |
Collapse
|