1
|
Aksel T, J. Navarro E, Fong N, Douglas SM. Design principles for accurate folding of DNA origami. Proc Natl Acad Sci U S A 2024; 121:e2406769121. [PMID: 39570311 PMCID: PMC11621765 DOI: 10.1073/pnas.2406769121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
We describe design principles for accurate folding of three-dimensional DNA origami. To evaluate design rules, we reduced the problem of DNA strand routing to the known problem of shortest-path finding in a weighted graph. To score candidate DNA strand routes we used a thermodynamic model that accounts for enthalpic and entropic contributions of initial binding, hybridization, and DNA loop closure. We encoded and analyzed new and previously reported design heuristics. Using design principles emerging from this analysis, we redesigned and fabricated multiple shapes and compared their folding accuracy using electrophoretic mobility analysis and electron microscopy imaging. Redesigned shapes showed 6- to 30-fold improvements in yield compared to original designs. We demonstrate accurate folding can be achieved by optimizing staple routes using our model and provide a computational framework for applying our methodology to any design.
Collapse
Affiliation(s)
- Tural Aksel
- Department of Cellular and Molecular Pharmacology. University of California, San Francisco, CA94143
| | - Erik J. Navarro
- Department of Cellular and Molecular Pharmacology. University of California, San Francisco, CA94143
| | - Nicholas Fong
- Department of Cellular and Molecular Pharmacology. University of California, San Francisco, CA94143
| | - Shawn M. Douglas
- Department of Cellular and Molecular Pharmacology. University of California, San Francisco, CA94143
| |
Collapse
|
2
|
Gabrusenok PV, Ramazanov RR, Kasyanenko NA, Lantushenko AO, Sokolov PA. pH-dependent binding of ATP aptamer to the target and competition strands: Fluorescent melting curve fitting study. Biochim Biophys Acta Gen Subj 2024; 1868:130689. [PMID: 39134247 DOI: 10.1016/j.bbagen.2024.130689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/18/2024]
Abstract
The pH varies in different tissues and organelles and also changes during some diseases. In this regard, the application of molecular switches that use a competition-based aptamer switch design in biological systems requires studying the thermodynamics of such systems at different pH values. In this work, we studied the binding of the classical ATP aptamer to ATP and competition strands under different pH and ionic conditions using fluorescent melting curve analysis. We have developed an original approach to processing source data from a PCR thermal cycler. It is based on constructing a thermodynamic model of the melting profile and the subsequent fit of experimental curves within this model. We have shown that this approach enables us to narrow the temperature region under study to the width of the melting region without a significant loss in the quality of the result. This impressively expands the application area of this approach compared to frequently used techniques that require mandatory measurement of the signal outside the melting region. The results obtained by the method showed that the thermodynamic parameters of the ATP aptamer and its duplexes with competition strands change depending on pH. Therefore, molecular switches that use a competition strand to the ATP aptamer may have a pH-dependent sensitivity that has not been previously considered. This should be taken into account for future rational design of similar systems.
Collapse
Affiliation(s)
- P V Gabrusenok
- St. Petersburg University, 13B Universitetskaya Emb., St. Petersburg, 199034, Russia
| | - R R Ramazanov
- St. Petersburg University, 13B Universitetskaya Emb., St. Petersburg, 199034, Russia
| | - N A Kasyanenko
- St. Petersburg University, 13B Universitetskaya Emb., St. Petersburg, 199034, Russia
| | - A O Lantushenko
- Sevastopol State University, 33 Universitetskaya Street, Sevastopol, 299053, Russia
| | - P A Sokolov
- St. Petersburg University, 13B Universitetskaya Emb., St. Petersburg, 199034, Russia.
| |
Collapse
|
3
|
Aksel T, Navarro EJ, Fong N, Douglas SM. Design principles for accurate folding of DNA origami. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585609. [PMID: 38562860 PMCID: PMC10983894 DOI: 10.1101/2024.03.18.585609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We describe design principles for accurate folding of three-dimensional DNA origami. To evaluate design rules, we reduced the problem of DNA strand routing to the known problem of shortest-path finding in a weighted graph. To score candidate DNA strand routes we used a thermodynamic model that accounts for enthalpic and entropic contributions of initial binding, hybridization, and DNA loop closure. We encoded and analyzed new and previously reported design heuristics. Using design principles emerging from this analysis, we redesigned and fabricated multiple shapes and compared their folding accuracy using electrophoretic mobility analysis and electron microscopy imaging. We demonstrate accurate folding can be achieved by optimizing staple routes using our model, and provide a computational framework for applying our methodology to any design.
Collapse
Affiliation(s)
- Tural Aksel
- Department of Cellular and Molecular Pharmacology. University of California, San Francisco
| | - Erik J. Navarro
- Department of Cellular and Molecular Pharmacology. University of California, San Francisco
| | - Nicholas Fong
- Department of Cellular and Molecular Pharmacology. University of California, San Francisco
| | - Shawn M. Douglas
- Department of Cellular and Molecular Pharmacology. University of California, San Francisco
| |
Collapse
|
4
|
Shirt-Ediss B, Connolly J, Elezgaray J, Torelli E, Navarro SA, Bacardit J, Krasnogor N. Reverse engineering DNA origami nanostructure designs from raw scaffold and staple sequence lists. Comput Struct Biotechnol J 2023; 21:3615-3626. [PMID: 37520280 PMCID: PMC10371787 DOI: 10.1016/j.csbj.2023.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Designs for scaffolded DNA origami nanostructures are commonly and minimally published as the list of DNA staple and scaffold sequences required. In nearly all cases, high-level editable design files (e.g. caDNAno) which generated the low-level sequences are not made available. This de facto 'raw sequence' exchange format allows published origami designs to be re-attempted in the laboratory by other groups, but effectively stops designs from being significantly modified or re-purposed for new future applications. To make the raw sequence exchange format more accessible to further design and engineering, in this work we propose the first algorithmic solution to the inverse problem of converting staple/scaffold sequences back to a 'guide schematic' resembling the original origami schematic. The guide schematic can be used to aid the manual re-input of an origami into a CAD tool like caDNAno, hence recovering a high-level editable design file. Creation of a guide schematic can also be used to double check that a list of staple strand sequences does not have errors and indeed does assemble into a desired origami nanostructure prior to costly laboratory experimentation. We tested our reverse algorithm on 36 diverse origami designs from the literature and found that 29 origamis (81 %) had a good quality guide schematic recovered from raw sequences. Our software is made available at https://revnano.readthedocs.io.
Collapse
Affiliation(s)
- Ben Shirt-Ediss
- Interdisciplinary Computing and Complex Biosystems Research Group, School of Computing, Newcastle University, Newcastle-upon-Tyne NE4 5TG, UK
| | - Jordan Connolly
- Interdisciplinary Computing and Complex Biosystems Research Group, School of Computing, Newcastle University, Newcastle-upon-Tyne NE4 5TG, UK
| | - Juan Elezgaray
- Centre de Recherche Paul Pascal, CNRS, UMR503, Pessac 33600, France
| | - Emanuela Torelli
- Interdisciplinary Computing and Complex Biosystems Research Group, School of Computing, Newcastle University, Newcastle-upon-Tyne NE4 5TG, UK
| | - Silvia Adriana Navarro
- Interdisciplinary Computing and Complex Biosystems Research Group, School of Computing, Newcastle University, Newcastle-upon-Tyne NE4 5TG, UK
| | - Jaume Bacardit
- Interdisciplinary Computing and Complex Biosystems Research Group, School of Computing, Newcastle University, Newcastle-upon-Tyne NE4 5TG, UK
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Biosystems Research Group, School of Computing, Newcastle University, Newcastle-upon-Tyne NE4 5TG, UK
| |
Collapse
|
5
|
Langlois NI, Ma KY, Clark HA. Nucleic acid nanostructures for in vivo applications: The influence of morphology on biological fate. APPLIED PHYSICS REVIEWS 2023; 10:011304. [PMID: 36874908 PMCID: PMC9869343 DOI: 10.1063/5.0121820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/12/2022] [Indexed: 05/23/2023]
Abstract
The development of programmable biomaterials for use in nanofabrication represents a major advance for the future of biomedicine and diagnostics. Recent advances in structural nanotechnology using nucleic acids have resulted in dramatic progress in our understanding of nucleic acid-based nanostructures (NANs) for use in biological applications. As the NANs become more architecturally and functionally diverse to accommodate introduction into living systems, there is a need to understand how critical design features can be controlled to impart desired performance in vivo. In this review, we survey the range of nucleic acid materials utilized as structural building blocks (DNA, RNA, and xenonucleic acids), the diversity of geometries for nanofabrication, and the strategies to functionalize these complexes. We include an assessment of the available and emerging characterization tools used to evaluate the physical, mechanical, physiochemical, and biological properties of NANs in vitro. Finally, the current understanding of the obstacles encountered along the in vivo journey is contextualized to demonstrate how morphological features of NANs influence their biological fates. We envision that this summary will aid researchers in the designing novel NAN morphologies, guide characterization efforts, and design of experiments and spark interdisciplinary collaborations to fuel advancements in programmable platforms for biological applications.
Collapse
Affiliation(s)
- Nicole I. Langlois
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Kristine Y. Ma
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
6
|
Yuan W, Dong GZ, Ning H, Guan XX, Cheng JF, Shi ZW, Du XJ, Meng SW, Liu DS, Dong YC. Applying dynamic light scattering to investigate the self-assembly process of DNA nanostructures. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Ijäs H, Liedl T, Linko V, Posnjak G. A label-free light-scattering method to resolve assembly and disassembly of DNA nanostructures. Biophys J 2022; 121:4800-4809. [PMID: 36811525 PMCID: PMC9811603 DOI: 10.1016/j.bpj.2022.10.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/06/2022] [Accepted: 10/24/2022] [Indexed: 11/02/2022] Open
Abstract
DNA self-assembly, and in particular DNA origami, has evolved into a reliable workhorse for organizing organic and inorganic materials with nanometer precision and with exactly controlled stoichiometry. To ensure the intended performance of a given DNA structure, it is beneficial to determine its folding temperature, which in turn yields the best possible assembly of all DNA strands. Here, we show that temperature-controlled sample holders and standard fluorescence spectrometers or dynamic light-scattering setups in a static light-scattering configuration allow for monitoring the assembly progress in real time. With this robust label-free technique, we determine the folding and melting temperatures of a set of different DNA origami structures without the need for more tedious protocols. In addition, we use the method to follow digestion of DNA structures in the presence of DNase I and find strikingly different resistances toward enzymatic degradation depending on the structural design of the DNA object.
Collapse
Affiliation(s)
- Heini Ijäs
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland; Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Munich, Germany
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Munich, Germany
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland; LIBER Center of Excellence, Aalto University, Aalto, Finland.
| | - Gregor Posnjak
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
8
|
Majikes JM, Zwolak M, Liddle JA. Best practice for improved accuracy: a critical reassessment of van't Hoff analysis of melt curves. Biophys J 2022; 121:1986-2001. [PMID: 35546781 DOI: 10.1016/j.bpj.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/05/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022] Open
Abstract
Biomolecular thermodynamics, particularly for DNA, are frequently determined via van't Hoff analysis of optically-measured melt curves. Accurate and precise values of thermodynamic parameters are essential for the modelling of complex systems involving cooperative effects, such as RNA tertiary structure and DNA origami because the uncertainties associated with each motif in a folding energy landscape can compound, significantly reducing the power of predictive models. We follow the sources of uncertainty as they propagate through a typical van't Hoff analysis to derive best practices for melt experiments and subsequent data analysis, assuming perfect signal baseline correction. With appropriately designed experiments and analysis, a van't Hoff approach can provide surprisingly high precision, e.g., enthalpies may be determined with a precision as low as a 10-2 kJ∙mol-1 for an 8 base DNA oligomer.
Collapse
Affiliation(s)
- Jacob M Majikes
- Microsystem and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland.
| | - Michael Zwolak
- Microsystem and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - J Alexander Liddle
- Microsystem and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland.
| |
Collapse
|
9
|
Ávalos-Ovando O, Besteiro LV, Movsesyan A, Markovich G, Liedl T, Martens K, Wang Z, Correa-Duarte MA, Govorov AO. Chiral Photomelting of DNA-Nanocrystal Assemblies Utilizing Plasmonic Photoheating. NANO LETTERS 2021; 21:7298-7308. [PMID: 34428053 DOI: 10.1021/acs.nanolett.1c02479] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Chiral plasmonic nanostructures exhibit anomalously strong chiroptical signals and offer the possibility to realize asymmetric photophysical and photochemical processes controlled by circularly polarized light. Here, we use a chiral DNA-assembled nanorod pair as a model system for chiral plasmonic photomelting. We show that both the enantiomeric excess and consequent circular dichroism can be controlled with chiral light. The nonlinear chiroptical response of our plasmonic system results from the chiral photothermal effect leading to selective melting of the DNA linker strands. Our study describes both the single-complex and collective heating regimes, which should be treated with different models. The chiral asymmetry factors of the calculated photothermal and photomelting effects exceed the values typical for the chiral molecular photochemistry at least 10-fold. Our proposed mechanism can be used to develop chiral photoresponsive systems controllable with circularly polarized light.
Collapse
Affiliation(s)
- Oscar Ávalos-Ovando
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
| | | | - Artur Movsesyan
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Gil Markovich
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801 Israel
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, 80539 Munich, Germany
| | - Kevin Martens
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, 80539 Munich, Germany
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | | | - Alexander O Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
10
|
Johnson JA, Kolliopoulos V, Castro CE. Co-self-assembly of multiple DNA origami nanostructures in a single pot. Chem Commun (Camb) 2021; 57:4795-4798. [PMID: 33982710 DOI: 10.1039/d1cc00049g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simultaneous self-assembly of two distinct DNA origami nanostructures folded with the same scaffold strand was achieved in a single pot. Relative yields were tuned by adjusting concentrations of the competing strands, correlating well with folding kinetics of individual structures. These results can faciliate efficient fabrication of multi-structure systems and materials.
Collapse
Affiliation(s)
- Joshua A Johnson
- Biophysics Graduate Program, The Ohio State University, 281 W Lane Ave, Columbus, OH 43210, USA.
| | - Vasiliki Kolliopoulos
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 281 W Lane Ave, Columbus, OH 43210, USA
| | - Carlos E Castro
- Biophysics Graduate Program, The Ohio State University, 281 W Lane Ave, Columbus, OH 43210, USA. and Department of Mechanical and Aerospace Engineering, The Ohio State University, 281 W Lane Ave, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Majikes JM, Patrone PN, Kearsley AJ, Zwolak M, Liddle JA. Failure Mechanisms in DNA Self-Assembly: Barriers to Single-Fold Yield. ACS NANO 2021; 15:3284-3294. [PMID: 33565312 PMCID: PMC11005093 DOI: 10.1021/acsnano.0c10114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the folding process of DNA origami is a critical stepping stone to the broader implementation of nucleic acid nanofabrication technology but is notably nontrivial. Origami are formed by several hundred cooperative hybridization events-folds-between spatially separate domains of a scaffold, derived from a viral genome, and oligomeric staples. Individual events are difficult to detect. Here, we present a real-time probe of the unit operation of origami assembly, a single fold, across the scaffold as a function of hybridization domain separation-fold distance-and staple/scaffold ratio. This approach to the folding problem elucidates a predicted but previously unobserved blocked state that acts as a limit on yield for single folds, which may manifest as a barrier in whole origami assembly.
Collapse
Affiliation(s)
- Jacob M. Majikes
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6203, United States
| | - Paul N. Patrone
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6203, United States
| | - Anthony J. Kearsley
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6203, United States
| | - Michael Zwolak
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6203, United States
| | - J. Alexander Liddle
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6203, United States
| |
Collapse
|
12
|
Insights into the Structure and Energy of DNA Nanoassemblies. Molecules 2020; 25:molecules25235466. [PMID: 33255286 PMCID: PMC7727707 DOI: 10.3390/molecules25235466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
Since the pioneering work of Ned Seeman in the early 1980s, the use of the DNA molecule as a construction material experienced a rapid growth and led to the establishment of a new field of science, nowadays called structural DNA nanotechnology. Here, the self-recognition properties of DNA are employed to build micrometer-large molecular objects with nanometer-sized features, thus bridging the nano- to the microscopic world in a programmable fashion. Distinct design strategies and experimental procedures have been developed over the years, enabling the realization of extremely sophisticated structures with a level of control that approaches that of natural macromolecular assemblies. Nevertheless, our understanding of the building process, i.e., what defines the route that goes from the initial mixture of DNA strands to the final intertwined superstructure, is, in some cases, still limited. In this review, we describe the main structural and energetic features of DNA nanoconstructs, from the simple Holliday junction to more complicated DNA architectures, and present the theoretical frameworks that have been formulated until now to explain their self-assembly. Deeper insights into the underlying principles of DNA self-assembly may certainly help us to overcome current experimental challenges and foster the development of original strategies inspired to dissipative and evolutive assembly processes occurring in nature.
Collapse
|
13
|
Patrone PN, Kearsley AJ, Majikes JM, Liddle JA. Analysis and uncertainty quantification of DNA fluorescence melt data: Applications of affine transformations. Anal Biochem 2020; 607:113773. [PMID: 32526200 DOI: 10.1016/j.ab.2020.113773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/22/2020] [Accepted: 05/10/2020] [Indexed: 12/17/2022]
Abstract
Fluorescence-based measurements are a standard tool for characterizing the thermodynamic properties of DNA systems. Nonetheless, experimental melt data obtained from polymerase chain-reaction (PCR) machines (for example) often leads to signals that vary significantly between datasets. In many cases, this lack of reproducibility has led to difficulties in analyzing results and computing reasonable uncertainty estimates. To address this problem, we propose a data analysis procedure based on constrained, convex optimization of affine transformations, which can determine when and how melt curves collapse onto one another. A key aspect of this approach is its ability to provide a reproducible and more objective measure of whether a collection of datasets yields a consistent "universal" signal according to an appropriate model of the raw signals. Importantly, integrating this validation step into the analysis hardens the measurement protocol by allowing one to identify experimental conditions and/or modeling assumptions that may corrupt a measurement. Moreover, this robustness facilitates extraction of thermodynamic information at no additional cost in experimental time. We illustrate and test our approach on experiments of Förster resonance energy transfer (FRET) pairs used study the thermodynamics of DNA loops.
Collapse
|