1
|
Predl M, Gandolf K, Hofer M, Rattei T. ScyNet: Visualizing interactions in community metabolic models. BIOINFORMATICS ADVANCES 2024; 4:vbae104. [PMID: 39132287 PMCID: PMC11315608 DOI: 10.1093/bioadv/vbae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
Motivation Genome-scale community metabolic models are used to gain mechanistic insights into interactions between community members. However, existing tools for visualizing metabolic models only cater to the needs of single organism models. Results ScyNet is a Cytoscape app for visualizing community metabolic models, generating networks with reduced complexity by focusing on interactions between community members. ScyNet can incorporate the state of a metabolic model via fluxes or flux ranges, which is shown in a previously published simplified cystic fibrosis airway community model. Availability and implementation ScyNet is freely available under an MIT licence and can be retrieved via the Cytoscape App Store (apps.cytoscape.org/apps/scynet). The source code is available at Github (github.com/univieCUBE/ScyNet).
Collapse
Affiliation(s)
- Michael Predl
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna 1030, Austria
| | - Kilian Gandolf
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Michael Hofer
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna 1030, Austria
| |
Collapse
|
2
|
Hari A, Zarrabi A, Lobo D. mergem: merging, comparing, and translating genome-scale metabolic models using universal identifiers. NAR Genom Bioinform 2024; 6:lqae010. [PMID: 38312936 PMCID: PMC10836943 DOI: 10.1093/nargab/lqae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/15/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Numerous methods exist to produce and refine genome-scale metabolic models. However, due to the use of incompatible identifier systems for metabolites and reactions, computing and visualizing the metabolic differences and similarities of such models is a current challenge. Furthermore, there is a lack of automated tools that can combine the strengths of multiple reconstruction pipelines into a curated single comprehensive model by merging different drafts, which possibly use incompatible namespaces. Here we present mergem, a novel method to compare, merge, and translate two or more metabolic models. Using a universal metabolic identifier mapping system constructed from multiple metabolic databases, mergem robustly can compare models from different pipelines, merge their common elements, and translate their identifiers to other database systems. mergem is implemented as a command line tool, a Python package, and on the web-application Fluxer, which allows simulating and visually comparing multiple models with different interactive flux graphs. The ability to merge, compare, and translate diverse genome scale metabolic models can facilitate the curation of comprehensive reconstructions and the discovery of unique and common metabolic features among different organisms.
Collapse
Affiliation(s)
- Archana Hari
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle Baltimore, MD 21250, USA
| | - Arveen Zarrabi
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle Baltimore, MD 21250, USA
| | - Daniel Lobo
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle Baltimore, MD 21250, USA
- Greenebaum Comprehensive Cancer Center and Center for Stem Cell Biology & Regenerative Medicine, University of Maryland, School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Immanuel A, Yennamalli RM, Ulaganathan V. Targeting the Bottlenecks in Levan Biosynthesis Pathway in Bacillus subtilis and Strain Optimization by Computational Modeling and Omics Integration. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:49-58. [PMID: 38315781 DOI: 10.1089/omi.2023.0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Levan is a fructan polymer with many industrial applications such as the formulation of hydrogels, drug delivery, and wound healing, among others. To this end, metabolic systems engineering is a valuable method to improve the yield of a specific metabolite in a wide range of bacterial and eukaryotic organisms. In this study, we report a systems biology approach integrating genomics data for the Bacillus subtilis model, wherein the metabolic pathway for levan biosynthesis is unpacked. We analyzed a revised genome-scale enzyme-constrained metabolic model (ecGEM) and performed simulations to increase levan biopolymer production capacity in B. subtilis. We used the model ec_iYO844_lvn to (1) identify the essential genes and bottlenecks in levan production, and (2) specifically design an engineered B. subtilis strain capable of producing higher levan yields. The FBA and FVA analysis showed the maximal growth rate of the organism up to 0.624 hr-1 at 20 mmol gDw-1 hr-1 of sucrose intake. Gene knockout analyses were performed to identify gene knockout targets to increase the levan flux in B. subtilis. Importantly, we found that the pgk and ctaD genes are the two target genes for the knockout. The perturbation of these two genes has flux gains for levan production reactions with 1.3- and 1.4-fold the relative flux span in the mutant strains, respectively, compared to the wild type. In all, this work identifies the bottlenecks in the production of levan and possible ways to overcome them. Our results provide deeper insights on the bacterium's physiology and new avenues for strain engineering.
Collapse
Affiliation(s)
- Aruldoss Immanuel
- Molecular Motors Lab, Department of Biotechnology, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Ragothaman M Yennamalli
- Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Venkatasubramanian Ulaganathan
- Molecular Motors Lab, Department of Biotechnology, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
- Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
4
|
Chowdhury NB, Pokorzynski N, Rucks EA, Ouellette SP, Carabeo RA, Saha R. Machine Learning and Metabolic Model Guided CRISPRi Reveals a Central Role for Phosphoglycerate Mutase in Chlamydia trachomatis Persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572198. [PMID: 38187683 PMCID: PMC10769294 DOI: 10.1101/2023.12.18.572198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Upon nutrient starvation, Chlamydia trachomatis serovar L2 (CTL) shifts from its normal growth to a non-replicating form, termed persistence. It is unclear if persistence is an adaptive response or lack of it. To understand that transcriptomics data were collected for nutrient-sufficient and nutrient-starved CTL. Applying machine learning approaches on transcriptomics data revealed a global transcriptomic rewiring of CTL under stress conditions without having any global stress regulator. This indicated that CTL's stress response is due to lack of an adaptive response mechanism. To investigate the impact of this on CTL metabolism, we reconstructed a genome-scale metabolic model of CTL (iCTL278) and contextualized it with the collected transcriptomics data. Using the metabolic bottleneck analysis on contextualized iCTL278, we observed phosphoglycerate mutase (pgm) regulates the entry of CTL to the persistence. Later, pgm was found to have the highest thermodynamics driving force and lowest enzymatic cost. Furthermore, CRISPRi-driven knockdown of pgm and tryptophan starvation experiments revealed the importance of this gene in inducing persistence. Hence, this work, for the first time, introduced thermodynamics and enzyme-cost as tools to gain deeper understanding on CTL persistence.
Collapse
Affiliation(s)
- Niaz Bahar Chowdhury
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68508, USA
| | - Nick Pokorzynski
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Elizabeth A. Rucks
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Scot P. Ouellette
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Rey A. Carabeo
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Rajib Saha
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68508, USA
| |
Collapse
|
5
|
Kulyashov MA, Kolmykov SK, Khlebodarova TM, Akberdin IR. State-of the-Art Constraint-Based Modeling of Microbial Metabolism: From Basics to Context-Specific Models with a Focus on Methanotrophs. Microorganisms 2023; 11:2987. [PMID: 38138131 PMCID: PMC10745598 DOI: 10.3390/microorganisms11122987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Methanotrophy is the ability of an organism to capture and utilize the greenhouse gas, methane, as a source of energy-rich carbon. Over the years, significant progress has been made in understanding of mechanisms for methane utilization, mostly in bacterial systems, including the key metabolic pathways, regulation and the impact of various factors (iron, copper, calcium, lanthanum, and tungsten) on cell growth and methane bioconversion. The implementation of -omics approaches provided vast amount of heterogeneous data that require the adaptation or development of computational tools for a system-wide interrogative analysis of methanotrophy. The genome-scale mathematical modeling of its metabolism has been envisioned as one of the most productive strategies for the integration of muti-scale data to better understand methane metabolism and enable its biotechnological implementation. Herein, we provide an overview of various computational strategies implemented for methanotrophic systems. We highlight functional capabilities as well as limitations of the most popular web resources for the reconstruction, modification and optimization of the genome-scale metabolic models for methane-utilizing bacteria.
Collapse
Affiliation(s)
- Mikhail A. Kulyashov
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.A.K.); (S.K.K.); (T.M.K.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Semyon K. Kolmykov
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.A.K.); (S.K.K.); (T.M.K.)
| | - Tamara M. Khlebodarova
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.A.K.); (S.K.K.); (T.M.K.)
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Ilya R. Akberdin
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.A.K.); (S.K.K.); (T.M.K.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
6
|
Zhao M, Zhang X, Huan Q, Dong M. Metabolism-associated molecular classification of cervical cancer. BMC Womens Health 2023; 23:555. [PMID: 37884919 PMCID: PMC10605340 DOI: 10.1186/s12905-023-02712-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
OBJECTIVE This study aimed to explore metabolic abnormalities in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) for metabolism-related genes. METHODS We downloaded expression data for metabolism-related genes, performed differential expression analysis, and applied weighted gene co-expression network analysis (WGCNA) to identify metabolism-related functional modules. We obtained normalised miRNA expression data and identified master methylation regulators for metabolism-related genes. Cox regression of data on metabolism-related genes was performed to screen for genes that affect the prognosis of patients with CESC. Furthermore, we selected key genes for validation. RESULTS Our results identified 3620 metabolism-related genes in CESC, 2493 of which contained related mutations. The co-occurrence of CUBN, KALRN, and HERC1 was related to the prognosis of CESC. The fraction of genome altered (FGA) closely correlated with overall survival. In expression analysis, 374 genes were related to the occurrence and prognosis of CESC. We then identified four metabolic pathway modules in WGCNA. Further analysis revealed that glycolysis/gluconeogenesis was related to endothelial cells and that arachidonic acid metabolism was related to cell proliferation. These four modules were also related to the prognosis of CESC. Among CESC-related metabolic genes, two genes were found to be regulated by microRNAs (miRNAs) and methylation, whereas another two genes were coregulated by miRNAs and mutations. CONCLUSIONS Among metabolism-related genes, 15 genes were related to the prognosis of CESC. The co-occurrence of CUBN/KALRN/HERC1 was associated with CESC prognosis. Glycolysis/gluconeogenesis was related to endothelial cells, and arachidonic acid metabolism was related to cell proliferation.
Collapse
Affiliation(s)
- Min Zhao
- School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, 621000, Sichuan, China.
| | - Xue Zhang
- School of Life Sciences, China Medical University, Shenyang, China
| | - Qing Huan
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Meng Dong
- School of Life Sciences, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Marcelino VR, Welsh C, Diener C, Gulliver EL, Rutten EL, Young RB, Giles EM, Gibbons SM, Greening C, Forster SC. Disease-specific loss of microbial cross-feeding interactions in the human gut. Nat Commun 2023; 14:6546. [PMID: 37863966 PMCID: PMC10589287 DOI: 10.1038/s41467-023-42112-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/27/2023] [Indexed: 10/22/2023] Open
Abstract
Many gut microorganisms critical to human health rely on nutrients produced by each other for survival; however, these cross-feeding interactions are still challenging to quantify and remain poorly characterized. Here, we introduce a Metabolite Exchange Score (MES) to quantify those interactions. Using metabolic models of prokaryotic metagenome-assembled genomes from over 1600 individuals, MES allows us to identify and rank metabolic interactions that are significantly affected by a loss of cross-feeding partners in 10 out of 11 diseases. When applied to a Crohn's disease case-control study, our approach identifies a lack of species with the ability to consume hydrogen sulfide as the main distinguishing microbiome feature of disease. We propose that our conceptual framework will help prioritize in-depth analyses, experiments and clinical targets, and that targeting the restoration of microbial cross-feeding interactions is a promising mechanism-informed strategy to reconstruct a healthy gut ecosystem.
Collapse
Affiliation(s)
- Vanessa R Marcelino
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia.
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.
- Melbourne Integrative Genomics, School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia.
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Caitlin Welsh
- Department of Microbiology, Biomedicine Discovery Institute, Clayton, VIC, 3800, Australia
| | | | - Emily L Gulliver
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
| | - Emily L Rutten
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
| | - Remy B Young
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
| | - Edward M Giles
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Clayton, VIC, 3168, Australia
| | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
- eScience Institute, University of Washington, Seattle, WA, 98195, USA
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Clayton, VIC, 3800, Australia
| | - Samuel C Forster
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia.
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.
| |
Collapse
|
8
|
Moore RA, Azua-Bustos A, González-Silva C, Carr CE. Unveiling metabolic pathways involved in the extreme desiccation tolerance of an Atacama cyanobacterium. Sci Rep 2023; 13:15767. [PMID: 37737281 PMCID: PMC10516996 DOI: 10.1038/s41598-023-41879-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
Gloeocapsopsis dulcis strain AAB1 is an extremely xerotolerant cyanobacterium isolated from the Atacama Desert (i.e., the driest and oldest desert on Earth) that holds astrobiological significance due to its ability to biosynthesize compatible solutes at ultra-low water activities. We sequenced and assembled the G. dulcis genome de novo using a combination of long- and short-read sequencing, which resulted in high-quality consensus sequences of the chromosome and two plasmids. We leveraged the G. dulcis genome to generate a genome-scale metabolic model (iGd895) to simulate growth in silico. iGd895 represents, to our knowledge, the first genome-scale metabolic reconstruction developed for an extremely xerotolerant cyanobacterium. The model's predictive capability was assessed by comparing the in silico growth rate with in vitro growth rates of G. dulcis, in addition to the synthesis of trehalose. iGd895 allowed us to explore simulations of key metabolic processes such as essential pathways for water-stress tolerance, and significant alterations to reaction flux distribution and metabolic network reorganization resulting from water limitation. Our study provides insights into the potential metabolic strategies employed by G. dulcis, emphasizing the crucial roles of compatible solutes, metabolic water, energy conservation, and the precise regulation of reaction rates in their adaptation to water stress.
Collapse
Affiliation(s)
- Rachel A Moore
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 275 Ferst Dr. NW, Atlanta, GA, 30332, USA.
| | - Armando Azua-Bustos
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | | | - Christopher E Carr
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 275 Ferst Dr. NW, Atlanta, GA, 30332, USA
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
9
|
Nègre D, Larhlimi A, Bertrand S. Reconciliation and evolution of Penicillium rubens genome-scale metabolic networks-What about specialised metabolism? PLoS One 2023; 18:e0289757. [PMID: 37647283 PMCID: PMC10468094 DOI: 10.1371/journal.pone.0289757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
In recent years, genome sequencing of filamentous fungi has revealed a high proportion of specialised metabolites with growing pharmaceutical interest. However, detecting such metabolites through in silico genome analysis does not necessarily guarantee their expression under laboratory conditions. However, one plausible strategy for enabling their production lies in modifying the growth conditions. Devising a comprehensive experimental design testing in different culture environments is time-consuming and expensive. Therefore, using in silico modelling as a preliminary step, such as Genome-Scale Metabolic Network (GSMN), represents a promising approach to predicting and understanding the observed specialised metabolite production in a given organism. To address these questions, we reconstructed a new high-quality GSMN for the Penicillium rubens Wisconsin 54-1255 strain, a commonly used model organism. Our reconstruction, iPrub22, adheres to current convention standards and quality criteria, incorporating updated functional annotations, orthology searches with different GSMN templates, data from previous reconstructions, and manual curation steps targeting primary and specialised metabolites. With a MEMOTE score of 74% and a metabolic coverage of 45%, iPrub22 includes 5,192 unique metabolites interconnected by 5,919 reactions, of which 5,033 are supported by at least one genomic sequence. Of the metabolites present in iPrub22, 13% are categorised as belonging to specialised metabolism. While our high-quality GSMN provides a valuable resource for investigating known phenotypes expressed in P. rubens, our analysis identifies bottlenecks related, in particular, to the definition of what is a specialised metabolite, which requires consensus within the scientific community. It also points out the necessity of accessible, standardised and exhaustive databases of specialised metabolites. These questions must be addressed to fully unlock the potential of natural product production in P. rubens and other filamentous fungi. Our work represents a foundational step towards the objective of rationalising the production of natural products through GSMN modelling.
Collapse
Affiliation(s)
- Delphine Nègre
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, Nantes, France
- Nantes Université, École Centrale Nantes, CNRS, Nantes, France
| | | | - Samuel Bertrand
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, Nantes, France
| |
Collapse
|
10
|
Tatka LT, Smith LP, Hellerstein JL, Sauro HM. Adapting modeling and simulation credibility standards to computational systems biology. J Transl Med 2023; 21:501. [PMID: 37496031 PMCID: PMC10369698 DOI: 10.1186/s12967-023-04290-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Computational models are increasingly used in high-impact decision making in science, engineering, and medicine. The National Aeronautics and Space Administration (NASA) uses computational models to perform complex experiments that are otherwise prohibitively expensive or require a microgravity environment. Similarly, the Food and Drug Administration (FDA) and European Medicines Agency (EMA) have began accepting models and simulations as forms of evidence for pharmaceutical and medical device approval. It is crucial that computational models meet a standard of credibility when using them in high-stakes decision making. For this reason, institutes including NASA, the FDA, and the EMA have developed standards to promote and assess the credibility of computational models and simulations. However, due to the breadth of models these institutes assess, these credibility standards are mostly qualitative and avoid making specific recommendations. On the other hand, modeling and simulation in systems biology is a narrower domain and several standards are already in place. As systems biology models increase in complexity and influence, the development of a credibility assessment system is crucial. Here we review existing standards in systems biology, credibility standards in other science, engineering, and medical fields, and propose the development of a credibility standard for systems biology models.
Collapse
Affiliation(s)
- Lillian T Tatka
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| | - Lucian P Smith
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - Herbert M Sauro
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Zhang Z, Zhu H, Dang P, Wang J, Chang W, Wang X, Alghamdi N, Lu A, Zang Y, Wu W, Wang Y, Zhang Y, Cao S, Zhang C. FLUXestimator: a webserver for predicting metabolic flux and variations using transcriptomics data. Nucleic Acids Res 2023; 51:W180-W190. [PMID: 37216602 PMCID: PMC10320190 DOI: 10.1093/nar/gkad444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/29/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Quantitative assessment of single cell fluxome is critical for understanding the metabolic heterogeneity in diseases. Unfortunately, laboratory-based single cell fluxomics is currently impractical, and the current computational tools for flux estimation are not designed for single cell-level prediction. Given the well-established link between transcriptomic and metabolomic profiles, leveraging single cell transcriptomics data to predict single cell fluxome is not only feasible but also an urgent task. In this study, we present FLUXestimator, an online platform for predicting metabolic fluxome and variations using single cell or general transcriptomics data of large sample-size. The FLUXestimator webserver implements a recently developed unsupervised approach called single cell flux estimation analysis (scFEA), which uses a new neural network architecture to estimate reaction rates from transcriptomics data. To the best of our knowledge, FLUXestimator is the first web-based tool dedicated to predicting cell-/sample-wise metabolic flux and metabolite variations using transcriptomics data of human, mouse and 15 other common experimental organisms. The FLUXestimator webserver is available at http://scFLUX.org/, and stand-alone tools for local use are available at https://github.com/changwn/scFEA. Our tool provides a new avenue for studying metabolic heterogeneity in diseases and has the potential to facilitate the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Zixuan Zhang
- College of Software, College of Computer Science and Technology, Jilin University, Changchun 130012, China
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Haiqi Zhu
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Computer Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Pengtao Dang
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Electric Computer Engineering, Purdue University, Indianapolis, IN 46202, USA
| | - Jia Wang
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Computer Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Wennan Chang
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiao Wang
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Computer Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Norah Alghamdi
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alex Lu
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yong Zang
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wenzhuo Wu
- Department of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yijie Wang
- Department of Computer Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Yu Zhang
- College of Software, College of Computer Science and Technology, Jilin University, Changchun 130012, China
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sha Cao
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
12
|
Supplementation of Sulfide or Acetate and 2-Mercaptoethane Sulfonate Restores Growth of the Methanosarcina acetivorans Δ hdrABC Deletion Mutant during Methylotrophic Methanogenesis. Microorganisms 2023; 11:microorganisms11020327. [PMID: 36838292 PMCID: PMC9963511 DOI: 10.3390/microorganisms11020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/03/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Methanogenic archaea are important organisms in the global carbon cycle that grow by producing methane gas. Methanosarcina acetivorans is a methanogenic archaeum that can grow using methylated compounds, carbon monoxide, or acetate and produces renewable methane as a byproduct. However, there is limited knowledge of how combinations of substrates may affect metabolic fluxes in methanogens. Previous studies have shown that heterodisulfide reductase, the terminal oxidase in the electron transport system, is an essential enzyme in all methanogens. Deletion of genes encoding the nonessential methylotrophic heterodisulfide reductase enzyme (HdrABC) results in slower growth rate but increased metabolic efficiency. We hypothesized that increased sulfide, supplementation of mercaptoethanesulfonate (coenzyme M, CoM-SH), or acetate would metabolically alleviate the effect of the ΔhdrABC mutation. Increased sulfide improved growth of the mutant as expected; however, supplementation of both CoM-SH and acetate together were necessary to reduce the effect of the ΔhdrABC mutation. Supplementation of CoM-SH or acetate alone did not improve growth. These results support our model for the role of HdrABC in methanogenesis and suggest M.acetivorans is more efficient at conserving energy when supplemented with acetate. Our study suggests decreased Hdr enzyme activity can be overcome by nutritional supplementation with sulfide or coenzyme M and acetate, which are abundant in anaerobic environments.
Collapse
|
13
|
Subramanian A, Zakeri P, Mousa M, Alnaqbi H, Alshamsi FY, Bettoni L, Damiani E, Alsafar H, Saeys Y, Carmeliet P. Angiogenesis goes computational - The future way forward to discover new angiogenic targets? Comput Struct Biotechnol J 2022; 20:5235-5255. [PMID: 36187917 PMCID: PMC9508490 DOI: 10.1016/j.csbj.2022.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Multi-omics technologies are being increasingly utilized in angiogenesis research. Yet, computational methods have not been widely used for angiogenic target discovery and prioritization in this field, partly because (wet-lab) vascular biologists are insufficiently familiar with computational biology tools and the opportunities they may offer. With this review, written for vascular biologists who lack expertise in computational methods, we aspire to break boundaries between both fields and to illustrate the potential of these tools for future angiogenic target discovery. We provide a comprehensive survey of currently available computational approaches that may be useful in prioritizing candidate genes, predicting associated mechanisms, and identifying their specificity to endothelial cell subtypes. We specifically highlight tools that use flexible, machine learning frameworks for large-scale data integration and gene prioritization. For each purpose-oriented category of tools, we describe underlying conceptual principles, highlight interesting applications and discuss limitations. Finally, we will discuss challenges and recommend some guidelines which can help to optimize the process of accurate target discovery.
Collapse
Affiliation(s)
- Abhishek Subramanian
- Laboratory of Angiogenesis & Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Pooya Zakeri
- Laboratory of Angiogenesis & Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Mira Mousa
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Halima Alnaqbi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Fatima Yousif Alshamsi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Leo Bettoni
- Laboratory of Angiogenesis & Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ernesto Damiani
- Robotics and Intelligent Systems Institute, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Yvan Saeys
- Data Mining and Modelling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis & Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
14
|
de Falco B, Giannino F, Carteni F, Mazzoleni S, Kim DH. Metabolic flux analysis: a comprehensive review on sample preparation, analytical techniques, data analysis, computational modelling, and main application areas. RSC Adv 2022; 12:25528-25548. [PMID: 36199351 PMCID: PMC9449821 DOI: 10.1039/d2ra03326g] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/26/2022] [Indexed: 12/12/2022] Open
Abstract
Metabolic flux analysis (MFA) quantitatively describes cellular fluxes to understand metabolic phenotypes and functional behaviour after environmental and/or genetic perturbations. In the last decade, the application of stable isotopes became extremely important to determine and integrate in vivo measurements of metabolic reactions in systems biology. 13C-MFA is one of the most informative methods used to study central metabolism of biological systems. This review aims to outline the current experimental procedure adopted in 13C-MFA, starting from the preparation of cell cultures and labelled tracers to the quenching and extraction of metabolites and their subsequent analysis performed with very powerful software. Here, the limitations and advantages of nuclear magnetic resonance spectroscopy and mass spectrometry techniques used in carbon labelled experiments are elucidated by reviewing the most recent published papers. Furthermore, we summarise the most successful approaches used for computational modelling in flux analysis and the main application areas with a particular focus in metabolic engineering.
Collapse
Affiliation(s)
- Bruna de Falco
- Center for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham NG7 2RD UK
| | - Francesco Giannino
- Department of Agricultural Sciences, University of Naples Federico II Portici 80055 Italy
| | - Fabrizio Carteni
- Department of Agricultural Sciences, University of Naples Federico II Portici 80055 Italy
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II Portici 80055 Italy
| | - Dong-Hyun Kim
- Center for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham NG7 2RD UK
| |
Collapse
|
15
|
Yang B, Misirli G, Wipat A, Hallinan J. Modelling the fitness landscapes of a SCRaMbLEd yeast genome. Biosystems 2022; 219:104730. [PMID: 35772570 DOI: 10.1016/j.biosystems.2022.104730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 01/04/2023]
Abstract
The use of microorganisms for the production of industrially important compounds and enzymes is becoming increasingly important. Eukaryotes have been less widely used than prokaryotes in biotechnology, because of the complexity of their genomic structure and biology. The Yeast2.0 project is an international effort to engineer the yeast Saccharomyces cerevisiae to make it easy to manipulate, and to generate random variants using a system called SCRaMbLE. SCRaMbLE relies on artificial evolution in vitro to identify useful variants, an approach which is time consuming and expensive. We developed an in silico simulator for the SCRaMbLE system, using an evolutionary computing approach, which can be used to investigate and optimize the fitness landscape of the system. We applied the system to the investigation of the fitness landscape of one of the S. saccharomyces chromosomes, and found that our results fitted well with those previously published. We then simulated directed evolution with or without manipulation of SCRaMbLE, and revealed that controlling the SCRaMbLE process could effectively impact directed evolution. Our simulator can be applied to the analysis of the fitness landscapes of any organism for which SCRaMbLE has been implemented.
Collapse
Affiliation(s)
- Bill Yang
- ICOS School of Computing Newcastle University 1, Urban Sciences Building Science Square, Newcastle Upon Tyne, UK
| | - Goksel Misirli
- School of Computing and Mathematics Keele University, UK
| | - Anil Wipat
- ICOS School of Computing Newcastle University 1, Urban Sciences Building Science Square, Newcastle Upon Tyne, UK
| | | |
Collapse
|
16
|
Petrovs R, Stalidzans E, Pentjuss A. IMFLer: A Web Application for Interactive Metabolic Flux Analysis and Visualization. J Comput Biol 2021; 28:1021-1032. [PMID: 34424732 DOI: 10.1089/cmb.2021.0056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Increasing genome-wide data in biological sciences and medicine has contributed to the development of a variety of visualization tools. Several automatic, semiautomatic, and manual visualization tools have already been developed. Some even have integrated flux balance analysis (FBA), but in most cases, it depends on separately installed third party software that is proprietary and does not allow customization of its functionality and has many restrictions for easy data distribution and analysis. In this study, we present an interactive metabolic flux analyzer and visualizer (IMFLer)-a static single-page web application that enables the reading and management of metabolic model layout maps, as well as immediate visualization of results from both FBA and flux variability analysis (FVA). IMFLer uses the Escher Builder tool to load, show, edit, and save metabolic pathway maps. This makes IMFLer an attractive and easily applicable tool with a user-friendly interface. Moreover, it allows to faster interpret results from FBA and FVA and improves data interoperability by using a standardized file format for the genome-scale metabolic model. IMFLer is a fully open-source tool that enables the rapid visualization and interpretation of the results of FBA and FVA with no time setup and no programming skills required, available at https://lv-csbg.github.io/IMFLer/.
Collapse
Affiliation(s)
- Rudolfs Petrovs
- Computational Systems Biology Group, Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Egils Stalidzans
- Computational Systems Biology Group, Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia.,Biosystems Group, Department of Computer Systems, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - Agris Pentjuss
- Computational Systems Biology Group, Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| |
Collapse
|
17
|
The Design-Build-Test-Learn cycle for metabolic engineering of Streptomycetes. Essays Biochem 2021; 65:261-275. [PMID: 33956071 DOI: 10.1042/ebc20200132] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
Streptomycetes are producers of a wide range of specialized metabolites of great medicinal and industrial importance, such as antibiotics, antifungals, or pesticides. Having been the drivers of the golden age of antibiotics in the 1950s and 1960s, technological advancements over the last two decades have revealed that very little of their biosynthetic potential has been exploited so far. Given the great need for new antibiotics due to the emerging antimicrobial resistance crisis, as well as the urgent need for sustainable biobased production of complex molecules, there is a great renewed interest in exploring and engineering the biosynthetic potential of streptomycetes. Here, we describe the Design-Build-Test-Learn (DBTL) cycle for metabolic engineering experiments in streptomycetes and how it can be used for the discovery and production of novel specialized metabolites.
Collapse
|
18
|
IDARE2-Simultaneous Visualisation of Multiomics Data in Cytoscape. Metabolites 2021; 11:metabo11050300. [PMID: 34066448 PMCID: PMC8148105 DOI: 10.3390/metabo11050300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/21/2022] Open
Abstract
Visual integration of experimental data in metabolic networks is an important step to understanding their meaning. As genome-scale metabolic networks reach several thousand reactions, the task becomes more difficult and less revealing. While databases like KEGG and BioCyc provide curated pathways that allow a navigation of the metabolic landscape of an organism, it is rather laborious to map data directly onto those pathways. There are programs available using these kind of databases as a source for visualization; however, these programs are then restricted to the pathways available in the database. Here, we present IDARE2 a cytoscape plugin that allows the visualization of multiomics data in cytoscape in a user-friendly way. It further provides tools to disentangle highly connected network structures based on common properties of nodes and retains structural links between the generated subnetworks, offering a straightforward way to traverse the splitted network. The tool is extensible, allowing the implementation of specialised representations and data format parsers. We present the automated reproduction of the original IDARE nodes using our tool and show examples of other data being mapped on a network of E. coli. The extensibility is demonstrated with two plugins that are available on github. IDARE2 provides an intuitive way to visualise data from multiple sources and allows one to disentangle the often complex network structure in large networks using predefined properties of the network nodes.
Collapse
|
19
|
Liu Y, Benitez MG, Chen J, Harrison E, Khusnutdinova AN, Mahadevan R. Opportunities and Challenges for Microbial Synthesis of Fatty Acid-Derived Chemicals (FACs). Front Bioeng Biotechnol 2021; 9:613322. [PMID: 33575251 PMCID: PMC7870715 DOI: 10.3389/fbioe.2021.613322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Global warming and uneven distribution of fossil fuels worldwide concerns have spurred the development of alternative, renewable, sustainable, and environmentally friendly resources. From an engineering perspective, biosynthesis of fatty acid-derived chemicals (FACs) is an attractive and promising solution to produce chemicals from abundant renewable feedstocks and carbon dioxide in microbial chassis. However, several factors limit the viability of this process. This review first summarizes the types of FACs and their widely applications. Next, we take a deep look into the microbial platform to produce FACs, give an outlook for the platform development. Then we discuss the bottlenecks in metabolic pathways and supply possible solutions correspondingly. Finally, we highlight the most recent advances in the fast-growing model-based strain design for FACs biosynthesis.
Collapse
Affiliation(s)
- Yilan Liu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Mauricio Garcia Benitez
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Jinjin Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Emma Harrison
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Anna N. Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Dusad V, Thiel D, Barahona M, Keun HC, Oyarzún DA. Opportunities at the Interface of Network Science and Metabolic Modeling. Front Bioeng Biotechnol 2021; 8:591049. [PMID: 33569373 PMCID: PMC7868444 DOI: 10.3389/fbioe.2020.591049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Metabolism plays a central role in cell physiology because it provides the molecular machinery for growth. At the genome-scale, metabolism is made up of thousands of reactions interacting with one another. Untangling this complexity is key to understand how cells respond to genetic, environmental, or therapeutic perturbations. Here we discuss the roles of two complementary strategies for the analysis of genome-scale metabolic models: Flux Balance Analysis (FBA) and network science. While FBA estimates metabolic flux on the basis of an optimization principle, network approaches reveal emergent properties of the global metabolic connectivity. We highlight how the integration of both approaches promises to deliver insights on the structure and function of metabolic systems with wide-ranging implications in discovery science, precision medicine and industrial biotechnology.
Collapse
Affiliation(s)
- Varshit Dusad
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Denise Thiel
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Mauricio Barahona
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Hector C. Keun
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Diego A. Oyarzún
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Hwang J, Hari A, Cheng R, Gardner JG, Lobo D. Kinetic modeling of microbial growth, enzyme activity, and gene deletions: An integrated model of β-glucosidase function in Cellvibrio japonicus. Biotechnol Bioeng 2020; 117:3876-3890. [PMID: 32833226 DOI: 10.1002/bit.27544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/11/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
Understanding the complex growth and metabolic dynamics in microorganisms requires advanced kinetic models containing both metabolic reactions and enzymatic regulation to predict phenotypic behaviors under different conditions and perturbations. Most current kinetic models lack gene expression dynamics and are separately calibrated to distinct media, which consequently makes them unable to account for genetic perturbations or multiple substrates. This challenge limits our ability to gain a comprehensive understanding of microbial processes towards advanced metabolic optimizations that are desired for many biotechnology applications. Here, we present an integrated computational and experimental approach for the development and optimization of mechanistic kinetic models for microbial growth and metabolic and enzymatic dynamics. Our approach integrates growth dynamics, gene expression, protein secretion, and gene-deletion phenotypes. We applied this methodology to build a dynamic model of the growth kinetics in batch culture of the bacterium Cellvibrio japonicus grown using either cellobiose or glucose media. The model parameters were inferred from an experimental data set using an evolutionary computation method. The resulting model was able to explain the growth dynamics of C. japonicus using either cellobiose or glucose media and was also able to accurately predict the metabolite concentrations in the wild-type strain as well as in β-glucosidase gene deletion mutant strains. We validated the model by correctly predicting the non-diauxic growth and metabolite consumptions of the wild-type strain in a mixed medium containing both cellobiose and glucose, made further predictions of mutant strains growth phenotypes when using cellobiose and glucose media, and demonstrated the utility of the model for designing industrially-useful strains. Importantly, the model is able to explain the role of the different β-glucosidases and their behavior under genetic perturbations. This integrated approach can be extended to other metabolic pathways to produce mechanistic models for the comprehensive understanding of enzymatic functions in multiple substrates.
Collapse
Affiliation(s)
- Jeanice Hwang
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Archana Hari
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Raymond Cheng
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Jeffrey G Gardner
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Daniel Lobo
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|