1
|
Malinowska AL, Huynh HL, Bose S. Peptide-Oligonucleotide Conjugation: Chemistry and Therapeutic Applications. Curr Issues Mol Biol 2024; 46:11031-11047. [PMID: 39451535 PMCID: PMC11506717 DOI: 10.3390/cimb46100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Oligonucleotides have been identified as powerful therapeutics for treating genetic disorders and diseases related to epigenetic factors such as metabolic and immunological dysfunctions. However, they face certain obstacles in terms of limited delivery to tissues and poor cellular uptake due to their large size and often highly charged nature. Peptide-oligonucleotide conjugation is an extensively utilized approach for addressing the challenges associated with oligonucleotide-based therapeutics by improving their delivery, cellular uptake and bioavailability, consequently enhancing their overall therapeutic efficiency. In this review, we present an overview of the conjugation of oligonucleotides to peptides, covering the different strategies associated with the synthesis of peptide-oligonucleotide conjugates (POC), the commonly used peptides employed to generate POCs, with the aim to develop oligonucleotides with favourable pharmacokinetic (PK) or pharmacodynamic (PD) properties for therapeutic applications. The advantages and drawbacks of the synthetic methods and applications of POCs are also described.
Collapse
Affiliation(s)
| | | | - Sritama Bose
- Medical Research Council, Nucleic Acid Therapy Accelerator (UKRI), Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell OX11 0FA, UK
| |
Collapse
|
2
|
Malinowska AL, Huynh HL, Correa-Sánchez AF, Bose S. Thiol-Specific Linkers for the Synthesis of Oligonucleotide Conjugates via Metal-Free Thiol-Ene Click Reaction. Bioconjug Chem 2024; 35. [PMID: 39264307 PMCID: PMC11487498 DOI: 10.1021/acs.bioconjchem.4c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Chemical conjugation of oligonucleotides is widely used to improve their delivery and therapeutic potential. A variety of strategies are implemented to efficiently modify oligonucleotides with conjugating partners. The linkers typically used for oligonucleotide conjugation have limitations in terms of stability or ease of synthesis, which generates the need for providing new improved linkers for oligonucleotide conjugation. Herein, we report the synthesis of novel vinylpyrimidine phosphoramidite building blocks, which can be incorporated into an oligonucleotide by standard solid-phase synthesis in an automated synthesizer. These linker-bearing oligonucleotides can be easily conjugated in a biocompatible manner with thiol-functionalized molecules leading to the efficient generation of oligonucleotide conjugates.
Collapse
Affiliation(s)
- Anna L. Malinowska
- Medical Research Council, Nucleic Acid
Therapy Accelerator (UKRI) Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell OX11 0FA, U.K.
| | - Harley L. Huynh
- Medical Research Council, Nucleic Acid
Therapy Accelerator (UKRI) Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell OX11 0FA, U.K.
| | - Andrés F. Correa-Sánchez
- Medical Research Council, Nucleic Acid
Therapy Accelerator (UKRI) Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell OX11 0FA, U.K.
| | - Sritama Bose
- Medical Research Council, Nucleic Acid
Therapy Accelerator (UKRI) Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell OX11 0FA, U.K.
| |
Collapse
|
3
|
Poli A, Schmitt C, Puy H, Talbi N, Lefebvre T, Gouya L. Erythropoietic protoporphyrias: updates and advances. Trends Mol Med 2024; 30:863-874. [PMID: 38890030 DOI: 10.1016/j.molmed.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Protoporphyrias are caused by pathogenic variants in genes encoding enzymes involved in heme biosynthesis. They induce the accumulation of a hydrophobic phototoxic compound, protoporphyrin (PPIX), in red blood cells (RBCs). PPIX is responsible for painful cutaneous photosensitivity, which severely impairs quality of life. Hepatic elimination of PPIX increases the risk of cholestatic liver disease, requiring lifelong monitoring. Treatment options are scarce and mainly limited to supportive care such as protection from visible light. Here, we review the pathophysiology of protoporphyrias, their diagnosis, and current recommendations for medical care. We discuss new therapeutic strategies, some of which are currently undergoing clinical trials and are likely to radically alter the severity of the disease in the years to come.
Collapse
Affiliation(s)
- Antoine Poli
- Institut National de la Santé et de la Recherche Médicale U1149, Centre de Recherche sur l'Inflammation, Paris, France; Université Paris Cité, Paris, France; Assistance Publique-Hôpitaux de Paris, Centre de Référence Maladies Rares Porphyries, Hôpital Louis Mourier, Colombes, France; Laboratory of excellence Gr-Ex, Paris, France.
| | - Caroline Schmitt
- Institut National de la Santé et de la Recherche Médicale U1149, Centre de Recherche sur l'Inflammation, Paris, France; Université Paris Cité, Paris, France; Assistance Publique-Hôpitaux de Paris, Centre de Référence Maladies Rares Porphyries, Hôpital Louis Mourier, Colombes, France; Laboratory of excellence Gr-Ex, Paris, France
| | - Hervé Puy
- Institut National de la Santé et de la Recherche Médicale U1149, Centre de Recherche sur l'Inflammation, Paris, France; Université Paris Cité, Paris, France; Assistance Publique-Hôpitaux de Paris, Centre de Référence Maladies Rares Porphyries, Hôpital Louis Mourier, Colombes, France; Laboratory of excellence Gr-Ex, Paris, France
| | - Neila Talbi
- Institut National de la Santé et de la Recherche Médicale U1149, Centre de Recherche sur l'Inflammation, Paris, France
| | - Thibaud Lefebvre
- Institut National de la Santé et de la Recherche Médicale U1149, Centre de Recherche sur l'Inflammation, Paris, France
| | - Laurent Gouya
- Institut National de la Santé et de la Recherche Médicale U1149, Centre de Recherche sur l'Inflammation, Paris, France; Université Paris Cité, Paris, France; Assistance Publique-Hôpitaux de Paris, Centre de Référence Maladies Rares Porphyries, Hôpital Louis Mourier, Colombes, France; Laboratory of excellence Gr-Ex, Paris, France
| |
Collapse
|
4
|
Hill AC, Becker JP, Slominski D, Halloy F, Søndergaard C, Ravn J, Hall J. Peptide Conjugates of a 2'- O-Methoxyethyl Phosphorothioate Splice-Switching Oligonucleotide Show Increased Entrapment in Endosomes. ACS OMEGA 2023; 8:40463-40481. [PMID: 37929104 PMCID: PMC10620785 DOI: 10.1021/acsomega.3c05144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Antisense oligonucleotides (ASOs) are short, single-stranded nucleic acid molecules that alter gene expression. However, their transport into appropriate cellular compartments is a limiting factor in their potency. Here, we synthesized splice-switching oligonucleotides (SSOs) previously developed to treat the rare disease erythropoietic protoporphyria. Using chemical ligation-quantitative polymerase chain reaction (CL-qPCR), we quantified the SSOs in cells and subcellular compartments following free uptake. To drive nuclear localization, we covalently conjugated nuclear localization signal (NLS) peptides to a lead 2'-O-methoxyethyl phosphorothioate SSO using thiol-maleimide chemistry. The conjugates and parent SSO displayed similar RNA target-binding affinities. CL-qPCR quantification of the conjugates in cells and subcellular compartments following free uptake revealed one conjugate with better nuclear accumulation relative to the parent SSO. However, compared to the parent SSO, which altered the splicing of the target pre-mRNA, the conjugates were inactive at splice correction under free uptake conditions in vitro. Splice-switching activity could be conferred on the conjugates by delivering them into cells via cationic lipid-mediated transfection or by treating the cells into which the conjugates had been freely taken up with chloroquine, an endosome-disrupting agent. Our results identify the major barrier to the activity of the peptide-oligonucleotide conjugates as endosomal entrapment.
Collapse
Affiliation(s)
- Alyssa C. Hill
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich
(ETH Zürich), Zürich 8093, Switzerland
| | - J. Philipp Becker
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich
(ETH Zürich), Zürich 8093, Switzerland
| | - Daria Slominski
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich
(ETH Zürich), Zürich 8093, Switzerland
| | - François Halloy
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich
(ETH Zürich), Zürich 8093, Switzerland
| | | | - Jacob Ravn
- Roche
Innovation Center Copenhagen (RICC), Hørsholm 2970, Denmark
| | - Jonathan Hall
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich
(ETH Zürich), Zürich 8093, Switzerland
| |
Collapse
|
5
|
Toufiq M, Rinchai D, Bettacchioli E, Kabeer BSA, Khan T, Subba B, White O, Yurieva M, George J, Jourde-Chiche N, Chiche L, Palucka K, Chaussabel D. Harnessing large language models (LLMs) for candidate gene prioritization and selection. J Transl Med 2023; 21:728. [PMID: 37845713 PMCID: PMC10580627 DOI: 10.1186/s12967-023-04576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Feature selection is a critical step for translating advances afforded by systems-scale molecular profiling into actionable clinical insights. While data-driven methods are commonly utilized for selecting candidate genes, knowledge-driven methods must contend with the challenge of efficiently sifting through extensive volumes of biomedical information. This work aimed to assess the utility of large language models (LLMs) for knowledge-driven gene prioritization and selection. METHODS In this proof of concept, we focused on 11 blood transcriptional modules associated with an Erythroid cells signature. We evaluated four leading LLMs across multiple tasks. Next, we established a workflow leveraging LLMs. The steps consisted of: (1) Selecting one of the 11 modules; (2) Identifying functional convergences among constituent genes using the LLMs; (3) Scoring candidate genes across six criteria capturing the gene's biological and clinical relevance; (4) Prioritizing candidate genes and summarizing justifications; (5) Fact-checking justifications and identifying supporting references; (6) Selecting a top candidate gene based on validated scoring justifications; and (7) Factoring in transcriptome profiling data to finalize the selection of the top candidate gene. RESULTS Of the four LLMs evaluated, OpenAI's GPT-4 and Anthropic's Claude demonstrated the best performance and were chosen for the implementation of the candidate gene prioritization and selection workflow. This workflow was run in parallel for each of the 11 erythroid cell modules by participants in a data mining workshop. Module M9.2 served as an illustrative use case. The 30 candidate genes forming this module were assessed, and the top five scoring genes were identified as BCL2L1, ALAS2, SLC4A1, CA1, and FECH. Researchers carefully fact-checked the summarized scoring justifications, after which the LLMs were prompted to select a top candidate based on this information. GPT-4 initially chose BCL2L1, while Claude selected ALAS2. When transcriptional profiling data from three reference datasets were provided for additional context, GPT-4 revised its initial choice to ALAS2, whereas Claude reaffirmed its original selection for this module. CONCLUSIONS Taken together, our findings highlight the ability of LLMs to prioritize candidate genes with minimal human intervention. This suggests the potential of this technology to boost productivity, especially for tasks that require leveraging extensive biomedical knowledge.
Collapse
Affiliation(s)
- Mohammed Toufiq
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Eleonore Bettacchioli
- INSERM UMR1227, Lymphocytes B et Autoimmunité, Université de Bretagne Occidentale, Brest, France
- Service de Rhumatologie, CHU de Brest, Brest, France
| | | | - Taushif Khan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Bishesh Subba
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Olivia White
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Laurent Chiche
- Service de Médecine Interne, Hôpital Européen, Marseille, France
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | |
Collapse
|
6
|
Haddad-Mashadrizeh A, Mirahmadi M, Taghavizadeh Yazdi ME, Gholampour-Faroji N, Bahrami A, Zomorodipour A, Moghadam Matin M, Qayoomian M, Saebnia N. Introns and Their Therapeutic Applications in Biomedical Researches. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3316. [PMID: 38269198 PMCID: PMC10804063 DOI: 10.30498/ijb.2023.334488.3316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/23/2023] [Indexed: 01/26/2024]
Abstract
Context Although for a long time, it was thought that intervening sequences (introns) were junk DNA without any function, their critical roles and the underlying molecular mechanisms in genome regulation have only recently come to light. Introns not only carry information for splicing, but they also play many supportive roles in gene regulation at different levels. They are supposed to function as useful tools in various biological processes, particularly in the diagnosis and treatment of diseases. Introns can contribute to numerous biological processes, including gene silencing, gene imprinting, transcription, mRNA metabolism, mRNA nuclear export, mRNA localization, mRNA surveillance, RNA editing, NMD, translation, protein stability, ribosome biogenesis, cell growth, embryonic development, apoptosis, molecular evolution, genome expansion, and proteome diversity through various mechanisms. Evidence Acquisition In order to fulfill the objectives of this study, the following databases were searched: Medline, Scopus, Web of Science, EBSCO, Open Access Journals, and Google Scholar. Only articles published in English were included. Results & Conclusions The intervening sequences of eukaryotic genes have critical functions in genome regulation, as well as in molecular evolution. Here, we summarize recent advances in our understanding of how introns influence genome regulation, as well as their effects on molecular evolution. Moreover, therapeutic strategies based on intron sequences are discussed. According to the obtained results, a thorough understanding of intron functional mechanisms could lead to new opportunities in disease diagnosis and therapies, as well as in biotechnology applications.
Collapse
Affiliation(s)
- Aliakbar Haddad-Mashadrizeh
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdi Mirahmadi
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Nazanin Gholampour-Faroji
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmadreza Bahrami
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Maryam Moghadam Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohsen Qayoomian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Saebnia
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
7
|
Leaf RK, Dickey AK. How I treat erythropoietic protoporphyria and X-linked protoporphyria. Blood 2023; 141:2921-2931. [PMID: 36898083 PMCID: PMC10646811 DOI: 10.1182/blood.2022018688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Erythropoietic protoporphyria (EPP) is an inherited cutaneous porphyria caused by reduced expression of ferrochelatase, the enzyme that catalyzes the final step in heme biosynthesis. The resultant accumulation of protoporphyrin IX leads to severe, painful cutaneous photosensitivity, as well as potentially life-threatening liver disease in a small percentage of patients. X-linked protoporphyria (XLP) is clinically similar to EPP but results from increased activity of δ-aminolevulinic acid synthase 2, the first step in heme biosynthesis in the bone marrow, and also causes protoporphyrin accumulation. Although historically the management of EPP and XLP (collectively termed protoporphyria) centered around avoidance of sunlight, novel therapies have recently been approved or are in development, which will alter the therapeutic landscape for these conditions. We present 3 patient cases, highlighting key treatment considerations in patients with protoporphyria, including (1) approach to photosensitivity, (2) managing iron deficiency in protoporphyria, and (3) understanding hepatic failure in protoporphyria.
Collapse
Affiliation(s)
- Rebecca Karp Leaf
- Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Amy K. Dickey
- Harvard Medical School, Boston, MA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
8
|
Hall J. Future directions for medicinal chemistry in the field of oligonucleotide therapeutics. RNA (NEW YORK, N.Y.) 2023; 29:423-433. [PMID: 36693762 PMCID: PMC10019366 DOI: 10.1261/rna.079511.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 05/13/2023]
Abstract
In the last decade, the field of oligonucleotide therapeutics has matured, with the regulatory approval of several single-stranded and double-stranded RNA drugs. In this Perspective, I discuss enabling developments and likely future directions in the field from the perspective of oligonucleotide chemistry.
Collapse
Affiliation(s)
- Jonathan Hall
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
9
|
Di Modica SM, Tanzi E, Olivari V, Lidonnici MR, Pettinato M, Pagani A, Tiboni F, Furiosi V, Silvestri L, Ferrari G, Rivella S, Nai A. Transferrin receptor 2 (Tfr2) genetic deletion makes transfusion-independent a murine model of transfusion-dependent β-thalassemia. Am J Hematol 2022; 97:1324-1336. [PMID: 36071579 PMCID: PMC9540808 DOI: 10.1002/ajh.26673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 01/24/2023]
Abstract
β-thalassemia is a genetic disorder caused by mutations in the β-globin gene, and characterized by anemia, ineffective erythropoiesis and iron overload. Patients affected by the most severe transfusion-dependent form of the disease (TDT) require lifelong blood transfusions and iron chelation therapy, a symptomatic treatment associated with several complications. Other therapeutic opportunities are available, but none is fully effective and/or applicable to all patients, calling for the identification of novel strategies. Transferrin receptor 2 (TFR2) balances red blood cells production according to iron availability, being an activator of the iron-regulatory hormone hepcidin in the liver and a modulator of erythropoietin signaling in erythroid cells. Selective Tfr2 deletion in the BM improves anemia and iron-overload in non-TDT mice, both as a monotherapy and, even more strikingly, in combination with iron-restricting approaches. However, whether Tfr2 targeting might represent a therapeutic option for TDT has never been investigated so far. Here, we prove that BM Tfr2 deletion improves anemia, erythrocytes morphology and ineffective erythropoiesis in the Hbbth1/th2 murine model of TDT. This effect is associated with a decrease in the expression of α-globin, which partially corrects the unbalance with β-globin chains and limits the precipitation of misfolded hemoglobin, and with a decrease in the activation of unfolded protein response. Remarkably, BM Tfr2 deletion is also sufficient to avoid long-term blood transfusions required for survival of Hbbth1/th2 animals, preventing mortality due to chronic anemia and reducing transfusion-associated complications, such as progressive iron-loading. Altogether, TFR2 targeting might represent a promising therapeutic option also for TDT.
Collapse
Affiliation(s)
- Simona Maria Di Modica
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly
| | - Emanuele Tanzi
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly
| | - Violante Olivari
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly,Vita Salute San Raffaele UniversityMilanItaly
| | - Maria Rosa Lidonnici
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)Ospedale San RaffaeleMilanItaly
| | - Mariateresa Pettinato
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly,Vita Salute San Raffaele UniversityMilanItaly
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly
| | - Francesca Tiboni
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)Ospedale San RaffaeleMilanItaly
| | - Valeria Furiosi
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly,Vita Salute San Raffaele UniversityMilanItaly
| | - Giuliana Ferrari
- Vita Salute San Raffaele UniversityMilanItaly,San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)Ospedale San RaffaeleMilanItaly
| | - Stefano Rivella
- Division of Hematology, Department of PediatricsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Antonella Nai
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly,Vita Salute San Raffaele UniversityMilanItaly
| |
Collapse
|
10
|
Granata F, Brancaleoni V, Barman-Aksözen J, Scopetti M, De Luca G, Fustinoni S, Motta I, Di Pierro E, Graziadei G. Heme Biosynthetic Gene Expression Analysis With dPCR in Erythropoietic Protoporphyria Patients. Front Physiol 2022; 13:886194. [PMID: 35923227 PMCID: PMC9340544 DOI: 10.3389/fphys.2022.886194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The heme biosynthesis (HB) involves eight subsequent enzymatic steps. Erythropoietic protoporphyria (EPP) is caused by loss-of-function mutations in the ferrochelatase (FECH) gene, which in the last HB step inserts ferrous iron into protoporphyrin IX (PPIX) to form heme.Aim and method: The aim of this work was to for the first time analyze the mRNA expression of all HB genes in peripheral blood samples of patients with EPP having the same genotype FECH c.[215dupT]; [315-48T > C] as compared to healthy controls by highly sensitive and specific digital PCR assays (dPCR).Results: We confirmed a decreased FECH mRNA expression in patients with EPP. Further, we found increased ALAS2 and decreased ALAS1, CPOX, PPOX and HMBS mRNA expression in patients with EPP compared to healthy controls. ALAS2 correlated with FECH mRNA expression (EPP: r = 0.63, p = 0.03 and controls: r = 0.68, p = 0.02) and blood parameters like PPIX (EPP: r = 0.58 p = 0.06).Conclusion: Our method is the first that accurately quantifies HB mRNA from blood samples with potential applications in the monitoring of treatment effects of mRNA modifying therapies in vivo, or investigation of the HB pathway and its regulation. However, our findings should be studied in separated blood cell fractions and on the enzymatic level.
Collapse
Affiliation(s)
- Francesca Granata
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.C. Medicina Generale, Milano, Italy
- *Correspondence: Francesca Granata,
| | - Valentina Brancaleoni
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.C. Medicina Generale, Milano, Italy
| | - Jasmin Barman-Aksözen
- Department of Medical Institutes, Institute of Laboratory Medicine, Stadtspital Zürich, Zürich, Switzerland
| | | | - Giacomo De Luca
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.C. Medicina Generale, Milano, Italy
| | - Silvia Fustinoni
- EPIGET—Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.S Tossicologia, Università degli Studi di Milano, Milan, Italy
| | - Irene Motta
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.C. Medicina Generale, Milano, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Elena Di Pierro
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.C. Medicina Generale, Milano, Italy
| | - Giovanna Graziadei
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.C. Medicina Generale, Milano, Italy
| |
Collapse
|
11
|
Halloy F, Brönnimann P, Hall J, Schümperli D. Analysis of Oligonucleotide Biodistribution and Metabolization in Experimental Animals. Methods Mol Biol 2022; 2537:335-350. [PMID: 35895273 DOI: 10.1007/978-1-0716-2521-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We describe methods to follow the fate of oligonucleotides after their injection into experimental animals. The quantitation in various tissues, blood or bone marrow cells is possible by chemical ligation PCR. This method works independently of chemical modifications of the oligonucleotide and/or its conjugations to lipid or peptide moieties. Moreover, metabolization intermediates can be detected by mass spectrometry. Together with a readout assay for the biochemical or physiological effects, which will differ, depending on the particular purpose of the oligonucleotide, these methods allow for a comprehensive understanding of oligonucleotide behavior in a living organism.
Collapse
Affiliation(s)
- François Halloy
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
- Department of Paediatrics, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Paulina Brönnimann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
- Translational Research Unit, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Daniel Schümperli
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
12
|
Halloy F, Hill AC, Hall J. Efficient Synthesis of 2'-O-Methoxyethyl Oligonucleotide-Cationic Peptide Conjugates. ChemMedChem 2021; 16:3391-3395. [PMID: 34358416 PMCID: PMC9291120 DOI: 10.1002/cmdc.202100388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/02/2021] [Indexed: 11/06/2022]
Abstract
Single-stranded phosphorothioate (PS) oligonucleotide drugs have shown potential for the treatment of several rare diseases. However, a barrier to their widespread use is that they exhibit activity in only a narrow range of tissues. One way to circumvent this constraint is to conjugate them to cationic cell-penetrating peptides (CPPs). Although there are several examples of morpholino and peptide nucleic acids conjugated with CPPs, there are noticeably few examples of PS oligonucleotide-CPP conjugates. This is surprising given that PS oligonucleotides presently represent the largest class of approved RNA-based drugs, including Nusinersen, that bears the 2'-O-methoxyethyl (MOE)-chemistry. In this work, we report a method for in-solution conjugation of cationic, hydrophobic peptides or human serum albumin to a 22-nucleotide MOE-PS oligonucleotide. Conjugates were obtained in high yields and purities. Our findings pave the way for their large-scale synthesis and testing in vivo.
Collapse
Affiliation(s)
- François Halloy
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir Prelog Weg 48093ZurichSwitzerland
- Current address: Department of PaediatricsMedical Sciences DivisionUniversity of OxfordOX1 3QXOxfordUK
| | - Alyssa C. Hill
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir Prelog Weg 48093ZurichSwitzerland
| | - Jonathan Hall
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir Prelog Weg 48093ZurichSwitzerland
| |
Collapse
|
13
|
Matsuo M. Antisense Oligonucleotide-Mediated Exon-skipping Therapies: Precision Medicine Spreading from Duchenne Muscular Dystrophy. JMA J 2021; 4:232-240. [PMID: 34414317 PMCID: PMC8355726 DOI: 10.31662/jmaj.2021-0019] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/13/2021] [Indexed: 11/12/2022] Open
Abstract
In 1995, we were the first to propose antisense oligonucleotide (ASO)-mediated exon-skipping therapy for the treatment of Duchenne muscular dystrophy (DMD), a noncurable, progressive muscle-wasting disease. DMD is caused by deletion mutations in one or more exons of the DMD gene that shift the translational reading frame and create a premature stop codon, thus prohibiting dystrophin production. The therapy aims to correct out-of-frame mRNAs to produce in-frame transcripts by removing an exon during splicing, with the resumption of dystrophin production. As this treatment is recognized as the most promising, many extensive studies have been performed to develop ASOs that induce the skipping of DMD exons. In 2016, an ASO designed to skip exon 51 was first approved by the Food and Drug Administration, which accelerated studies on the use of ASOs to treat other monogenic diseases. The ease of mRNA editing by ASO-mediated exon skipping has resulted in the further application of exon-skipping therapy to nonmonogenic diseases, such as diabetes mellites. Recently, this precision medicine strategy was drastically transformed for the emergent treatment of only one patient with one ASO, which represents a future aspect of ASO-mediated exon-skipping therapy for extremely rare diseases. Herein, the invention of ASO-mediated exon-skipping therapy for DMD and the current applications of ASO-mediated exon-skipping therapies are reviewed, and future perspectives on this therapeutic strategy are discussed. This overview will encourage studies on ASO-mediated exon-skipping therapy and will especially contribute to the development of treatments for noncurable diseases.
Collapse
Affiliation(s)
- Masafumi Matsuo
- KNC Department of Nucleic Acid Drug Discovery, Department of Physical Rehabilitation and Research Center for Locomotion Biology, Kobe Gakuin University, Kobe, Japan
| |
Collapse
|
14
|
Wu Q, Zhang Y, An H, Sun W, Wang R, Liu M, Zhang K. The landscape and biological relevance of aberrant alternative splicing events in esophageal squamous cell carcinoma. Oncogene 2021; 40:4184-4197. [PMID: 34079089 DOI: 10.1038/s41388-021-01849-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 01/25/2023]
Abstract
Aberrant alternative splicing events (AASEs) are key biological processes for tumorigenesis and the rationale for designing splice-switching oligonucleotides (SSOs). However, the landscape of AASEs in esophageal squamous cell carcinoma (ESCC) remains unclear, which undermines the development of SSOs for ESCC. Here, we profiled AASEs based on 125 pairs of RNA-seq libraries. We identified 14,710 AASEs in ESCC, most of which (92.67%) affected coding genes. The first exon of transcripts was frequently changed in ESCC. We constructed a regulatory network where 74 RNA-binding proteins regulated 2142 AASEs. This network was enriched in apoptotic pathways and various adhesion/junction-related processes. Somatic mutations in ESCC regulating ASEs were mainly through trans-regulatory mode and were enriched in intron regions. Isoform switches of apoptotic genes and binding genes both tended to induce "noncoding transcripts" and "domain loss," disrupting the apoptotic and Hippo signaling pathways. All ESCC samples were grouped into three clusters with different AASEs patterns and the second cluster was identified as "cold tumor," with a low abundance of immune cells, activated immune pathways, and immunomodulators. Our work comprehensively profiled the landscape of AASEs in ESCC, revealed novel AASEs related to tumorigenesis and immune microenvironment, and suggested promising directions for designing SSOs for ESCC.
Collapse
Affiliation(s)
- Quanyou Wu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuan Zhang
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Haiyin An
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Wei Sun
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Ruozheng Wang
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.,Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumqi, 830011, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Meng Liu
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China. .,Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumqi, 830011, Xinjiang, China. .,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
15
|
Tan DJY, Cheong VV, Lim KW, Phan AT. A modular approach to enzymatic ligation of peptides and proteins with oligonucleotides. Chem Commun (Camb) 2021; 57:5507-5510. [PMID: 34036975 DOI: 10.1039/d1cc01348c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Joining peptides and oligonucleotides offers potential benefits, but current methods remain laborious. Here we present a novel approach towards enzymatic ligation of the two modalities through the development of tag phosphoramidites as adaptors that can be readily incorporated onto oligonucleotides. This simple and highly efficient approach paves the way towards streamlined development and production of peptide/protein-oligonucleotide conjugates.
Collapse
Affiliation(s)
- Derrick Jing Yang Tan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.
| | | | | | | |
Collapse
|
16
|
Linden G, Janga H, Franz M, Nist A, Stiewe T, Schmeck B, Vázquez O, Schulte LN. Efficient antisense inhibition reveals microRNA-155 to restrain a late-myeloid inflammatory programme in primary human phagocytes. RNA Biol 2021; 18:604-618. [PMID: 33622174 PMCID: PMC8078538 DOI: 10.1080/15476286.2021.1885209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 01/05/2023] Open
Abstract
A persisting obstacle in human immunology is that blood-derived leukocytes are notoriously difficult to manipulate at the RNA level. Therefore, our knowledge about immune-regulatory RNA-networks is largely based on tumour cell-line and rodent knockout models, which do not fully mimic human leukocyte biology. Here, we exploit straightforward cell penetrating peptide (CPP) chemistry to enable efficient loss-of-function phenotyping of regulatory RNAs in primary human blood-derived cells. The classical CPP octaarginine (R8) enabled antisense peptide-nucleic-acid (PNA) oligomer delivery into nearly 100% of human blood-derived macrophages without apparent cytotoxicity even up to micromolar concentrations. In a proof-of-principle experiment, we successfully de-repressed the global microRNA-155 regulome in primary human macrophages using a PNA-R8 oligomer, which phenocopies a CRISPR-Cas9 induced gene knockout. Interestingly, although it is often believed that fairly high concentrations (μM) are needed to achieve antisense activity, our PNA-R8 was effective at 200 nM. RNA-seq characterized microRNA-155 as a broad-acting riboregulator, feedback restraining a late myeloid differentiation-induced pro-inflammatory network, comprising MyD88-signalling and ubiquitin-proteasome components. Our results highlight the important role of the microRNA machinery in fine-control of blood-derived human phagocyte immunity and open the door for further studies on regulatory RNAs in difficult-to-transfect primary human immune cells.
Collapse
Affiliation(s)
- Greta Linden
- Department of Chemistry, Philipps University Marburg, Marburg, Germany
| | - Harshavardhan Janga
- Department of Medicine, Institute for Lung Research, Philipps University Marburg, Marburg, Germany
| | - Matthias Franz
- Department of Chemistry, Philipps University Marburg, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps University Marburg, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Philipps University Marburg, Marburg, Germany
- Department of Medicine, Institute of Molecular Oncology, Philipps University Marburg, Marburg, Germany
- German Center for Lung Research (DZL), Marburg, Germany
| | - Bernd Schmeck
- Department of Medicine, Institute for Lung Research, Philipps University Marburg, Marburg, Germany
- German Center for Lung Research (DZL), Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany
- German Center for Infection Research (DZIF), Marburg, Germany
| | - Olalla Vázquez
- Department of Chemistry, Philipps University Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany
| | - Leon N Schulte
- Department of Medicine, Institute for Lung Research, Philipps University Marburg, Marburg, Germany
- German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
17
|
Halloy F, Iyer PS, Ghidini A, Lysenko V, Barman-Aksözen J, Grubenmann CP, Jucker J, Wildner-Verhey van Wijk N, Ruepp MD, Minder EI, Minder AE, Schneider-Yin X, Theocharides APA, Schümperli D, Hall J. Repurposing of glycine transport inhibitors for the treatment of erythropoietic protoporphyria. Cell Chem Biol 2021; 28:1221-1234.e6. [PMID: 33756123 DOI: 10.1016/j.chembiol.2021.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/19/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
Erythropoietic protoporphyria (EPP) is a rare disease in which patients experience severe light sensitivity. It is caused by a deficiency of ferrochelatase (FECH), the last enzyme in heme biosynthesis (HBS). The lack of FECH causes accumulation of its photoreactive substrate protoporphyrin IX (PPIX) in patients' erythrocytes. Here, we explored an approach for the treatment of EPP by decreasing PPIX synthesis using small-molecule inhibitors directed to factors in the HBS pathway. We generated a FECH-knockout clone from K562 erythroleukemia cells, which accumulates PPIX and undergoes oxidative stress upon light exposure. We used these matched cell lines to screen a set of publicly available inhibitors of factors in the HBS pathway. Inhibitors of the glycine transporters GlyT1 and GlyT2 lowered levels of PPIX and markers of oxidative stress selectively in K56211B4 cells, and in primary erythroid cultures from an EPP patient. Our findings open the door to investigation of glycine transport inhibitors for HBS disorders.
Collapse
Affiliation(s)
- François Halloy
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Pavithra S Iyer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Alice Ghidini
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Veronika Lysenko
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Jasmin Barman-Aksözen
- Institute of Laboratory Medicine, Municipal Hospital Waid and Triemli, 8063 Zurich, Switzerland
| | - Chia-Pei Grubenmann
- Institute of Laboratory Medicine, Municipal Hospital Waid and Triemli, 8063 Zurich, Switzerland
| | - Jessica Jucker
- Institute of Laboratory Medicine, Municipal Hospital Waid and Triemli, 8063 Zurich, Switzerland
| | | | - Marc-David Ruepp
- UK Dementia Research Institute at King's College London, SE5 9RT London, UK; Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF London, UK
| | - Elisabeth I Minder
- Department for Endocrinology, Diabetology, Porphyria, Municipal Hospital Waid and Triemli, 8063 Zurich, Switzerland
| | - Anna-Elisabeth Minder
- Department for Endocrinology, Diabetology, Porphyria, Municipal Hospital Waid and Triemli, 8063 Zurich, Switzerland
| | - Xiaoye Schneider-Yin
- Institute of Laboratory Medicine, Municipal Hospital Waid and Triemli, 8063 Zurich, Switzerland
| | - Alexandre P A Theocharides
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Daniel Schümperli
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| | - Jonathan Hall
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
18
|
Ghidini A, Cléry A, Halloy F, Allain FHT, Hall J. RNA‐PROTACs: Degraders of RNA‐Binding Proteins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alice Ghidini
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Antoine Cléry
- Department of Biology ETH Zurich Hönggerbergring 64 8093 Zurich Switzerland
| | - François Halloy
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | | | - Jonathan Hall
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| |
Collapse
|
19
|
Ghidini A, Cléry A, Halloy F, Allain FHT, Hall J. RNA-PROTACs: Degraders of RNA-Binding Proteins. Angew Chem Int Ed Engl 2021; 60:3163-3169. [PMID: 33108679 PMCID: PMC7898822 DOI: 10.1002/anie.202012330] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Indexed: 12/19/2022]
Abstract
Defects in the functions of RNA binding proteins (RBPs) are at the origin of many diseases; however, targeting RBPs with conventional drugs has proven difficult. PROTACs are a new class of drugs that mediate selective degradation of a target protein through a cell's ubiquitination machinery. PROTACs comprise a moiety that binds the selected protein, conjugated to a ligand of an E3 ligase. Herein, we introduce RNA-PROTACs as a new concept in the targeting of RBPs. These chimeric structures employ small RNA mimics as targeting groups that dock the RNA-binding site of the RBP, whereupon a conjugated E3-recruiting peptide derived from the HIF-1α protein directs the RBP for proteasomal degradation. We performed a proof-of-concept demonstration with the degradation of two RBPs-a stem cell factor LIN28 and a splicing factor RBFOX1-and showed their use in cancer cell lines. The RNA-PROTAC approach opens the way to rapid, selective targeting of RBPs in a rational and general fashion.
Collapse
Affiliation(s)
- Alice Ghidini
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 48093ZurichSwitzerland
| | - Antoine Cléry
- Department of BiologyETH ZurichHönggerbergring 648093ZurichSwitzerland
| | - François Halloy
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 48093ZurichSwitzerland
| | | | - Jonathan Hall
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 48093ZurichSwitzerland
| |
Collapse
|