1
|
Yang X, Chen X, Yang W, Pommier Y. Structural insights into human topoisomerase 3β DNA and RNA catalysis and nucleic acid gate dynamics. Nat Commun 2025; 16:834. [PMID: 39828754 PMCID: PMC11743793 DOI: 10.1038/s41467-025-55959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
Type IA topoisomerases (TopoIAs) are present in all living organisms. They resolve DNA/RNA catenanes, knots and supercoils by breaking and rejoining single-stranded DNA/RNA segments and allowing the passage of another nucleic acid segment through the break. Topoisomerase III-β (TOP3B), the only RNA topoisomerase in metazoans, promotes R-loop disassembly and translation of mRNAs. Defects in TOP3B lead to severe neurological diseases. We present a series of cryo-EM structures of human TOP3B with its cofactor TDRD3 during cleavage and rejoining of DNA or RNA, thus elucidating the roles of divalent metal ions and key enzyme residues in each step of the catalytic cycle. We also obtained the structure of an open-gate configuration that addresses the long-standing question of the strand-passage mechanism. Our studies reveal how TOP3B catalyzes both DNA and RNA relaxation, while TOP3A acts only on DNA.
Collapse
Affiliation(s)
- Xi Yang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Xuemin Chen
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
- School of Life Sciences, Anhui University, Hefei, China
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
2
|
Faheem I, Nagaraja V. Multifunctional Mycobacterial Topoisomerases with Distinctive Features. ACS Infect Dis 2025. [PMID: 39825760 DOI: 10.1021/acsinfecdis.4c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Tuberculosis (TB) continues to be a major cause of death worldwide despite having an effective combinatorial therapeutic regimen and vaccine. Being one of the most successful human pathogens, Mycobacterium tuberculosis retains the ability to adapt to diverse intracellular and extracellular environments encountered by it during infection, persistence, and transmission. Designing and developing new therapeutic strategies to counter the emergence of multidrug-resistant and extensively drug-resistant TB remains a major task. DNA topoisomerases make up a unique class of ubiquitous enzymes that ensure steady-state level supercoiling and solve topological problems occurring during DNA transactions in cells. They continue to be attractive targets for the discovery of novel classes of antibacterials and to develop better molecules from existing drugs by virtue of their reaction mechanism. The limited repertoire of topoisomerases in M. tuberculosis, key differences in their properties compared to topoisomerases from other bacteria, their essentiality for the pathogen's survival, and validation as candidates for drug discovery provide an opportunity to exploit them in drug discovery efforts. The present review provides insights into their organization, structure, function, and regulation to further efforts in targeting them for new inhibitor discovery. First, the structure and biochemical properties of DNA gyrase and Topoisomerase I (TopoI) of mycobacteria are described compared to the well-studied counterparts from other bacteria. Next, we provide an overview of known inhibitors of DNA gyrase and emerging novel bacterial topoisomerase inhibitors (NBTIs). We also provide an update on TopoI-specific compounds, highlighting mycobacteria-specific inhibitors.
Collapse
Affiliation(s)
- Iqball Faheem
- Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- Indian Institute of Science Education and Research, Bhopal 462066, India
| |
Collapse
|
3
|
Shen L, Diggs C, Ferdous S, Santos A, Wolf N, Terrebonne A, Carvajal LL, Zhong G, Ouellette SP, Tse-Dinh YC. The SWIB domain-containing DNA topoisomerase I of Chlamydia trachomatis mediates DNA relaxation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626651. [PMID: 39677648 PMCID: PMC11642884 DOI: 10.1101/2024.12.03.626651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The obligate intracellular bacterial pathogen, Chlamydia trachomatis (Ct), has a distinct DNA topoisomerase I (TopA) with a C-terminal domain (CTD) homologous to eukaryotic SWIB domains. Despite the lack of sequence similarity at the CTDs between C. trachomatis TopA (CtTopA) and Escherichia coli TopA (EcTopA), full-length CtTopA removed negative DNA supercoils in vitro and complemented the growth defect of an E. coli topA mutant. We demonstrated that CtTopA is less processive in DNA relaxation than EcTopA in dose-response and time course studies. An antibody generated against the SWIB domain of CtTopA specifically recognized CtTopA but not EcTopA or Mycobacterium tuberculosis TopA (MtTopA), consistent with the sequence differences in their CTDs. The endogenous CtTopA protein is expressed at a relatively high level during the middle and late developmental stages of C. trachomatis. Conditional knockdown of topA expression using CRISPRi in C. trachomatis resulted in not only a developmental defect but also in the downregulation of genes linked to nucleotide acquisition from the host cells. Because SWIB-containing proteins are not found in prokaryotes beyond Chlamydia spp., these results imply a significant function for the SWIB-containing CtTopA in facilitating the energy metabolism of C. trachomatis for its unique intracellular growth.
Collapse
Affiliation(s)
- Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Caitlynn Diggs
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Shomita Ferdous
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Amanda Santos
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Neol Wolf
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Andrew Terrebonne
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Luis Lorenzo Carvajal
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Scot P. Ouellette
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
4
|
Tan K, Tse-Dinh YC. Variation of Structure and Cellular Functions of Type IA Topoisomerases across the Tree of Life. Cells 2024; 13:553. [PMID: 38534397 PMCID: PMC10969213 DOI: 10.3390/cells13060553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Topoisomerases regulate the topological state of cellular genomes to prevent impediments to vital cellular processes, including replication and transcription from suboptimal supercoiling of double-stranded DNA, and to untangle topological barriers generated as replication or recombination intermediates. The subfamily of type IA topoisomerases are the only topoisomerases that can alter the interlinking of both DNA and RNA. In this article, we provide a review of the mechanisms by which four highly conserved N-terminal protein domains fold into a toroidal structure, enabling cleavage and religation of a single strand of DNA or RNA. We also explore how these conserved domains can be combined with numerous non-conserved protein sequences located in the C-terminal domains to form a diverse range of type IA topoisomerases in Archaea, Bacteria, and Eukarya. There is at least one type IA topoisomerase present in nearly every free-living organism. The variation in C-terminal domain sequences and interacting partners such as helicases enable type IA topoisomerases to conduct important cellular functions that require the passage of nucleic acids through the break of a single-strand DNA or RNA that is held by the conserved N-terminal toroidal domains. In addition, this review will exam a range of human genetic disorders that have been linked to the malfunction of type IA topoisomerase.
Collapse
Affiliation(s)
- Kemin Tan
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
5
|
Erdinc D, Rodríguez‐Luis A, Fassad MR, Mackenzie S, Watson CM, Valenzuela S, Xie X, Menger KE, Sergeant K, Craig K, Hopton S, Falkous G, Poulton J, Garcia‐Moreno H, Giunti P, de Moura Aschoff CA, Morales Saute JA, Kirby AJ, Toro C, Wolfe L, Novacic D, Greenbaum L, Eliyahu A, Barel O, Anikster Y, McFarland R, Gorman GS, Schaefer AM, Gustafsson CM, Taylor RW, Falkenberg M, Nicholls TJ. Pathological variants in TOP3A cause distinct disorders of mitochondrial and nuclear genome stability. EMBO Mol Med 2023; 15:e16775. [PMID: 37013609 PMCID: PMC10165364 DOI: 10.15252/emmm.202216775] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
Topoisomerase 3α (TOP3A) is an enzyme that removes torsional strain and interlinks between DNA molecules. TOP3A localises to both the nucleus and mitochondria, with the two isoforms playing specialised roles in DNA recombination and replication respectively. Pathogenic variants in TOP3A can cause a disorder similar to Bloom syndrome, which results from bi-allelic pathogenic variants in BLM, encoding a nuclear-binding partner of TOP3A. In this work, we describe 11 individuals from 9 families with an adult-onset mitochondrial disease resulting from bi-allelic TOP3A gene variants. The majority of patients have a consistent clinical phenotype characterised by bilateral ptosis, ophthalmoplegia, myopathy and axonal sensory-motor neuropathy. We present a comprehensive characterisation of the effect of TOP3A variants, from individuals with mitochondrial disease and Bloom-like syndrome, upon mtDNA maintenance and different aspects of enzyme function. Based on these results, we suggest a model whereby the overall severity of the TOP3A catalytic defect determines the clinical outcome, with milder variants causing adult-onset mitochondrial disease and more severe variants causing a Bloom-like syndrome with mitochondrial dysfunction in childhood.
Collapse
Affiliation(s)
- Direnis Erdinc
- Department of Medical Biochemistry and Cell BiologyUniversity of GothenburgGothenburgSweden
| | - Alejandro Rodríguez‐Luis
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Mahmoud R Fassad
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Sarah Mackenzie
- The Newcastle Upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Christopher M Watson
- North East and Yorkshire Genomic Laboratory Hub, Central LabSt. James's University HospitalLeedsUK
- Leeds Institute of Medical ResearchUniversity of Leeds, St. James's University HospitalLeedsUK
| | - Sebastian Valenzuela
- Department of Medical Biochemistry and Cell BiologyUniversity of GothenburgGothenburgSweden
| | - Xie Xie
- Department of Medical Biochemistry and Cell BiologyUniversity of GothenburgGothenburgSweden
| | - Katja E Menger
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Kate Sergeant
- Oxford Genetics LaboratoriesOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Kate Craig
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Service for Rare Mitochondrial DisordersNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Sila Hopton
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Service for Rare Mitochondrial DisordersNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Gavin Falkous
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Service for Rare Mitochondrial DisordersNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | | | - Joanna Poulton
- Nuffield Department of Women's & Reproductive Health, The Women's CentreUniversity of OxfordOxfordUK
| | - Hector Garcia‐Moreno
- Department of Clinical and Movement Neurosciences, Ataxia CentreUCL Queen Square Institute of NeurologyLondonUK
| | - Paola Giunti
- Department of Clinical and Movement Neurosciences, Ataxia CentreUCL Queen Square Institute of NeurologyLondonUK
| | | | - Jonas A Morales Saute
- Medical Genetics ServiceHospital de Clínicas de Porto Alegre (HCPA)Porto AlegreBrazil
- Department of Internal MedicineUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Graduate Program in Medicine: Medical SciencesUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Amelia J Kirby
- Department of PediatricsWake Forest School of MedicineWinston‐SalemNCUSA
| | - Camilo Toro
- Undiagnosed Diseases ProgramNational Human Genome Research Institute, National Institutes of HealthBethesdaMDUSA
| | - Lynne Wolfe
- Undiagnosed Diseases ProgramNational Human Genome Research Institute, National Institutes of HealthBethesdaMDUSA
| | - Danica Novacic
- Undiagnosed Diseases ProgramNational Human Genome Research Institute, National Institutes of HealthBethesdaMDUSA
| | - Lior Greenbaum
- The Danek Gertner Institute of Human GeneticsSheba Medical CenterTel HashomerIsrael
- The Joseph Sagol Neuroscience Center, Sheba Medical CenterTel HashomerIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Aviva Eliyahu
- The Danek Gertner Institute of Human GeneticsSheba Medical CenterTel HashomerIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Ortal Barel
- Genomics UnitThe Center for Cancer Research, Sheba Medical CenterTel HashomerIsrael
| | - Yair Anikster
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Metabolic Disease UnitEdmond and Lily Safra Children's Hospital, Sheba Medical CenterTel HashomerIsrael
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Andrew M Schaefer
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Service for Rare Mitochondrial DisordersNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell BiologyUniversity of GothenburgGothenburgSweden
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Service for Rare Mitochondrial DisordersNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell BiologyUniversity of GothenburgGothenburgSweden
| | - Thomas J Nicholls
- Wellcome Centre for Mitochondrial Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
6
|
Vidmar V, Vayssières M, Lamour V. What's on the Other Side of the Gate: A Structural Perspective on DNA Gate Opening of Type IA and IIA DNA Topoisomerases. Int J Mol Sci 2023; 24:ijms24043986. [PMID: 36835394 PMCID: PMC9960139 DOI: 10.3390/ijms24043986] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
DNA topoisomerases have an essential role in resolving topological problems that arise due to the double-helical structure of DNA. They can recognise DNA topology and catalyse diverse topological reactions by cutting and re-joining DNA ends. Type IA and IIA topoisomerases, which work by strand passage mechanisms, share catalytic domains for DNA binding and cleavage. Structural information has accumulated over the past decades, shedding light on the mechanisms of DNA cleavage and re-ligation. However, the structural rearrangements required for DNA-gate opening and strand transfer remain elusive, in particular for the type IA topoisomerases. In this review, we compare the structural similarities between the type IIA and type IA topoisomerases. The conformational changes that lead to the opening of the DNA-gate and strand passage, as well as allosteric regulation, are discussed, with a focus on the remaining questions about the mechanism of type IA topoisomerases.
Collapse
Affiliation(s)
- Vita Vidmar
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, Inserm U 1258, 67400 Illkirch, France
| | - Marlène Vayssières
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, Inserm U 1258, 67400 Illkirch, France
| | - Valérie Lamour
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, Inserm U 1258, 67400 Illkirch, France
- Hôpitaux Universitaires de Strasbourg, 67098 Strasbourg, France
- Correspondence:
| |
Collapse
|
7
|
Ferdous S, Dasgupta T, Annamalai T, Tan K, Tse-Dinh YC. The interaction between transport-segment DNA and topoisomerase IA-crystal structure of MtbTOP1 in complex with both G- and T-segments. Nucleic Acids Res 2022; 51:349-364. [PMID: 36583363 PMCID: PMC9841409 DOI: 10.1093/nar/gkac1205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022] Open
Abstract
Each catalytic cycle of type IA topoisomerases has been proposed to comprise multistep reactions. The capture of the transport-segment DNA (T-segment) into the central cavity of the N-terminal toroidal structure is an important action, which is preceded by transient gate-segment (G-segment) cleavage and succeeded by G-segment religation for the relaxation of negatively supercoiled DNA and decatenation of DNA. The T-segment passage in and out of the central cavity requires significant domain-domain rearrangements, including the movement of D3 relative to D1 and D4 for the opening and closing of the gate towards the central cavity. Here we report a direct observation of the interaction of a duplex DNA in the central cavity of a type IA topoisomerase and its associated domain-domain conformational changes in a crystal structure of a Mycobacterium tuberculosis topoisomerase I complex that also has a bound G-segment. The duplex DNA within the central cavity illustrates the non-sequence-specific interplay between the T-segment DNA and the enzyme. The rich structural information revealed from the novel topoisomerase-DNA complex, in combination with targeted mutagenesis studies, provides new insights into the mechanism of the topoisomerase IA catalytic cycle.
Collapse
Affiliation(s)
| | | | - Thirunavukkarasu Annamalai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA,Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Kemin Tan
- Correspondence may also be addressed to Kemin Tan. Tel: +1 630 252 3948;
| | | |
Collapse
|
8
|
Garcia PK, Martinez Borrero R, Annamalai T, Diaz E, Balarezo S, Tiwari PB, Tse-Dinh YC. Localization of Mycobacterium tuberculosis topoisomerase I C-terminal sequence motif required for inhibition by endogenous toxin MazF4. Front Microbiol 2022; 13:1032320. [PMID: 36545199 PMCID: PMC9760754 DOI: 10.3389/fmicb.2022.1032320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/17/2022] [Indexed: 12/08/2022] Open
Abstract
Only about half the multi-drug resistant tuberculosis (MDR-TB) cases are successfully cured. Thus, there is an urgent need of new TB treatment against a novel target. Mycobacterium tuberculosis (Mtb) topoisomerase I (TopA) is the only type IA topoisomerase in this organism and has been validated as an essential target for TB drug discovery. Toxin-antitoxin (TA) systems participate as gene regulators within bacteria. The TA systems contribute to the long-term dormancy of Mtb within the host-cell environment. Mtb's toxin MazF4 (Rv1495) that is part of the MazEF4 TA system has been shown to have dual activities as endoribonuclease and topoisomerase I inhibitor. We have developed a complementary assay using an Escherichia coli strain with temperature-sensitive topA mutation to provide new insights into the MazF4 action. The assay showed that E. coli is not sensitive to the endoribonuclease activity of Mtb MazF4 but became vulnerable to MazF4 growth inhibition when recombinant Mtb TopA relaxation activity is required for growth. Results from the complementation by Mtb TopA mutants with C-terminal deletions showed that the lysine-rich C-terminal tail is required for interaction with MazF4. Site-directed mutagenesis is utilized to identify two lysine residues within a conserved motif in this C-terminal tail that are critical for MazF4 inhibition. We performed molecular dynamics simulations to predict the Mtb TopA-MazF4 complex. Our simulation results show that the complex is stabilized by hydrogen bonds and electrostatic interactions established by residues in the TopA C-terminal tail including the two conserved lysines. The mechanism of Mtb TopA inhibition by MazF4 could be useful for the discovery of novel inhibitors against a new antibacterial target in pathogenic mycobacteria for treatment of both TB and diseases caused by the non-tuberculosis mycobacteria (NTM).
Collapse
Affiliation(s)
- Pamela K. Garcia
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | | | - Thirunavukkarasu Annamalai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Esnel Diaz
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Steve Balarezo
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | | | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States,*Correspondence: Yuk-Ching Tse-Dinh,
| |
Collapse
|
9
|
Diaz B, Mederos C, Tan K, Tse-Dinh YC. Microbial Type IA Topoisomerase C-Terminal Domain Sequence Motifs, Distribution and Combination. Int J Mol Sci 2022; 23:ijms23158709. [PMID: 35955842 PMCID: PMC9369019 DOI: 10.3390/ijms23158709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
Type IA topoisomerases have highly conserved catalytic N-terminal domains for the cleaving and rejoining of a single DNA/RNA strand that have been extensively characterized. In contrast, the C-terminal region has been less covered. Two major types of small tandem C-terminal domains, Topo_C_ZnRpt (containing C4 zinc finger) and Topo_C_Rpt (without cysteines) were initially identified in Escherichia coli and Mycobacterium tuberculosis topoisomerase I, respectively. Their structures and interaction with DNA oligonucleotides have been revealed in structural studies. Here, we first present the diverse distribution and combinations of these two structural elements in various bacterial topoisomerase I (TopA). Previously, zinc fingers have not been seen in type IA topoisomerases from well-studied fungal species within the phylum Ascomycota. In our extended studies of C-terminal DNA-binding domains, the presence of zf-GRF and zf-CCHC types of zinc fingers in topoisomerase III (Top3) from fungi species in many phyla other than Ascomycota has drawn our attention. We secondly analyze the distribution and combination of these fungal zf-GRF- and zf-CCHC-containing domains. Their potential structures and DNA-binding mechanism are evaluated. The highly diverse arrangements and combinations of these DNA/RNA-binding domains in microbial type IA topoisomerase C-terminal regions have important implications for their interactions with nucleic acids and protein partners as part of their physiological functions.
Collapse
Affiliation(s)
- Brenda Diaz
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Christopher Mederos
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Kemin Tan
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA
- Correspondence: (K.T.); (Y.-C.T.-D.); Tel.: +1-630-252-3948 (K.T.); +1-305-348-4956 (Y.-C.T.-D.)
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Correspondence: (K.T.); (Y.-C.T.-D.); Tel.: +1-630-252-3948 (K.T.); +1-305-348-4956 (Y.-C.T.-D.)
| |
Collapse
|
10
|
Topoisomerase I Essentiality, DnaA-Independent Chromosomal Replication, and Transcription-Replication Conflict in Escherichia coli. J Bacteriol 2021; 203:e0019521. [PMID: 34124945 DOI: 10.1128/jb.00195-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Topoisomerase I (Topo I) of Escherichia coli, encoded by topA, acts to relax negative supercoils in DNA. Topo I deficiency results in hypernegative supercoiling, formation of transcription-associated RNA-DNA hybrids (R-loops), and DnaA- and oriC-independent constitutive stable DNA replication (cSDR), but some uncertainty persists as to whether topA is essential for viability in E. coli and related enterobacteria. Here, we show that several topA alleles, including ΔtopA, confer lethality in derivatives of wild-type E. coli strain MG1655. Viability in the absence of Topo I was restored with two perturbations, neither of which reversed the hypernegative supercoiling phenotype: (i) in a reduced-genome strain (MDS42) or (ii) by an RNA polymerase (RNAP) mutation, rpoB*35, that has been reported to alleviate the deleterious consequences of RNAP backtracking and transcription-replication conflicts. Four phenotypes related to cSDR were identified for topA mutants: (i) one of the topA alleles rescued ΔdnaA lethality; (ii) in dnaA+ derivatives, Topo I deficiency generated a characteristic copy number peak in the terminus region of the chromosome; (iii) topA was synthetically lethal with rnhA (encoding RNase HI, whose deficiency also confers cSDR); and (iv) topA rnhA synthetic lethality was itself rescued by ΔdnaA. We propose that the terminal lethal consequence of hypernegative DNA supercoiling in E. coli topA mutants is RNAP backtracking during transcription elongation and associated R-loop formation, which in turn leads to transcription-replication conflicts and to cSDR. IMPORTANCE In all life forms, double-helical DNA exists in a topologically supercoiled state. The enzymes DNA gyrase and topoisomerase I act, respectively, to introduce and to relax negative DNA supercoils in Escherichia coli. That gyrase deficiency leads to bacterial death is well established, but the essentiality of topoisomerase I for viability has been less certain. This study confirms that topoisomerase I is essential for E. coli viability and suggests that in its absence, aberrant chromosomal DNA replication and excessive transcription-replication conflicts occur that are responsible for lethality.
Collapse
|
11
|
McKie SJ, Neuman KC, Maxwell A. DNA topoisomerases: Advances in understanding of cellular roles and multi-protein complexes via structure-function analysis. Bioessays 2021; 43:e2000286. [PMID: 33480441 PMCID: PMC7614492 DOI: 10.1002/bies.202000286] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/06/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA metabolism. As we review here, current structural approaches have revealed unprecedented insights into the complex DNA-topoisomerase interaction and strand passage mechanism, helping to advance our understanding of their activities in vivo. This has been complemented by single-molecule techniques, which have facilitated the detailed dissection of the various topoisomerase reactions. Recent work has also revealed the importance of topoisomerase interactions with accessory proteins and other DNA-associated proteins, supporting the idea that they often function as part of multi-enzyme assemblies in vivo. In addition, novel topoisomerases have been identified and explored, such as topo VIII and Mini-A. These new findings are advancing our understanding of DNA-related processes and the vital functions topos fulfil, demonstrating their indispensability in virtually every aspect of DNA metabolism.
Collapse
Affiliation(s)
- Shannon J. McKie
- Department Biological Chemistry, John Innes Centre, Norwich, UK
- Laboratory of Single Molecule Biophysics, NHLBI, Bethesda, Maryland, USA
| | - Keir C. Neuman
- Laboratory of Single Molecule Biophysics, NHLBI, Bethesda, Maryland, USA
| | - Anthony Maxwell
- Department Biological Chemistry, John Innes Centre, Norwich, UK
| |
Collapse
|
12
|
Dasgupta T, Ferdous S, Tse-Dinh YC. Mechanism of Type IA Topoisomerases. Molecules 2020; 25:E4769. [PMID: 33080770 PMCID: PMC7587558 DOI: 10.3390/molecules25204769] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022] Open
Abstract
Topoisomerases in the type IA subfamily can catalyze change in topology for both DNA and RNA substrates. A type IA topoisomerase may have been present in a last universal common ancestor (LUCA) with an RNA genome. Type IA topoisomerases have since evolved to catalyze the resolution of topological barriers encountered by genomes that require the passing of nucleic acid strand(s) through a break on a single DNA or RNA strand. Here, based on available structural and biochemical data, we discuss how a type IA topoisomerase may recognize and bind single-stranded DNA or RNA to initiate its required catalytic function. Active site residues assist in the nucleophilic attack of a phosphodiester bond between two nucleotides to form a covalent intermediate with a 5'-phosphotyrosine linkage to the cleaved nucleic acid. A divalent ion interaction helps to position the 3'-hydroxyl group at the precise location required for the cleaved phosphodiester bond to be rejoined following the passage of another nucleic acid strand through the break. In addition to type IA topoisomerase structures observed by X-ray crystallography, we now have evidence from biophysical studies for the dynamic conformations that are required for type IA topoisomerases to catalyze the change in the topology of the nucleic acid substrates.
Collapse
Affiliation(s)
- Tumpa Dasgupta
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (T.D.); (S.F.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Biochemistry PhD Program, Florida International University, Miami, FL 33199, USA
| | - Shomita Ferdous
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (T.D.); (S.F.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Biochemistry PhD Program, Florida International University, Miami, FL 33199, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (T.D.); (S.F.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
13
|
Rani P, Kalladi SM, Bansia H, Rao S, Jha RK, Jain P, Bhaduri T, Nagaraja V. A Type IA DNA/RNA Topoisomerase with RNA Hydrolysis Activity Participates in Ribosomal RNA Processing. J Mol Biol 2020; 432:5614-5631. [DOI: 10.1016/j.jmb.2020.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/19/2023]
|