1
|
Wang F, Xia R, Su Y, Cai P, Xu X. Quantifying RNA structures and interactions with a unified reduced chain representation model. Int J Biol Macromol 2023; 253:127181. [PMID: 37793523 DOI: 10.1016/j.ijbiomac.2023.127181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/30/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
RNA is a pivotal molecule that plays critical roles in various cellular processes. Quantifying RNA structures and interactions is essential to understanding RNA function and developing RNA-based therapeutics. Using a unified five-bead model and a non-redundant database, this paper investigates the structural features and interactions of five commonly occurring RNA motifs, i.e., double-stranded helices, hairpin loops, internal/bulge loops, multi-branched junctions, and single-stranded terminal tails. Analyzing detailed distributions of RNA local structural features and base-base interactions reveals a preference for helical structures in both local backbone structures and base orientations. The interactions between adjacent bases exhibit motif-specific and sequence-dependent characteristics, reflecting the distinct topological constraints imposed by different loop-helix connection modes and the varying pairing and stacking interactions among different sequences. These findings shed light on the stability of RNA helices, emphasizing their significance in providing dominant base pairing and stacking interactions for RNA structures and stability. The four non-helix motifs encompass unpaired nucleotide loops and exhibit diverse base-base interactions, contributing to the structural diversity observed in RNA. Overall, the complexity of RNA structure arises from the intricate interplay of base-base interactions.
Collapse
Affiliation(s)
- Fengfei Wang
- Institute of Bioinformatics and Medical Engineering, School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China
| | - Renjie Xia
- Institute of Bioinformatics and Medical Engineering, School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China
| | - Yangyang Su
- Institute of Bioinformatics and Medical Engineering, School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China
| | - Pinggen Cai
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering, School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China.
| |
Collapse
|
2
|
Zhang D, Gong L, Weng J, Li Y, Wang A, Li G. RNA Folding Based on 5 Beads Model and Multiscale Simulation. Interdiscip Sci 2023:10.1007/s12539-023-00561-3. [PMID: 37115389 DOI: 10.1007/s12539-023-00561-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 04/29/2023]
Abstract
RNA folding prediction is very meaningful and challenging. The molecular dynamics simulation (MDS) of all atoms (AA) is limited to the folding of small RNA molecules. At present, most of the practical models are coarse grained (CG) model, and the coarse-grained force field (CGFF) parameters usually depend on known RNA structures. However, the limitation of the CGFF is obvious that it is difficult to study the modified RNA. Based on the 3 beads model (AIMS_RNA_B3), we proposed the AIMS_RNA_B5 model with three beads representing a base and two beads representing the main chain (sugar group and phosphate group). We first run the all atom molecular dynamic simulation (AAMDS), and fit the CGFF parameter with the AA trajectory. Then perform the coarse-grained molecular dynamic simulation (CGMDS). AAMDS is the foundation of CGMDS. CGMDS is mainly to carry out the conformation sampling based on the current AAMDS state and improve the folding speed. We simulated the folding of three RNAs, which belong to hairpin, pseudoknot and tRNA respectively. Compared to the AIMS_RNA_B3 model, the AIMS_RNA_B5 model is more reasonable and performs better.
Collapse
Affiliation(s)
- Dinglin Zhang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lidong Gong
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Junben Weng
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Anhui Wang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
3
|
Wang X, Tan YL, Yu S, Shi YZ, Tan ZJ. Predicting 3D structures and stabilities for complex RNA pseudoknots in ion solutions. Biophys J 2023; 122:1503-1516. [PMID: 36924021 PMCID: PMC10147842 DOI: 10.1016/j.bpj.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
RNA pseudoknots are a kind of important tertiary motif, and the structures and stabilities of pseudoknots are generally critical to the biological functions of RNAs with the motifs. In this work, we have carefully refined our previously developed coarse-grained model with salt effect through involving a new coarse-grained force field and a replica-exchange Monte Carlo algorithm, and employed the model to predict structures and stabilities of complex RNA pseudoknots in ion solutions beyond minimal H-type pseudoknots. Compared with available experimental data, the newly refined model can successfully predict 3D structures from sequences for the complex RNA pseudoknots including SARS-CoV-2 programming-1 ribosomal frameshifting element and Zika virus xrRNA, and can reliably predict the thermal stabilities of RNA pseudoknots with various sequences and lengths over broad ranges of monovalent/divalent salts. In addition, for complex pseudoknots including SARS-CoV-2 frameshifting element, our analyses show that their thermally unfolding pathways are mainly dependent on the relative stabilities of unfolded intermediate states, in analogy to those of minimal H-type pseudoknots.
Collapse
Affiliation(s)
- Xunxun Wang
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Lan Tan
- Research Center of Nonlinear Science and School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan, China
| | - Shixiong Yu
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science and School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Wang G, Vasquez KM. Dynamic alternative DNA structures in biology and disease. Nat Rev Genet 2023; 24:211-234. [PMID: 36316397 DOI: 10.1038/s41576-022-00539-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Repetitive elements in the human genome, once considered 'junk DNA', are now known to adopt more than a dozen alternative (that is, non-B) DNA structures, such as self-annealed hairpins, left-handed Z-DNA, three-stranded triplexes (H-DNA) or four-stranded guanine quadruplex structures (G4 DNA). These dynamic conformations can act as functional genomic elements involved in DNA replication and transcription, chromatin organization and genome stability. In addition, recent studies have revealed a role for these alternative structures in triggering error-generating DNA repair processes, thereby actively enabling genome plasticity. As a driving force for genetic variation, non-B DNA structures thus contribute to both disease aetiology and evolution.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA.
| |
Collapse
|
5
|
Zhang D, Li Y, Zhong Q, Wang A, Weng J, Gong L, Li G. Ribonucleic Acid Folding Prediction Based on Iterative Multiscale Simulation. J Phys Chem Lett 2022; 13:9957-9966. [PMID: 36260782 DOI: 10.1021/acs.jpclett.2c01342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
RNA folding prediction is a challenge. Currently, many RNA folding models are coarse-grained (CG) with the potential derived from the known RNA structures. However, this potential is not suitable for modified and entirely new RNA. It is also not suitable for the folding simulation of RNA in the real cellular environment, including many kinds of molecular interactions. In contrast, our proposed model has the potential to address these issues, which is a multiscale simulation scheme based on all-atom (AA) force fields. We fit the CG force field using the trajectories generated by the AA force field and then iteratively perform molecular dynamics (MD) simulations of the two scales. The all-atom molecular dynamics (AAMD) simulation is mainly responsible for the correction of RNA structure, and the CGMD simulation is mainly responsible for efficient conformational sampling. On the basis of this scheme, we can successfully fold three RNAs belonging to a hairpin, a pseudoknot, and a four-way junction.
Collapse
Affiliation(s)
- Dinglin Zhang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Yan Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
| | - Qinglu Zhong
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
| | - Anhui Wang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
| | - Junben Weng
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Lidong Gong
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian116029, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
| |
Collapse
|
6
|
Zhou L, Wang X, Yu S, Tan YL, Tan ZJ. FebRNA: An automated fragment-ensemble-based model for building RNA 3D structures. Biophys J 2022; 121:3381-3392. [PMID: 35978551 PMCID: PMC9515226 DOI: 10.1016/j.bpj.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Knowledge of RNA three-dimensional (3D) structures is critical to understanding the important biological functions of RNAs. Although various structure prediction models have been developed, the high-accuracy predictions of RNA 3D structures are still limited to the RNAs with short lengths or with simple topology. In this work, we proposed a new model, namely FebRNA, for building RNA 3D structures through fragment assembly based on coarse-grained (CG) fragment ensembles. Specifically, FebRNA is composed of four processes: establishing the library of different types of non-redundant CG fragment ensembles regardless of the sequences, building CG 3D structure ensemble through fragment assembly, identifying top-scored CG structures through a specific CG scoring function, and rebuilding the all-atom structures from the top-scored CG ones. Extensive examination against different types of RNA structures indicates that FebRNA consistently gives the reliable predictions on RNA 3D structures, including pseudoknots, three-way junctions, four-way and five-way junctions, and RNAs in the RNA-Puzzles. FebRNA is available on the Web site: https://github.com/Tan-group/FebRNA.
Collapse
Affiliation(s)
- Li Zhou
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xunxun Wang
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Shixiong Yu
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ya-Lan Tan
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430073, China.
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
7
|
Zhang D, Chen SJ, Zhou R. Modeling Noncanonical RNA Base Pairs by a Coarse-Grained IsRNA2 Model. J Phys Chem B 2021; 125:11907-11915. [PMID: 34694128 DOI: 10.1021/acs.jpcb.1c07288] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Noncanonical base pairs contribute crucially to the three-dimensional architecture of large RNA molecules; however, how to accurately model them remains an open challenge in RNA 3D structure prediction. Here, we report a promising coarse-grained (CG) IsRNA2 model to predict noncanonical base pairs in large RNAs through molecular dynamics simulations. By introducing a five-bead per nucleotide CG representation to reserve the three interacting edges of nucleobases, IsRNA2 accurately models various base-pairing interactions, including both canonical and noncanonical base pairs. A benchmark test indicated that IsRNA2 achieves a comparable performance to the atomic model in de novo modeling of noncanonical RNA structures. In addition, IsRNA2 was able to refine the 3D structure predictions for large RNAs in RNA-puzzle challenges. Finally, the graphics processing unit acceleration was introduced to speed up the sampling efficiency in IsRNA2 for very large RNA molecules. Therefore, the CG IsRNA2 model reported here offers a reliable approach to predict the structures and dynamics of large RNAs.
Collapse
Affiliation(s)
- Dong Zhang
- College of Life Sciences and Institute of Quantitative Biology, Zhejiang University, Hangzhou 310058, China
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Institute of Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, United States
| | - Ruhong Zhou
- College of Life Sciences and Institute of Quantitative Biology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Predicting RNA Scaffolds with a Hybrid Method of Vfold3D and VfoldLA. Methods Mol Biol 2021. [PMID: 34086269 DOI: 10.1007/978-1-0716-1499-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The ever-increasing discoveries of noncoding RNA functions draw a strong demand for RNA structure determination from the sequence. In recently years, computational studies for RNA structures, at both the two-dimensional and the three-dimensional levels, led to several highly promising new developments. In this chapter, we describe a hybrid method, which combines the motif template-based Vfold3D model and the loop template-based VfoldLA model, to predict RNA 3D structures. The main emphasis is placed on the definition of motifs and loops, the treatment of no-template motifs, and the 3D structure assembly from templates of motifs and loops. For illustration, we use the ZIKV xrRNA1 as an example to show the template-based prediction of RNA 3D structures from the 2D structure. The web server for the hybrid model is freely accessible at http://rna.physics.missouri.edu/vfold3D2 .
Collapse
|
9
|
Feng C, Tan YL, Cheng YX, Shi YZ, Tan ZJ. Salt-Dependent RNA Pseudoknot Stability: Effect of Spatial Confinement. Front Mol Biosci 2021; 8:666369. [PMID: 33928126 PMCID: PMC8078894 DOI: 10.3389/fmolb.2021.666369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/17/2021] [Indexed: 12/27/2022] Open
Abstract
Macromolecules, such as RNAs, reside in crowded cell environments, which could strongly affect the folded structures and stability of RNAs. The emergence of RNA-driven phase separation in biology further stresses the potential functional roles of molecular crowding. In this work, we employed the coarse-grained model that was previously developed by us to predict 3D structures and stability of the mouse mammary tumor virus (MMTV) pseudoknot under different spatial confinements over a wide range of salt concentrations. The results show that spatial confinements can not only enhance the compactness and stability of MMTV pseudoknot structures but also weaken the dependence of the RNA structure compactness and stability on salt concentration. Based on our microscopic analyses, we found that the effect of spatial confinement on the salt-dependent RNA pseudoknot stability mainly comes through the spatial suppression of extended conformations, which are prevalent in the partially/fully unfolded states, especially at low ion concentrations. Furthermore, our comprehensive analyses revealed that the thermally unfolding pathway of the pseudoknot can be significantly modulated by spatial confinements, since the intermediate states with more extended conformations would loss favor when spatial confinements are introduced.
Collapse
Affiliation(s)
- Chenjie Feng
- Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, Center for Theoretical Physics, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Lan Tan
- Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, Center for Theoretical Physics, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Yu-Xuan Cheng
- Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, Center for Theoretical Physics, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China
| | - Zhi-Jie Tan
- Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, Center for Theoretical Physics, School of Physics and Technology, Wuhan University, Wuhan, China
| |
Collapse
|