1
|
He Q, Wang Y, Zhao F, Wei S, Li X, Zeng G. APE1: A critical focus in neurodegenerative conditions. Biomed Pharmacother 2024; 179:117332. [PMID: 39191031 DOI: 10.1016/j.biopha.2024.117332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
The global growth of the aging population has resulted in an increased prevalence of neurodegenerative diseases, characterized by the progressive loss of central nervous system (CNS) structure and function. Given the high incidence and debilitating nature of neurodegenerative diseases, there is an urgent need to identify potential biomarkers and novel therapeutic targets thereof. Apurinic/apyrimidinic endonuclease 1 (APE1), has been implicated in several neurodegenerative diseases, as having a significant role. Abnormal APE1 expression has been observed in conditions including Alzheimer's disease, stroke, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, and epilepsy. However, whether this dysregulation is protective or harmful remains unclear. This review aims to comprehensively review the current understanding of the involvement of APE1 in neurodegenerative diseases.
Collapse
Affiliation(s)
- Qianxiong He
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Yi Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Zhao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Shigang Wei
- Department of Clinical Laboratory, People's Hospital of Pengzhou city, Pengzhou, Sichuan province 611930, China
| | - Xingfu Li
- Department of Clinical Laboratory, The Honghe Autonomous Prefecture 3rd Hospital, Honghe 661021, China
| | - Guangqun Zeng
- Department of Clinical Laboratory, People's Hospital of Pengzhou city, Pengzhou, Sichuan province 611930, China.
| |
Collapse
|
2
|
Mishra SK, Sangeeta, Heermann DW, Bhattacherjee A. The role of nucleotide opening dynamics in facilitated target search by DNA-repair proteins. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195026. [PMID: 38641240 DOI: 10.1016/j.bbagrm.2024.195026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/13/2024] [Accepted: 04/06/2024] [Indexed: 04/21/2024]
Abstract
Preserving the genomic integrity stands a fundamental necessity, primarily achieved by the DNA repair proteins through their continuous patrolling on the DNA in search of lesions. However, comprehending how even a single base-pair lesion can be swiftly and specifically recognized amidst millions of base-pair sites remains a formidable challenge. In this study, we employ extensive molecular dynamics simulations using an appropriately tuned model of both protein and DNA to probe the underlying molecular principles. Our findings reveal that the dynamics of a non-canonical base generate an entropic signal that guides the one-dimensional search of a repair protein, thereby facilitating the recognition of the lesion site. The width of the funnel perfectly aligns with the one-dimensional diffusion length of DNA-binding proteins. The generic mechanism provides a physical basis for rapid recognition and specificity of DNA damage sensing and recognition.
Collapse
Affiliation(s)
- Sujeet Kumar Mishra
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sangeeta
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Dieter W Heermann
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Arnab Bhattacherjee
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
3
|
Jayaraj A, Thayer KM, Beveridge DL, Hingorani MM. Molecular dynamics of mismatch detection-How MutS uses indirect readout to find errors in DNA. Biophys J 2023; 122:3031-3043. [PMID: 37329136 PMCID: PMC10432192 DOI: 10.1016/j.bpj.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 04/30/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
The mismatch repair protein MutS safeguards genomic integrity by finding and initiating repair of basepairing errors in DNA. Single-molecule studies show MutS diffusing on DNA, presumably scanning for mispaired/unpaired bases, and crystal structures show a characteristic "mismatch-recognition" complex with DNA enclosed within MutS and kinked at the site of error. But how MutS goes from scanning thousands of Watson-Crick basepairs to recognizing rare mismatches remains unanswered, largely because atomic-resolution data on the search process are lacking. Here, 10 μs all-atom molecular dynamics simulations of Thermus aquaticus MutS bound to homoduplex DNA and T-bulge DNA illuminate the structural dynamics underlying the search mechanism. MutS-DNA interactions constitute a multistep mechanism to check DNA over two helical turns for its 1) shape, through contacts with the sugar-phosphate backbone, 2) conformational flexibility, through bending/unbending engineered by large-scale motions of the clamp domain, and 3) local deformability, through basepair destabilizing contacts. Thus, MutS can localize a potential target by indirect readout due to lower energetic costs of bending mismatched DNA and identify a site that distorts easily due to weaker base stacking and pairing as a mismatch. The MutS signature Phe-X-Glu motif can then lock in the mismatch-recognition complex to initiate repair.
Collapse
Affiliation(s)
- Abhilash Jayaraj
- Chemistry Department, Wesleyan University, Middletown, Connecticut.
| | - Kelly M Thayer
- Chemistry Department, Wesleyan University, Middletown, Connecticut
| | | | - Manju M Hingorani
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, Connecticut.
| |
Collapse
|
4
|
Mu ZC, Tan YL, Liu J, Zhang BG, Shi YZ. Computational Modeling of DNA 3D Structures: From Dynamics and Mechanics to Folding. Molecules 2023; 28:4833. [PMID: 37375388 DOI: 10.3390/molecules28124833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA carries the genetic information required for the synthesis of RNA and proteins and plays an important role in many processes of biological development. Understanding the three-dimensional (3D) structures and dynamics of DNA is crucial for understanding their biological functions and guiding the development of novel materials. In this review, we discuss the recent advancements in computer methods for studying DNA 3D structures. This includes molecular dynamics simulations to analyze DNA dynamics, flexibility, and ion binding. We also explore various coarse-grained models used for DNA structure prediction or folding, along with fragment assembly methods for constructing DNA 3D structures. Furthermore, we also discuss the advantages and disadvantages of these methods and highlight their differences.
Collapse
Affiliation(s)
- Zi-Chun Mu
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
- School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan 430073, China
| | - Ya-Lan Tan
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Jie Liu
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Ben-Gong Zhang
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| |
Collapse
|
5
|
The Importance of Charge Transfer and Solvent Screening in the Interactions of Backbones and Functional Groups in Amino Acid Residues and Nucleotides. Int J Mol Sci 2022; 23:ijms232113514. [PMID: 36362296 PMCID: PMC9654426 DOI: 10.3390/ijms232113514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Quantum mechanical (QM) calculations at the level of density-functional tight-binding are applied to a protein–DNA complex (PDB: 2o8b) consisting of 3763 atoms, averaging 100 snapshots from molecular dynamics simulations. A detailed comparison of QM and force field (Amber) results is presented. It is shown that, when solvent screening is taken into account, the contributions of the backbones are small, and the binding of nucleotides in the double helix is governed by the base–base interactions. On the other hand, the backbones can make a substantial contribution to the binding of amino acid residues to nucleotides and other residues. The effect of charge transfer on the interactions is also analyzed, revealing that the actual charge of nucleotides and amino acid residues can differ by as much as 6 and 8% from the formal integer charge, respectively. The effect of interactions on topological models (protein -residue networks) is elucidated.
Collapse
|
6
|
Wang SD, Zhang RB, Eriksson LA. Markov state models elucidate the stability of DNA influenced by the chiral 5S-Tg base. Nucleic Acids Res 2022; 50:9072-9082. [PMID: 35979954 PMCID: PMC9458442 DOI: 10.1093/nar/gkac691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/15/2022] [Accepted: 07/30/2022] [Indexed: 12/24/2022] Open
Abstract
The static and dynamic structures of DNA duplexes affected by 5S-Tg (Tg, Thymine glycol) epimers were studied using MD simulations and Markov State Models (MSMs) analysis. The results show that the 5S,6S-Tg base caused little perturbation to the helix, and the base-flipping barrier was determined to be 4.4 kcal mol-1 through the use of enhanced sampling meta-eABF calculations, comparable to 5.4 kcal mol-1 of the corresponding thymine flipping. Two conformations with the different hydrogen bond structures between 5S,6R-Tg and A19 were identified in several independent MD trajectories. The 5S,6R-Tg:O6HO6•••N1:A19 hydrogen bond is present in the high-energy conformation displaying a clear helical distortion, and near barrier-free Tg base flipping. The low-energy conformation always maintains Watson-Crick base pairing between 5S,6R-Tg and A19, and 5S-Tg base flipping is accompanied by a small barrier of ca. 2.0 KBT (T = 298 K). The same conformations are observed in the MSMs analysis. Moreover, the transition path and metastable structures of the damaged base flipping are for the first time verified through MSMs analysis. The data clearly show that the epimers have completely different influence on the stability of the DNA duplex, thus implying different enzymatic mechanisms for DNA repair.
Collapse
Affiliation(s)
- Shu-dong Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, South Street No. 5, Zhongguancun, Haidan District, 100081 Beijing, China
| | - Ru-bo Zhang
- Correspondence may also be addressed to Ru-bo Zhang.
| | - Leif A Eriksson
- To whom correspondence should be addressed. Tel: +46 31 786 9117;
| |
Collapse
|
7
|
Sun Z, Huai Z, He Q, Liu Z. A General Picture of Cucurbit[8]uril Host-Guest Binding. J Chem Inf Model 2021; 61:6107-6134. [PMID: 34818004 DOI: 10.1021/acs.jcim.1c01208] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Describing, understanding, and designing complex interaction networks within macromolecular systems remain challenging in modern chemical research. Host-guest systems, despite their relative simplicity in both the structural feature and interaction patterns, still pose problems in theoretical modeling. The barrel-shaped supramolecular container cucurbit[8]uril (CB8) shows promising functionalities in various areas, e.g., catalysis and molecular recognition. It can stably coordinate a series of structurally diverse guests with high affinities. In this work, we examine the binding of seven commonly abused drugs to the CB8 host, aiming at providing a general picture of CB8-guest binding. Extensive sampling of the configurational space of these host-guest systems is performed, and the binding pathway and interaction patterns of CB8-guest complexes are investigated. A thorough comparison of widely used fixed-charge models for drug-like molecules is presented. Iterative refitting of the atomic charges suggests significant conformation dependence of charge generation. The initial model generated at the original conformation could be inaccurate for new conformations explored during conformational search, and the newly fitted charge set improves the prediction-experiment correlation significantly. Our investigations of the configurational space of CB8-drug complexes suggest that the host-guest interactions are more complex than expected. Despite the structural simplicities of these molecules, the conformational fluctuations of the host and the guest molecules and orientations of functional groups lead to the existence of an ensemble of binding modes. The insights of the binding thermodynamics, performance of fixed-charge models, and binding patterns of the CB8-guest systems are useful for studying and elucidating the binding mechanism of other host-guest complexes.
Collapse
Affiliation(s)
- Zhaoxi Sun
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhe Huai
- XtalPi-AI Research Center (XARC), 9F, Tower A, Dongsheng Building, No. 8, Zhongguancun East Road, Haidian District, Beijing 100083, P.R. China
| | - Qiaole He
- AI Department of Enzymaster (Ningbo) Bio-Engineering Co., Ltd., North Century Avenue 333, Ningbo 315100, China
| | - Zhirong Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Abstract
Mismatched base pairs alter the flexibility and intrinsic curvature of DNA. The role of such DNA features is not fully understood in the mismatch repair pathway. MutS/DNA complexes exhibit DNA bending, PHE intercalation, and changes of base-pair parameters near the mismatch. Recently, we have shown that base-pair opening in the absence of MutS can discriminate mismatches from canonical base pairs better than DNA bending. However, DNA bending in the absence of MutS was found to be rather challenging to describe correctly. Here, we present a computational study on the DNA bending of canonical and G/T mismatched DNAs. Five types of geometric parameters covering template-based bending toward the experimental DNA structure, global, and local geometry parameters were employed in biased molecular dynamics in the absence of MutS. None of these parameters showed higher discrimination than the base-pair opening. Only roll could induce a sharply localized bending of DNA as observed in the experimental MutS/DNA structure. Further, we demonstrated that the intercalation of benzene mimicking PHE decreases the energetic cost of DNA bending without any effect on mismatch discrimination.
Collapse
Affiliation(s)
- Tomáš Bouchal
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ivo Durník
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Kulhánek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
9
|
Peterková K, Durník I, Marek R, Plavec J, Podbevšek P. c-kit2 G-quadruplex stabilized via a covalent probe: exploring G-quartet asymmetry. Nucleic Acids Res 2021; 49:8947-8960. [PMID: 34365512 PMCID: PMC8421218 DOI: 10.1093/nar/gkab659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 11/23/2022] Open
Abstract
Several sequences forming G-quadruplex are highly conserved in regulatory regions of genomes of different organisms and affect various biological processes like gene expression. Diverse G-quadruplex properties can be modulated via their interaction with small polyaromatic molecules such as pyrene. To investigate how pyrene interacts with G-rich DNAs, we incorporated deoxyuridine nucleotide(s) with a covalently attached pyrene moiety (Upy) into a model system that forms parallel G-quadruplex structures. We individually substituted terminal positions and positions in the pentaloop of the c-kit2 sequence originating from the KIT proto-oncogene with Upy and performed a detailed NMR structural study accompanied with molecular dynamic simulations. Our results showed that incorporation into the pentaloop leads to structural polymorphism and in some cases also thermal destabilization. In contrast, terminal positions were found to cause a substantial thermodynamic stabilization while preserving topology of the parent c-kit2 G-quadruplex. Thermodynamic stabilization results from π–π stacking between the polyaromatic core of the pyrene moiety and guanine nucleotides of outer G-quartets. Thanks to the prevalent overall conformation, our structures mimic the G-quadruplex found in human KIT proto-oncogene and could potentially have antiproliferative effects on cancer cells.
Collapse
Affiliation(s)
- Kateřina Peterková
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Ivo Durník
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia.,CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Radek Marek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia.,CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia
| | - Peter Podbevšek
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|