1
|
Zhong Y, Li B, Xin H, Wang C. Endogenous mRNA-Driven "One-To-More" Signal Amplification of DNA Probe for Intracellular miR155 Sensing. Chem Asian J 2024; 19:e202400401. [PMID: 38725283 DOI: 10.1002/asia.202400401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/02/2024] [Indexed: 06/13/2024]
Abstract
The detection of specific intracellular microRNAs could be potentially helpful in understanding the underlying mechanisms of cancer metastasis and invasion. MiRNAs are usually present in lower expression levels, especially in early stage of cancer. Here, we proposed a "one-to-more" amplification strategy for miRNA imaging, by virtue of DNA strand displacements with dual-amplification. This approach involves leveraging high-abundance endogenous mRNA as fuel strand to drive cascade reactions between DNA strands for amplification, enabling the monitoring of low-abundance intracellular microRNA155. Notably, in comparison to the traditional "one-to-one" signal triggering mode, our "one-to-more" amplification strategy led to a remarkable 11.8-fold increase in fluorescence signal. Our approach not only demonstrates a high sensitivity and specificity in detecting miR155, but also allows for discrimination of miR155 expression levels in different cell lines. With the advantages of intracellular signal amplification and reduced background signal, this approach holds substantial potential in the early diagnosis of cancer.
Collapse
Affiliation(s)
- Yan Zhong
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Blvd., 010020, Hohhot, China
| | - Bo Li
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Blvd., 010020, Hohhot, China
| | - Hui Xin
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Blvd., 010020, Hohhot, China
| | - Chunyan Wang
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Blvd., 010020, Hohhot, China
| |
Collapse
|
2
|
Camilo V, Pacheco MB, Moreira-Silva F, Outeiro-Pinho G, Gaspar VM, Mano JF, Marques CJ, Henrique R, Jerónimo C. Novel Insights on the Role of Epigenetics in Androgen Receptor's Expression in Prostate Cancer. Biomolecules 2023; 13:1526. [PMID: 37892208 PMCID: PMC10605369 DOI: 10.3390/biom13101526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The androgens/androgen receptor (AR) axis is the main therapeutic target in prostate cancer (PCa). However, while initially responsive, a subset of tumors loses AR expression through mechanisms putatively associated with epigenetic modifications. In this study, we assessed the link between the presence of CpG methylation in the 5'UTR and promoter regions of AR and loss of AR expression. Hence, we characterized and compared the methylation signature at CpG resolution of these regulatory regions in vitro, both at basal levels and following treatment with 5-aza-2-deoxycytidine (DAC) alone, or in combination with Trichostatin A (TSA). Our results showed heterogeneity in the methylation signature of AR negative cell lines and pinpointed the proximal promoter region as the most consistently methylated site in DU-145. Furthermore, this region was extremely resistant to the demethylating effects of DAC and was only significantly demethylated upon concomitant treatment with TSA. Nevertheless, no AR re-expression was detected at the mRNA or protein level. Importantly, after treatment, there was a significant increase in repressive histone marks at AR region 1 in DU-145 cells. Altogether, our data indicate that AR region 1 genomic availability is crucial for AR expression and that the inhibition of histone methyltransferases might hold promise for AR re-expression.
Collapse
Affiliation(s)
- Vânia Camilo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (V.C.); (M.B.P.); (F.M.-S.); (G.O.-P.); (R.H.)
| | - Mariana Brütt Pacheco
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (V.C.); (M.B.P.); (F.M.-S.); (G.O.-P.); (R.H.)
| | - Filipa Moreira-Silva
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (V.C.); (M.B.P.); (F.M.-S.); (G.O.-P.); (R.H.)
| | - Gonçalo Outeiro-Pinho
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (V.C.); (M.B.P.); (F.M.-S.); (G.O.-P.); (R.H.)
| | - Vítor M. Gaspar
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (V.M.G.)
| | - João F. Mano
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (V.M.G.)
| | - C. Joana Marques
- Genetics Unit, Department of Pathology, Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- i3S-Institute for Research and Innovation in Health, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (V.C.); (M.B.P.); (F.M.-S.); (G.O.-P.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (V.C.); (M.B.P.); (F.M.-S.); (G.O.-P.); (R.H.)
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
In focus in HCB. Histochem Cell Biol 2023; 159:221-224. [PMID: 36877266 DOI: 10.1007/s00418-023-02184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
4
|
Kitazawa S, Haraguchi R, Takaoka Y, Kitazawa R. In situ sequence-specific visualization of single methylated cytosine on tissue sections using ICON probe and rolling-circle amplification. Histochem Cell Biol 2023; 159:263-273. [PMID: 36418613 PMCID: PMC10006048 DOI: 10.1007/s00418-022-02165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2022] [Indexed: 11/25/2022]
Abstract
Since epigenetic modifications differ from cell to cell, detecting the DNA methylation status of individual cells is requisite. Therefore, it is important to conduct "morphology-based epigenetics research", in which the sequence-specific DNA methylation status is observed while maintaining tissue architecture. Here we demonstrate a novel histochemical technique that efficiently shows the presence of a single methylated cytosine in a sequence-dependent manner by applying ICON (interstrand complexation with osmium for nucleic acids) probes. By optimizing the concentration and duration of potassium osmate treatment, ICON probes selectively hybridize to methylated cytosine on tissue sections. Since the elongation process by rolling-circle amplification through the padlock probe and synchronous amplification by the hyperbranching reaction at a constant temperature efficiently amplifies the reaction, it is possible to specifically detect the presence of a single methylated cytosine. Since the ICON probe is cross-linked to the nuclear or mitochondrial DNA of the target cell, subsequent elongation and multiplication reactions proceed like a tree growing in soil with its roots firmly planted, thus facilitating the demonstration of methylated cytosine in situ. Using this novel ICON-mediated histochemical method, detection of the methylation of DNA in the regulatory region of the RANK gene in cultured cells and of mitochondrial DNA in paraffin sections of mouse cerebellar tissue was achievable. This combined ICON and rolling-circle amplification method is the first that shows evidence of the presence of a single methylated cytosine in a sequence-specific manner in paraffin sections, and is foreseen as applicable to a wide range of epigenetic studies.
Collapse
Affiliation(s)
- Sohei Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan.
| | - Ryuma Haraguchi
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Yuki Takaoka
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Riko Kitazawa
- Division of Diagnostic Pathology, Ehime University Hospital, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
5
|
Moshareva MA, Lukyanov KA, Putlyaeva LV. Fluorescence imaging of epigenetic genome modifications. Biochem Biophys Res Commun 2022; 622:86-92. [PMID: 35843098 DOI: 10.1016/j.bbrc.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022]
Abstract
Epigenome contains a lot of information about cell state. Epigenetic analysis includes primarily sequence-based methods, which provide detailed data on distribution of modifications along the genome, but are poorly applicable for screenings. Specific fluorescence labeling and imaging of epigenetic modifications is an attractive complementary approach. It is currently based mainly on histone modifications study. We expect that inclusion of DNA modifications into imaging-based study would empower the method. In this review we discuss methods for fluorescence imaging of DNA modifications (mainly 5-methylcytosine). It opens an easy way to single cell analysis and high-throughput screening. Moreover, tracking epigenome changes in live cells becomes possible with genetically encoded probes.
Collapse
Affiliation(s)
- Maria A Moshareva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Konstantin A Lukyanov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Lidia V Putlyaeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia.
| |
Collapse
|
6
|
Kudryavtseva N, Ermolaev A, Karlov G, Kirov I, Shigyo M, Sato S, Khrustaleva L. A Dual-Color Tyr-FISH Method for Visualizing Genes/Markers on Plant Chromosomes to Create Integrated Genetic and Cytogenetic Maps. Int J Mol Sci 2021; 22:5860. [PMID: 34070753 PMCID: PMC8215642 DOI: 10.3390/ijms22115860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 11/23/2022] Open
Abstract
In situ imaging of molecular markers on a physical chromosome is an indispensable tool for refining genetic maps and validation genome assembly at the chromosomal level. Despite the tremendous progress in genome sequencing, the plant genome assembly at the chromosome level remains a challenge. Recently developed optical and Hi-C mapping are aimed at assistance in genome assembly. For high confidence in the genome assembly at chromosome level, more independent approaches are required. The present study is aimed at refining an ultrasensitive Tyr-FISH technique and developing a reliable and simple method of in situ mapping of a short unique DNA sequences on plant chromosomes. We have carefully analyzed the critical steps of the Tyr-FISH to find out the reasons behind the flaws of this technique. The accurate visualization of markers/genes appeared to be significantly dependent on the means of chromosome slide preparation, probe design and labeling, and high stringency washing. Appropriate adjustment of these steps allowed us to detect a short DNA sequence of 1.6 Kb with a frequency of 51.6%. Based on our results, we developed a more reliable and simple protocol for dual-color Tyr-FISH visualization of unique short DNA sequences on plant chromosomes. This new protocol can allow for more accurate determination of the physical distance between markers and can be applied for faster integration of genetic and cytogenetic maps.
Collapse
Affiliation(s)
- Natalya Kudryavtseva
- Laboratory of Plant Cell Engineering, All-Russian Research Institute of Agricultural Biotechnology, Timiryazevskay 42 Str., 127550 Moscow, Russia;
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia;
| | - Aleksey Ermolaev
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia;
| | - Gennady Karlov
- Laboratory of Applied Genomics and Crop Breeding, All-Russian Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia;
| | - Ilya Kirov
- Laboratory of Marker-Assisted and Genomic Selection of Plants, All-Russian Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia;
- Kurchatov Genomics Center of ARRIAB, All-Russian Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Masayoshi Shigyo
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan;
| | - Shusei Sato
- Graduate School of Life Science, Tohoku University, Miyagi 980-8577, Japan;
| | - Ludmila Khrustaleva
- Laboratory of Plant Cell Engineering, All-Russian Research Institute of Agricultural Biotechnology, Timiryazevskay 42 Str., 127550 Moscow, Russia;
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia;
- Department of Botany, Breeding and Seed Production of Garden Plants, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskay 49 Str., 127550 Moscow, Russia
| |
Collapse
|