1
|
Chiglintseva D, Clarke DJ, Sen'kova A, Heyman T, Miroshnichenko S, Shan F, Vlassov V, Zenkova M, Patutina O, Bichenkova E. Engineering supramolecular dynamics of self-assembly and turnover of oncogenic microRNAs to drive their synergistic destruction in tumor models. Biomaterials 2024; 309:122604. [PMID: 38733658 DOI: 10.1016/j.biomaterials.2024.122604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Rationally-engineered functional biomaterials offer the opportunity to interface with complex biology in a predictive, precise, yet dynamic way to reprogram their behaviour and correct shortcomings. Success here may lead to a desired therapeutic effect against life-threatening diseases, such as cancer. Here, we engineered "Crab"-like artificial ribonucleases through coupling of peptide and nucleic acid building blocks, capable of operating alongside and synergistically with intracellular enzymes (RNase H and AGO2) for potent destruction of oncogenic microRNAs. "Crab"-like configuration of two catalytic peptides ("pincers") flanking the recognition oligonucleotide was instrumental here in providing increased catalytic turnover, leading to ≈30-fold decrease in miRNA half-life as compared with that for "single-pincer" conjugates. Dynamic modeling of miRNA cleavage illustrated how such design enabled "Crabs" to drive catalytic turnover through simultaneous attacks at different locations of the RNA-DNA heteroduplex, presumably by producing smaller cleavage products and by providing toeholds for competitive displacement by intact miRNA strands. miRNA cleavage at the 5'-site, spreading further into double-stranded region, likely provided a synergy for RNase H1 through demolition of its loading region, thus facilitating enzyme turnover. Such synergy was critical for sustaining persistent disposal of continually-emerging oncogenic miRNAs. A single exposure to the best structural variant (Crab-p-21) prior to transplantation into mice suppressed their malignant properties and reduced primary tumor volume (by 85 %) in MCF-7 murine xenograft models.
Collapse
Affiliation(s)
- Daria Chiglintseva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev Avenue, 630090, Novosibirsk, Russia
| | - David J Clarke
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Aleksandra Sen'kova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev Avenue, 630090, Novosibirsk, Russia
| | - Thomas Heyman
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Svetlana Miroshnichenko
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev Avenue, 630090, Novosibirsk, Russia
| | - Fangzhou Shan
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev Avenue, 630090, Novosibirsk, Russia
| | - Marina Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev Avenue, 630090, Novosibirsk, Russia
| | - Olga Patutina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev Avenue, 630090, Novosibirsk, Russia.
| | - Elena Bichenkova
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
2
|
Cooperative strand displacement circuit with dual-toehold and bulge-loop structure for single-nucleotide variations discrimination. Biosens Bioelectron 2022; 216:114677. [PMID: 36087401 DOI: 10.1016/j.bios.2022.114677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
Abstract
Nucleic acid nanotechnologies based on toehold-mediated strand displacement are ideally suited for single-nucleotide variations (SNVs) detection. But only a limited number of means could be used to construct selective hybridization probes via finely designed toehold and regulation of branching migration. Herein, we present a cooperative hybridization strategy relying on a dual-toehold and bulge-loop (DT&BL) probe, coupled with the strand displacement catalytic (SDC) cycle to identify SNVs. The dual-toehold can simultaneously hybridize the 5' and 3' ends of the target, so that it possessed the mutual correction function for improving the specificity in comparison with the single target-binding domain. Insertion of BLs into the dual-toehold probe allows tuning of Gibbs free energy change (ΔG) and control of the reaction rate during branching migration. Using the SDC cycle, the reactivity and selectivity of the DT&BL probe were increased drastically without elaborate competitive sequences. The feasibilities of this platform were demonstrated by the identification of three cancer-related genes. Moreover, the applicability of this biosensor to detect clinical samples showed satisfactory accuracy and reliability. We envision it would offer a new perspective for the construction of highly specific probes based on dynamic DNA nanotechnology, and serves as a promising tool for clinical diagnostics.
Collapse
|
3
|
Bulge-Forming miRNases Cleave Oncogenic miRNAs at the Central Loop Region in a Sequence-Specific Manner. Int J Mol Sci 2022; 23:ijms23126562. [PMID: 35743015 PMCID: PMC9224474 DOI: 10.3390/ijms23126562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
The selective degradation of disease-associated microRNA is promising for the development of new therapeutic approaches. In this study, we engineered a series of bulge-loop-forming oligonucleotides conjugated with catalytic peptide [(LeuArg)2Gly]2 (BC-miRNases) capable of recognizing and destroying oncogenic miR-17 and miR-21. The principle behind the design of BC-miRNase is the cleavage of miRNA at a three-nucleotide bulge loop that forms in the central loop region, which is essential for the biological competence of miRNA. A thorough study of mono- and bis-BC-miRNases (containing one or two catalytic peptides, respectively) revealed that: (i) the sequence of miRNA bulge loops and neighbouring motifs are of fundamental importance for efficient miRNA cleavage (i.e., motifs containing repeating pyrimidine-A bonds are more susceptible to cleavage); (ii) the incorporation of the second catalytic peptide in the same molecular scaffold increases the potency of BC-miRNase, providing a complete degradation of miR-17 within 72 h; (iii) the synergetic co-operation of BC-miRNases with RNase H accelerates the rate of miRNA catalytic cleavage by both the conjugate and the enzyme. Such synergy allows the rapid destruction of constantly emerging miRNA to maintain sufficient knockdown and achieve a desired therapeutic effect.
Collapse
|
4
|
Halloy F, Biscans A, Bujold KE, Debacker A, Hill AC, Lacroix A, Luige O, Strömberg R, Sundstrom L, Vogel J, Ghidini A. Innovative developments and emerging technologies in RNA therapeutics. RNA Biol 2022; 19:313-332. [PMID: 35188077 PMCID: PMC8865321 DOI: 10.1080/15476286.2022.2027150] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNA-based therapeutics are emerging as a powerful platform for the treatment of multiple diseases. Currently, the two main categories of nucleic acid therapeutics, antisense oligonucleotides and small interfering RNAs (siRNAs), achieve their therapeutic effect through either gene silencing, splicing modulation or microRNA binding, giving rise to versatile options to target pathogenic gene expression patterns. Moreover, ongoing research seeks to expand the scope of RNA-based drugs to include more complex nucleic acid templates, such as messenger RNA, as exemplified by the first approved mRNA-based vaccine in 2020. The increasing number of approved sequences and ongoing clinical trials has attracted considerable interest in the chemical development of oligonucleotides and nucleic acids as drugs, especially since the FDA approval of the first siRNA drug in 2018. As a result, a variety of innovative approaches is emerging, highlighting the potential of RNA as one of the most prominent therapeutic tools in the drug design and development pipeline. This review seeks to provide a comprehensive summary of current efforts in academia and industry aimed at fully realizing the potential of RNA-based therapeutics. Towards this, we introduce established and emerging RNA-based technologies, with a focus on their potential as biosensors and therapeutics. We then describe their mechanisms of action and their application in different disease contexts, along with the strengths and limitations of each strategy. Since the nucleic acid toolbox is rapidly expanding, we also introduce RNA minimal architectures, RNA/protein cleavers and viral RNA as promising modalities for new therapeutics and discuss future directions for the field.
Collapse
Affiliation(s)
- François Halloy
- Department of Paediatrics, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Annabelle Biscans
- Oligonucleotide Chemistry, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| | - Katherine E. Bujold
- Department of Chemistry & Chemical Biology, McMaster University, (Ontario), Canada
| | | | - Alyssa C. Hill
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eth Zürich, Zürich, Switzerland
| | - Aurélie Lacroix
- Sixfold Bioscience, Translation & Innovation Hub, London, UK
| | - Olivia Luige
- Department of Biosciences and Nutrition, Karolinska Institutet, Sweden
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet, Sweden
| | - Linda Sundstrom
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (Hiri), Helmholtz Center for Infection Research (Hzi), Würzburg, Germany
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Alice Ghidini
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
5
|
Luige O, Karalė K, Bose PP, Bollmark M, Tedebark U, Murtola M, Strömberg R. Influence of sequence variation on the RNA cleavage activity of Zn 2+-dimethyl-dppz-PNA-based artificial enzymes. RSC Adv 2022; 12:5398-5406. [PMID: 35425588 PMCID: PMC8981518 DOI: 10.1039/d1ra08319h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/30/2022] [Indexed: 11/21/2022] Open
Abstract
The development of Zn2+-dependent dimethyl-dppz-PNA conjugates (PNAzymes) as efficient site-specific artificial ribonucleases enables rapid sequence-specific degradation of clinically relevant RNA target sequences, but the significance of the RNA/PNAzyme sequence and structural demands for the identification of novel RNA targets are not fully understood. In the present study, we investigated the influence of sequence variation in the recognition arms of the RNA/PNAzyme complex on the RNA cleavage activity of the artificial enzymes. The base pairs closing the 3-nucleotide bulge region on both sides of the bulge as well as the neighbouring nucleobases were shown to significantly influence the RNA cleavage activity. Elongation of the RNA/PNAzyme complex was shown to be tolerated, although potentially prohibitive for catalytic turnover. The specificity of PNAzyme action was clearly demonstrated by the significantly reduced or absent cleavage activity in complexes containing mismatches. Further investigation into 2- and 4-nucleotide RNA bulges indicated that formation of 3-nucleotide bulges in the target RNA gives the optimal cleavage rates, while some potential off-target cleavage of formed 4-nucleotide bulges of select sequences should be considered.
Collapse
Affiliation(s)
- Olivia Luige
- Department of Biosciences and Nutrition, Karolinska Institutet Neo, 141 83 Huddinge Sweden
| | - Kristina Karalė
- Department of Biosciences and Nutrition, Karolinska Institutet Neo, 141 83 Huddinge Sweden
- RISE, Department of Chemical Process and Pharmaceutical Development Forskargatan 18 15136 Södertälje Sweden
| | - Partha Pratim Bose
- Department of Biosciences and Nutrition, Karolinska Institutet Neo, 141 83 Huddinge Sweden
| | - Martin Bollmark
- RISE, Department of Chemical Process and Pharmaceutical Development Forskargatan 18 15136 Södertälje Sweden
| | - Ulf Tedebark
- RISE, Department of Chemical Process and Pharmaceutical Development Forskargatan 18 15136 Södertälje Sweden
| | - Merita Murtola
- Department of Biosciences and Nutrition, Karolinska Institutet Neo, 141 83 Huddinge Sweden
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet Neo, 141 83 Huddinge Sweden
| |
Collapse
|
6
|
Amirloo B, Staroseletz Y, Yousaf S, Clarke DJ, Brown T, Aojula H, Zenkova MA, Bichenkova EV. "Bind, cleave and leave": multiple turnover catalysis of RNA cleavage by bulge-loop inducing supramolecular conjugates. Nucleic Acids Res 2021; 50:651-673. [PMID: 34967410 PMCID: PMC8789077 DOI: 10.1093/nar/gkab1273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
Antisense sequence-specific knockdown of pathogenic RNA offers opportunities to find new solutions for therapeutic treatments. However, to gain a desired therapeutic effect, the multiple turnover catalysis is critical to inactivate many copies of emerging RNA sequences, which is difficult to achieve without sacrificing the sequence-specificity of cleavage. Here, engineering two or three catalytic peptides into the bulge-loop inducing molecular framework of antisense oligonucleotides achieved catalytic turnover of targeted RNA. Different supramolecular configurations revealed that cleavage of the RNA backbone upon sequence-specific hybridization with the catalyst accelerated with increase in the number of catalytic guanidinium groups, with almost complete demolition of target RNA in 24 h. Multiple sequence-specific cuts at different locations within and around the bulge-loop facilitated release of the catalyst for subsequent attacks of at least 10 further RNA substrate copies, such that delivery of only a few catalytic molecules could be sufficient to maintain knockdown of typical RNA copy numbers. We have developed fluorescent assay and kinetic simulation tools to characterise how the limited availability of different targets and catalysts had restrained catalytic reaction progress considerably, and to inform how to accelerate the catalytic destruction of shorter linear and larger RNAs even further.
Collapse
Affiliation(s)
- Bahareh Amirloo
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Yaroslav Staroseletz
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Laurentiev Avenue, 630090 Novosibirsk, Russian Federation
| | - Sameen Yousaf
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - David J Clarke
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Tom Brown
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Harmesh Aojula
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Laurentiev Avenue, 630090 Novosibirsk, Russian Federation
| | - Elena V Bichenkova
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
7
|
Luige O, Bose PP, Stulz R, Steunenberg P, Brun O, Andersson S, Murtola M, Strömberg R. Zn 2+-Dependent peptide nucleic acid-based artificial ribonucleases with unprecedented efficiency and specificity. Chem Commun (Camb) 2021; 57:10911-10914. [PMID: 34590632 DOI: 10.1039/d1cc04383h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We present Zn2+-dependent dimethyl-dipyridophenazine PNA conjugates as efficient RNA cleaving artificial enzymes. These PNAzymes display site-specific RNA cleavage with 10 minute half-lives and cleave clinically relevant RNA models.
Collapse
Affiliation(s)
- Olivia Luige
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83 Huddinge, Sweden.
| | - Partha Pratim Bose
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83 Huddinge, Sweden.
| | - Rouven Stulz
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83 Huddinge, Sweden. .,Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter Steunenberg
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83 Huddinge, Sweden.
| | - Omar Brun
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83 Huddinge, Sweden.
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Merita Murtola
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83 Huddinge, Sweden.
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83 Huddinge, Sweden.
| |
Collapse
|
8
|
Site-Selective Artificial Ribonucleases: Renaissance of Oligonucleotide Conjugates for Irreversible Cleavage of RNA Sequences. Molecules 2021; 26:molecules26061732. [PMID: 33808835 PMCID: PMC8003597 DOI: 10.3390/molecules26061732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022] Open
Abstract
RNA-targeting therapeutics require highly efficient sequence-specific devices capable of RNA irreversible degradation in vivo. The most developed methods of sequence-specific RNA cleavage, such as siRNA or antisense oligonucleotides (ASO), are currently based on recruitment of either intracellular multi-protein complexes or enzymes, leaving alternative approaches (e.g., ribozymes and DNAzymes) far behind. Recently, site-selective artificial ribonucleases combining the oligonucleotide recognition motifs (or their structural analogues) and catalytically active groups in a single molecular scaffold have been proven to be a great competitor to siRNA and ASO. Using the most efficient catalytic groups, utilising both metal ion-dependent (Cu(II)-2,9-dimethylphenanthroline) and metal ion-free (Tris(2-aminobenzimidazole)) on the one hand and PNA as an RNA recognising oligonucleotide on the other, allowed site-selective artificial RNases to be created with half-lives of 0.5-1 h. Artificial RNases based on the catalytic peptide [(ArgLeu)2Gly]2 were able to take progress a step further by demonstrating an ability to cleave miRNA-21 in tumour cells and provide a significant reduction of tumour growth in mice.
Collapse
|