1
|
Petassi M, Shin Y, Jessop AM, Morse K, Kim SY, Matei R, Raina VB, Greene EC. Lineage-specific amino acids define functional attributes of the protomer-protomer interfaces for the Rad51 and Dmc1 recombinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626531. [PMID: 39677717 PMCID: PMC11642858 DOI: 10.1101/2024.12.03.626531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Most eukaryotes possess two Rad51/RecA family DNA recombinases that are thought to have arisen from an ancient gene duplication event: Rad51, which is expressed in both mitosis and meiosis; and Dmc1, which is only expressed in meiosis. To explore the evolutionary relationship between these recombinases, here, we present high-resolution CryoEM structures of S. cerevisiae Rad51 filaments and S. cerevisiae Dmc1 filaments bound to ssDNA, which reveal a pair of stacked interfacial aromatic amino acid residues that are nearly universally conserved in Rad51 but are absent from Dmc1. We use a combination of bioinformatics, genetic analysis of natural sequence variation, and deep mutational analysis to probe the functionally tolerated sequence space for these stacked aromatic residues. Our findings demonstrate that the functional landscape of the interfacial aromatic residues within the Rad51 filament is highly constrained. In contrast, the amino acids at the equivalent positions within the Dmc1 filament exhibit a broad functional landscape. This work helps highlight the distinct evolutionary trajectories of these two eukaryotic recombinases, which may have contributed to their functional and mechanistic divergence.
Collapse
Affiliation(s)
- Mike Petassi
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Yeonoh Shin
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Aidan M Jessop
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Katherine Morse
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Stefan Y Kim
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Razvan Matei
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Vivek B Raina
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| |
Collapse
|
2
|
Wei CD, Chang HY, Lu CH, Chang CC, Furukohri A, Mwaniki S, Shinohara A, Chi P, Li HW. Mei5-Sae3 stabilizes Dmc1 nucleating clusters for efficient Dmc1 assembly on RPA-coated single-stranded DNA. Nucleic Acids Res 2024; 52:11768-11784. [PMID: 39275989 PMCID: PMC11514449 DOI: 10.1093/nar/gkae780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Interhomolog recombination in meiosis requires a meiosis-specific recombinase, Dmc1. In Saccharomyces cerevisiae, the Mei5-Sae3 complex facilitates the loading of Dmc1 onto the replication protein A (RPA)-coated single-stranded DNA (ssDNA) to form nucleoprotein filaments. In vivo, Dmc1 and Mei5-Sae3 are interdependent in their colocalization on the chromosomes. However, the mechanistic role of Mei5-Sae3 in mediating Dmc1 activity remains unclear. We used single-molecule fluorescence resonance energy transfer and colocalization single-molecule spectroscopy experiments to elucidate how Mei5-Sae3 stimulates Dmc1 assembly on ssDNA and RPA-coated ssDNA. We showed that Mei5-Sae3 stabilized Dmc1 nucleating clusters with two to three molecules on naked DNA by preferentially reducing Dmc1 dissociation rates. Mei5-Sae3 also stimulated Dmc1 assembly on RPA-coated DNA. Using green fluorescent protein-labeled RPA, we showed the coexistence of an intermediate with Dmc1 and RPA on ssDNA before RPA dissociation. Moreover, the displacement efficiency of RPA depended on Dmc1 concentration, and its dependence was positively correlated with the stability of Dmc1 clusters on short ssDNA. These findings suggest a molecular model that Mei5-Sae3 mediates Dmc1 binding on RPA-coated ssDNA by stabilizing Dmc1 nucleating clusters, thus altering RPA dynamics on DNA to promote RPA dissociation.
Collapse
Affiliation(s)
- Chin-Dian Wei
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Hao-Yen Chang
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Chia-Hua Lu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Chih-Chun Chang
- Institute of Biochemical Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Asako Furukohri
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Stephen Mwaniki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
- Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| |
Collapse
|
3
|
Peng JC, Chang HY, Sun YL, Prentiss M, Li HW, Chi P. Hop2-Mnd1 functions as a DNA sequence fidelity switch in Dmc1-mediated DNA recombination. Nat Commun 2024; 15:9266. [PMID: 39463417 PMCID: PMC11514202 DOI: 10.1038/s41467-024-53641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Homologous recombination during meiosis is critical for chromosome segregation and also gives rise to genetic diversity. Genetic exchange between homologous chromosomes during meiosis is mediated by the recombinase Dmc1, which is capable of recombining DNA sequences with mismatches. The Hop2-Mnd1 complex mediates Dmc1 activity. Here, we reveal a regulatory role for Hop2-Mnd1 in restricting substrate selection. Specifically, Hop2-Mnd1 upregulates Dmc1 activity with DNA substrates that are either fully homologous or contain DNA mismatches, and it also acts against DNA strand exchange between substrates solely harboring microhomology. By isolating and examining salient Hop2-Mnd1 separation-of-function variants, we show that suppressing illegitimate DNA recombination requires the Dmc1 filament interaction attributable to Hop2-Mnd1 but not its DNA binding activity. Our study provides mechanistic insights into how Hop2-Mnd1 helps maintain meiotic recombination fidelity.
Collapse
Affiliation(s)
- Jo-Ching Peng
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Hao-Yen Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yuting Liang Sun
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
4
|
Kanda T, Iwasaki K, Taguchi Y, Umeda M. Role of sodium-dependent vitamin C transporter 2 in human periodontal ligament fibroblasts. J Periodontal Res 2024. [PMID: 39225294 DOI: 10.1111/jre.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 09/04/2024]
Abstract
AIM Ascorbic acid (AA) is a water-soluble vitamin that has antioxidant properties and regulates homeostasis of connective tissue through controlling various enzymatic activities. Two cell surface glycoproteins, sodium-dependent vitamin C transporter (SVCT) 1 and SVCT2, are known as ascorbate transporters. The purpose of this study was to investigate the expression pattern and functions of SVCTs in periodontal ligament (PDL) and PDL fibroblast (PDLF). METHODS Gene expression was examined using real-time polymerase chain reaction (PCR) and reverse transcription PCR. SVCT2 expression was determined by immunofluorescence staining, western blot and flow cytometry. ALP activity and collagen production were examined using ALP staining and collagen staining. Short interfering RNA was used to knock down the gene level of SVCT2. Change of comprehensive gene expression under SVCT2 knockdown condition was examined by RNA-sequencing analysis. RESULTS Real-time PCR, fluorescent immunostaining, western blot and flowy cytometry showed that SVCT2 was expressed in PDLF and PDL. ALP activity, collagen production, and SVCT2 expression were enhanced upon AA stimulation in PDLF. The enhancement of ALP activity, collagen production, and SVCT2 expression by AA was abolished under SVCT2 knockdown condition. RNA-sequencing revealed that gene expression of CLDN4, Cyclin E2, CAMK4, MSH5, DMC1, and Nidgen2 were changed by SVCT2 knockdown. Among them, the expression of MSH5 and DMC1, which are related to DNA damage sensor activity, was enhanced by AA, suggesting the new molecular target of AA in PDLF. CONCLUSION Our study reveals the SVCT2 expression in PDL and the pivotal role of SVCT2 in mediating AA-induced enhancements of ALP activity and collagen production in PDLF. Additionally, we identify alterations in gene expression profiles, highlighting potential molecular targets influenced by AA through SVCT2. These findings deepen our understanding of periodontal tissue homeostasis mechanisms and suggest promising intervention targeting AA metabolism.
Collapse
Affiliation(s)
- Tomoko Kanda
- Graduate School of Dentistry (Department of Periodontology), Osaka Dental University, Osaka, Japan
| | - Kengo Iwasaki
- Division of Creative and Integrated Medicine, Advanced Medicine Research Center, Translational Research Institute for Medical Innovation (TRIMI), Osaka Dental University, Osaka, Japan
| | - Yoichiro Taguchi
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| |
Collapse
|
5
|
Petiot V, White CI, Da Ines O. DNA-binding site II is required for RAD51 recombinogenic activity in Arabidopsis thaliana. Life Sci Alliance 2024; 7:e202402701. [PMID: 38803223 PMCID: PMC11106524 DOI: 10.26508/lsa.202402701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Homologous recombination is a major pathway for the repair of DNA double strand breaks, essential both to maintain genomic integrity and to generate genetic diversity. Mechanistically, homologous recombination involves the use of a homologous DNA molecule as a template to repair the break. In eukaryotes, the search for and invasion of the homologous DNA molecule is carried out by two recombinases, RAD51 in somatic cells and RAD51 and DMC1 in meiotic cells. During recombination, the recombinases bind overhanging single-stranded DNA ends to form a nucleoprotein filament, which is the active species in promoting DNA invasion and strand exchange. RAD51 and DMC1 carry two major DNA-binding sites-essential for nucleofilament formation and DNA strand exchange, respectively. Here, we show that the function of RAD51 DNA-binding site II is conserved in the plant, Arabidopsis. Mutation of three key amino acids in site II does not affect RAD51 nucleofilament formation but inhibits its recombinogenic activity, analogous to results from studies of the yeast and human proteins. We further confirm that recombinogenic function of RAD51 DNA-binding site II is not required for meiotic double-strand break repair when DMC1 is present. The Arabidopsis AtRAD51-II3A separation of function mutant shows a dominant negative phenotype, pointing to distinct biochemical properties of eukaryotic RAD51 proteins.
Collapse
Affiliation(s)
- Valentine Petiot
- Institut Génétique, Reproduction et Développement (iGReD), CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Charles I White
- Institut Génétique, Reproduction et Développement (iGReD), CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Olivier Da Ines
- Institut Génétique, Reproduction et Développement (iGReD), CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
6
|
Mwaniki S, Sawant P, Osemwenkhae OP, Fujita Y, Ito M, Furukohri A, Shinohara A. Mutational analysis of Mei5, a subunit of Mei5-Sae3 complex, in Dmc1-mediated recombination during yeast meiosis. Genes Cells 2024; 29:650-666. [PMID: 38924305 DOI: 10.1111/gtc.13138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Interhomolog recombination in meiosis is mediated by the Dmc1 recombinase. The Mei5-Sae3 complex of Saccharomyces cerevisiae promotes Dmc1 assembly and functions with Dmc1 for homology-mediated repair of meiotic DNA double-strand breaks. How Mei5-Sae3 facilitates Dmc1 assembly remains poorly understood. In this study, we created and characterized several mei5 mutants featuring the amino acid substitutions of basic residues. We found that Arg97 of Mei5, conserved in its ortholog, SFR1 (complex with SWI5), RAD51 mediator, in humans and other organisms, is critical for complex formation with Sae3 for Dmc1 assembly. Moreover, the substitution of either Arg117 or Lys133 with Ala in Mei5 resulted in the production of a C-terminal truncated Mei5 protein during yeast meiosis. Notably, the shorter Mei5-R117A protein was observed in meiotic cells but not in mitotic cells when expressed, suggesting a unique regulation of Dmc1-mediated recombination by posttranslational processing of Mei5-Sae3.
Collapse
Affiliation(s)
- Stephen Mwaniki
- Division of Integrated Protein Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | | | - Osaretin P Osemwenkhae
- Division of Integrated Protein Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Yurika Fujita
- Division of Integrated Protein Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Masaru Ito
- Division of Integrated Protein Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Asako Furukohri
- Division of Integrated Protein Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Akira Shinohara
- Division of Integrated Protein Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Miron S, Legrand P, Dupaigne P, van Rossum-Fikkert SE, Ristic D, Majeed A, Kanaar R, Zinn-Justin S, Zelensky A. DMC1 and RAD51 bind FxxA and FxPP motifs of BRCA2 via two separate interfaces. Nucleic Acids Res 2024; 52:7337-7353. [PMID: 38828772 PMCID: PMC11229353 DOI: 10.1093/nar/gkae452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024] Open
Abstract
In vertebrates, the BRCA2 protein is essential for meiotic and somatic homologous recombination due to its interaction with the RAD51 and DMC1 recombinases through FxxA and FxPP motifs (here named A- and P-motifs, respectively). The A-motifs present in the eight BRC repeats of BRCA2 compete with the A-motif of RAD51, which is responsible for its self-oligomerization. BRCs thus disrupt RAD51 nucleoprotein filaments in vitro. The role of the P-motifs is less studied. We recently found that deletion of Brca2 exons 12-14 encoding one of them (the prototypical 'PhePP' motif), disrupts DMC1 but not RAD51 function in mouse meiosis. Here we provide a mechanistic explanation for this phenotype by solving the crystal structure of the complex between a BRCA2 fragment containing the PhePP motif and DMC1. Our structure reveals that, despite sharing a conserved phenylalanine, the A- and P-motifs bind to distinct sites on the ATPase domain of the recombinases. The P-motif interacts with a site that is accessible in DMC1 octamers and nucleoprotein filaments. Moreover, we show that this interaction also involves the adjacent protomer and thus increases the stability of the DMC1 nucleoprotein filaments. We extend our analysis to other P-motifs from RAD51AP1 and FIGNL1.
Collapse
Affiliation(s)
- Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Pierre Legrand
- Synchrotron SOLEIL, HelioBio group, L’Orme des Merisiers, Gif sur-Yvette, France
| | - Pauline Dupaigne
- Genome Maintenance and Molecular Microscopy UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Sari E van Rossum-Fikkert
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
| | - Dejan Ristic
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
| | - Atifa Majeed
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Alex N Zelensky
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Pannafino G, Chen JJ, Mithani V, Payero L, Gioia M, Crickard JB, Alani E. The Dmc1 recombinase physically interacts with and promotes the meiotic crossover functions of the Mlh1-Mlh3 endonuclease. Genetics 2024; 227:iyae066. [PMID: 38657110 PMCID: PMC11228845 DOI: 10.1093/genetics/iyae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
The accurate segregation of homologous chromosomes during the Meiosis I reductional division in most sexually reproducing eukaryotes requires crossing over between homologs. In baker's yeast approximately 80% of meiotic crossovers result from Mlh1-Mlh3 and Exo1 acting to resolve double-Holliday junction intermediates in a biased manner. Little is known about how Mlh1-Mlh3 is recruited to recombination intermediates to perform its role in crossover resolution. We performed a gene dosage screen in baker's yeast to identify novel genetic interactors with Mlh1-Mlh3. Specifically, we looked for genes whose lowered dosage reduced meiotic crossing over using sensitized mlh3 alleles that disrupt the stability of the Mlh1-Mlh3 complex and confer defects in mismatch repair but do not disrupt meiotic crossing over. To our surprise we identified genetic interactions between MLH3 and DMC1, the recombinase responsible for recombination between homologous chromosomes during meiosis. We then showed that Mlh3 physically interacts with Dmc1 in vitro and in vivo. Partial complementation of Mlh3 crossover functions was observed when MLH3 was expressed under the control of the CLB1 promoter (NDT80 regulon), suggesting that Mlh3 function can be provided late in meiotic prophase at some functional cost. A model for how Dmc1 could facilitate Mlh1-Mlh3's role in crossover resolution is presented.
Collapse
Affiliation(s)
- Gianno Pannafino
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jun Jie Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Viraj Mithani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Lisette Payero
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Michael Gioia
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - J Brooks Crickard
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Liu J, Gore S, Heyer WD. Local structural dynamics of Rad51 protomers revealed by cryo-electron microscopy of Rad51-ssDNA filaments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592824. [PMID: 38766236 PMCID: PMC11100689 DOI: 10.1101/2024.05.06.592824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Homologous recombination (HR) is a high-fidelity repair mechanism for double-strand breaks. Rad51 is the key enzyme that forms filaments on single-stranded DNA (ssDNA) to catalyze homology search and DNA strand exchange in recombinational DNA repair. In this study, we employed single-particle cryo-electron microscopy (cryo-EM) to ascertain the density map of the budding yeast Rad51-ssDNA filament bound to ADP-AlF 3 , achieving a resolution of 2.35 Å without imposing helical symmetry. The model assigned 6 Rad51 protomers, 24 nt of DNA, and 6 bound ADP-AlF 3 . It shows 6-fold symmetry implying monomeric building blocks, unlike the structure of the Rad51-I345T mutant filament with three-fold symmetry implying dimeric building blocks, for which the structural comparisons provide a satisfying mechanistic explanation. This image analysis enables comprehensive comparisons of individual Rad51 protomers within the filament and reveals local conformational movements of amino acid side chains. Notably, Arg293 in Loop1 adopts multiple conformations to facilitate Leu296 and Val331 in separating and twisting the DNA triplets. We also analyzed the predicted structures of yeast Rad51-K342E and two tumor-derived human RAD51 variants, RAD51-Q268P and RAD51-Q272L, using the Rad51-ssDNA structure from this study as a reference.
Collapse
|
10
|
Yan J, Bhadane R, Ran M, Ma X, Li Y, Zheng D, Salo-Ahen OMH, Zhang H. Development of Aptamer-DNAzyme based metal-nucleic acid frameworks for gastric cancer therapy. Nat Commun 2024; 15:3684. [PMID: 38693181 PMCID: PMC11063048 DOI: 10.1038/s41467-024-48149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/23/2024] [Indexed: 05/03/2024] Open
Abstract
The metal-nucleic acid nanocomposites, first termed metal-nucleic acid frameworks (MNFs) in this work, show extraordinary potential as functional nanomaterials. However, thus far, realized MNFs face limitations including harsh synthesis conditions, instability, and non-targeting. Herein, we discover that longer oligonucleotides can enhance the synthesis efficiency and stability of MNFs by increasing oligonucleotide folding and entanglement probabilities during the reaction. Besides, longer oligonucleotides provide upgraded metal ions binding conditions, facilitating MNFs to load macromolecular protein drugs at room temperature. Furthermore, longer oligonucleotides facilitate functional expansion of nucleotide sequences, enabling disease-targeted MNFs. As a proof-of-concept, we build an interferon regulatory factor-1(IRF-1) loaded Ca2+/(aptamer-deoxyribozyme) MNF to target regulate glucose transporter (GLUT-1) expression in human epidermal growth factor receptor-2 (HER-2) positive gastric cancer cells. This MNF nanodevice disrupts GSH/ROS homeostasis, suppresses DNA repair, and augments ROS-mediated DNA damage therapy, with tumor inhibition rate up to 90%. Our work signifies a significant advancement towards an era of universal MNF application.
Collapse
Affiliation(s)
- Jiaqi Yan
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road, Shanghai, 200025, PR China
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Rajendra Bhadane
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
- Structural Bioinformatics Laboratory, Biochemistry, Åbo Akademi University, 20520, Turku, Finland
| | - Meixin Ran
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Xiaodong Ma
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Yuanqiang Li
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Dongdong Zheng
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Outi M H Salo-Ahen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Structural Bioinformatics Laboratory, Biochemistry, Åbo Akademi University, 20520, Turku, Finland
| | - Hongbo Zhang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road, Shanghai, 200025, PR China.
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
11
|
Wei Y, Huang D, Ye Z, Jiang Z, Ge L, Ren Y, Wang J, Xu X, Yang J, Wang T. Comparative transcriptome analysis reveals key genes and pathways related to gonad development in the sea cucumber Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101144. [PMID: 37769382 DOI: 10.1016/j.cbd.2023.101144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023]
Abstract
The sea cucumber Apostichopus japonicus is an economically important marine species in China, and understanding the mechanisms underlying its gonad development is crucial for successful reproduction and breeding. In this study, we performed transcriptome comparisons and analyses of A. japonicus gonadal and non-gonadal tissues to identify genes and molecular pathways associated with gonadal development. We also supplemented the annotation of the A. japonicus genome. Collectively, results revealed a total of 941 ovary-specific genes and 2499 testis-specific genes through different expression analysis and WGCNA analysis. The most enriched pathways in ovary and testis were "DNA replication" and "purine metabolism", respectively. Additionally, we identified key candidate gene modules that control gonad development and germ cell maturation, with CDT1 and DYNC2LI1 serving as hub genes. Our findings provide important insights into the gonadal development system of A. japonicus and offer valuable references for further research on reproductive biology in this marine invertebrate species.
Collapse
Affiliation(s)
- Ying Wei
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Dexiang Huang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Zhiqing Ye
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Zhijing Jiang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Lifei Ge
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Yucheng Ren
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Jixiu Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Xiuwen Xu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Jingwen Yang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Tianming Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China.
| |
Collapse
|
12
|
Pannafino G, Chen JJ, Mithani V, Payero L, Gioia M, Brooks Crickard J, Alani E. The Dmc1 recombinase physically interacts with and promotes the meiotic crossover functions of the Mlh1-Mlh3 endonuclease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566911. [PMID: 38014100 PMCID: PMC10680668 DOI: 10.1101/2023.11.13.566911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The accurate segregation of homologous chromosomes during the Meiosis I reductional division in most sexually reproducing eukaryotes requires crossing over between homologs. In baker's yeast approximately 80 percent of meiotic crossovers result from Mlh1-Mlh3 and Exo1 acting to resolve double-Holliday junction (dHJ) intermediates in a biased manner. Little is known about how Mlh1-Mlh3 is recruited to recombination intermediates and whether it interacts with other meiotic factors prior to its role in crossover resolution. We performed a haploinsufficiency screen in baker's yeast to identify novel genetic interactors with Mlh1-Mlh3 using sensitized mlh3 alleles that disrupt the stability of the Mlh1-Mlh3 complex and confer defects in mismatch repair but do not disrupt meiotic crossing over. We identified several genetic interactions between MLH3 and DMC1, the recombinase responsible for recombination between homologous chromosomes during meiosis. We then showed that Mlh3 physically interacts with Dmc1 in vitro and at times in meiotic prophase when Dmc1 acts as a recombinase. Interestingly, restricting MLH3 expression to roughly the time of crossover resolution resulted in a mlh3 null-like phenotype for crossing over. Our data are consistent with a model in which Dmc1 nucleates a polymer of Mlh1-Mlh3 to promote crossing over.
Collapse
Affiliation(s)
- Gianno Pannafino
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA 14853
| | - Jun Jie Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA 14853
| | - Viraj Mithani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA 14853
| | - Lisette Payero
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA 14853
| | - Michael Gioia
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA 14853
| | - J Brooks Crickard
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA 14853
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA 14853
| |
Collapse
|
13
|
Xu J, Bradley N, He Y. Structure and function of the apical PIKKs in double-strand break repair. Curr Opin Struct Biol 2023; 82:102651. [PMID: 37437397 PMCID: PMC10530350 DOI: 10.1016/j.sbi.2023.102651] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/14/2023]
Abstract
Members of the phosphatidylinositol 3' kinase (PI3K)-related kinases (PIKKs) family, including DNA-dependent protein kinase catalytic subunit (DNA-PKcs), ataxia telangiectasia mutated (ATM), ataxia-telangiectasia mutated and Rad3-related (ATR), mammalian target of rapamycin (mTOR), suppressor with morphological effect on genitalia 1 (SMG1), and transformation/transcription domain-associated protein 1 (TRRAP/Tra1), participate in a variety of physiological processes, such as cell-cycle control, metabolism, transcription, replication, and the DNA damage response. In eukaryotic cells, DNA-PKcs, ATM, and ATR-ATRIP are the main sensors and regulators of DNA double-strand break repair. The purpose of this review is to describe recent structures of DNA-PKcs, ATM, and ATR, as well as their functions in activation and phosphorylation in different DNA repair pathways.
Collapse
Affiliation(s)
- Jingfei Xu
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Noah Bradley
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
14
|
Fan S, Wang Y, Jiang H, Jiang X, Zhou J, Jiao Y, Ye J, Xu Z, Wang Y, Xie X, Zhang H, Li Y, Liu W, Zhang X, Ma H, Shi B, Zhang Y, Zubair M, Shah W, Xu Z, Xu B, Shi Q. A novel recombination protein C12ORF40/REDIC1 is required for meiotic crossover formation. Cell Discov 2023; 9:88. [PMID: 37612290 PMCID: PMC10447524 DOI: 10.1038/s41421-023-00577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/14/2023] [Indexed: 08/25/2023] Open
Abstract
During meiosis, at least one crossover must occur per homologous chromosome pair to ensure normal progression of meiotic division and accurate chromosome segregation. However, the mechanism of crossover formation is not fully understood. Here, we report a novel recombination protein, C12ORF40/REDIC1, essential for meiotic crossover formation in mammals. A homozygous frameshift mutation in C12orf40 (c.232_233insTT, p.Met78Ilefs*2) was identified in two infertile men with meiotic arrest. Spread mouse spermatocyte fluorescence immunostaining showed that REDIC1 forms discrete foci between the paired regions of homologous chromosomes depending on strand invasion and colocalizes with MSH4 and later with MLH1 at the crossover sites. Redic1 knock-in (KI) mice homozygous for mutation c.232_233insTT are infertile in both sexes due to insufficient crossovers and consequent meiotic arrest, which is also observed in our patients. The foci of MSH4 and TEX11, markers of recombination intermediates, are significantly reduced numerically in the spermatocytes of Redic1 KI mice. More importantly, our biochemical results show that the N-terminus of REDIC1 binds branched DNAs present in recombination intermediates, while the identified mutation impairs this interaction. Thus, our findings reveal a crucial role for C12ORF40/REDIC1 in meiotic crossover formation by stabilizing the recombination intermediates, providing prospective molecular targets for the clinical diagnosis and therapy of infertility.
Collapse
Affiliation(s)
- Suixing Fan
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuewen Wang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Hanwei Jiang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaohua Jiang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianteng Zhou
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuying Jiao
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingwei Ye
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Zishuo Xu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yue Wang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuefeng Xie
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Huan Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yang Li
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Liu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiangjun Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Hui Ma
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Baolu Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuanwei Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Muhammad Zubair
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Wasim Shah
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhipeng Xu
- Institute of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| | - Bo Xu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China.
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
15
|
Luo SC, Yeh MC, Lien YH, Yeh HY, Siao HL, Tu IP, Chi P, Ho MC. A RAD51-ADP double filament structure unveils the mechanism of filament dynamics in homologous recombination. Nat Commun 2023; 14:4993. [PMID: 37591853 PMCID: PMC10435448 DOI: 10.1038/s41467-023-40672-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 08/04/2023] [Indexed: 08/19/2023] Open
Abstract
ATP-dependent RAD51 recombinases play an essential role in eukaryotic homologous recombination by catalyzing a four-step process: 1) formation of a RAD51 single-filament assembly on ssDNA in the presence of ATP, 2) complementary DNA strand-exchange, 3) ATP hydrolysis transforming the RAD51 filament into an ADP-bound disassembly-competent state, and 4) RAD51 disassembly to provide access for DNA repairing enzymes. Of these steps, filament dynamics between the ATP- and ADP-bound states, and the RAD51 disassembly mechanism, are poorly understood due to the lack of near-atomic-resolution information of the ADP-bound RAD51-DNA filament structure. We report the cryo-EM structure of ADP-bound RAD51-DNA filaments at 3.1 Å resolution, revealing a unique RAD51 double-filament that wraps around ssDNA. Structural analysis, supported by ATP-chase and time-resolved cryo-EM experiments, reveals a collapsing mechanism involving two four-protomer movements along ssDNA for mechanical transition between RAD51 single- and double-filament without RAD51 dissociation. This mechanism enables elastic change of RAD51 filament length during structural transitions between ATP- and ADP-states.
Collapse
Affiliation(s)
- Shih-Chi Luo
- Institute of Biological Chemistry, Academia Sinica, 11529, Taipei, Taiwan
| | - Min-Chi Yeh
- Institute of Biological Chemistry, Academia Sinica, 11529, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, 10617, Taipei, Taiwan
| | - Yu-Hsiang Lien
- Institute of Statistical Science, Academia Sinica, 11529, Taipei, Taiwan
| | - Hsin-Yi Yeh
- Institute of Biochemical Sciences, National Taiwan University, 10617, Taipei, Taiwan
| | - Huei-Lun Siao
- Institute of Statistical Science, Academia Sinica, 11529, Taipei, Taiwan
| | - I-Ping Tu
- Institute of Statistical Science, Academia Sinica, 11529, Taipei, Taiwan
| | - Peter Chi
- Institute of Biological Chemistry, Academia Sinica, 11529, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, 10617, Taipei, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, 11529, Taipei, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, 10617, Taipei, Taiwan.
| |
Collapse
|
16
|
Liu C, Wang L, Li Y, Guo M, Hu J, Wang T, Li M, Yang Z, Lin R, Xu W, Chen Y, Luo M, Gao F, Chen JY, Sun Q, Liu H, Sun B, Li W. RNase H1 facilitates recombinase recruitment by degrading DNA-RNA hybrids during meiosis. Nucleic Acids Res 2023; 51:7357-7375. [PMID: 37378420 PMCID: PMC10415156 DOI: 10.1093/nar/gkad524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
DNA-RNA hybrids play various roles in many physiological progresses, but how this chromatin structure is dynamically regulated during spermatogenesis remains largely unknown. Here, we show that germ cell-specific knockout of Rnaseh1, a specialized enzyme that degrades the RNA within DNA-RNA hybrids, impairs spermatogenesis and causes male infertility. Notably, Rnaseh1 knockout results in incomplete DNA repair and meiotic prophase I arrest. These defects arise from the altered RAD51 and DMC1 recruitment in zygotene spermatocytes. Furthermore, single-molecule experiments show that RNase H1 promotes recombinase recruitment to DNA by degrading RNA within DNA-RNA hybrids and allows nucleoprotein filaments formation. Overall, we uncover a function of RNase H1 in meiotic recombination, during which it processes DNA-RNA hybrids and facilitates recombinase recruitment.
Collapse
Affiliation(s)
- Chao Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing 100101, China
| | - Liying Wang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yanan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mengmeng Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Teng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mengjing Li
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China
| | - Zhuo Yang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruoyao Lin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Wei Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yinghong Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengcheng Luo
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430072, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Longo MA, Roy S, Chen Y, Tomaszowski KH, Arvai AS, Pepper JT, Boisvert RA, Kunnimalaiyaan S, Keshvani C, Schild D, Bacolla A, Williams GJ, Tainer JA, Schlacher K. RAD51C-XRCC3 structure and cancer patient mutations define DNA replication roles. Nat Commun 2023; 14:4445. [PMID: 37488098 PMCID: PMC10366140 DOI: 10.1038/s41467-023-40096-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
RAD51C is an enigmatic predisposition gene for breast, ovarian, and prostate cancer. Currently, missing structural and related functional understanding limits patient mutation interpretation to homology-directed repair (HDR) function analysis. Here we report the RAD51C-XRCC3 (CX3) X-ray co-crystal structure with bound ATP analog and define separable RAD51C replication stability roles informed by its three-dimensional structure, assembly, and unappreciated polymerization motif. Mapping of cancer patient mutations as a functional guide confirms ATP-binding matching RAD51 recombinase, yet highlights distinct CX3 interfaces. Analyses of CRISPR/Cas9-edited human cells with RAD51C mutations combined with single-molecule, single-cell and biophysics measurements uncover discrete CX3 regions for DNA replication fork protection, restart and reversal, accomplished by separable functions in DNA binding and implied 5' RAD51 filament capping. Collective findings establish CX3 as a cancer-relevant replication stress response complex, show how HDR-proficient variants could contribute to tumor development, and identify regions to aid functional testing and classification of cancer mutations.
Collapse
Affiliation(s)
- Michael A Longo
- Department of Molecular & Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Sunetra Roy
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Yue Chen
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Andrew S Arvai
- The Department of Integrative Structural & Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jordan T Pepper
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rebecca A Boisvert
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Caezanne Keshvani
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - David Schild
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Albino Bacolla
- Department of Molecular & Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Gareth J Williams
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - John A Tainer
- Department of Molecular & Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX, USA.
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA.
| | - Katharina Schlacher
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
18
|
Rawal Y, Jia L, Meir A, Zhou S, Kaur H, Ruben EA, Kwon Y, Bernstein KA, Jasin M, Taylor AB, Burma S, Hromas R, Mazin AV, Zhao W, Zhou D, Wasmuth EV, Greene EC, Sung P, Olsen SK. Structural insights into BCDX2 complex function in homologous recombination. Nature 2023; 619:640-649. [PMID: 37344589 PMCID: PMC10712684 DOI: 10.1038/s41586-023-06219-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023]
Abstract
Homologous recombination (HR) fulfils a pivotal role in the repair of DNA double-strand breaks and collapsed replication forks1. HR depends on the products of several paralogues of RAD51, including the tetrameric complex of RAD51B, RAD51C, RAD51D and XRCC2 (BCDX2)2. BCDX2 functions as a mediator of nucleoprotein filament assembly by RAD51 and single-stranded DNA (ssDNA) during HR, but its mechanism remains undefined. Here we report cryogenic electron microscopy reconstructions of human BCDX2 in apo and ssDNA-bound states. The structures reveal how the amino-terminal domains of RAD51B, RAD51C and RAD51D participate in inter-subunit interactions that underpin complex formation and ssDNA-binding specificity. Single-molecule DNA curtain analysis yields insights into how BCDX2 enhances RAD51-ssDNA nucleoprotein filament assembly. Moreover, our cryogenic electron microscopy and functional analyses explain how RAD51C alterations found in patients with cancer3-6 inactivate DNA binding and the HR mediator activity of BCDX2. Our findings shed light on the role of BCDX2 in HR and provide a foundation for understanding how pathogenic alterations in BCDX2 impact genome repair.
Collapse
Affiliation(s)
- Yashpal Rawal
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Lijia Jia
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Aviv Meir
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Shuo Zhou
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hardeep Kaur
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Eliza A Ruben
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Youngho Kwon
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kara A Bernstein
- Department of Biochemistry & Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander B Taylor
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sandeep Burma
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Robert Hromas
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Alexander V Mazin
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Weixing Zhao
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Daohong Zhou
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Elizabeth V Wasmuth
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
| | - Patrick Sung
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Shaun K Olsen
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA.
| |
Collapse
|
19
|
Appleby R, Bollschweiler D, Chirgadze DY, Joudeh L, Pellegrini L. A metal ion-dependent mechanism of RAD51 nucleoprotein filament disassembly. iScience 2023; 26:106689. [PMID: 37216117 PMCID: PMC10192527 DOI: 10.1016/j.isci.2023.106689] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
The RAD51 ATPase polymerizes on single-stranded DNA to form nucleoprotein filaments (NPFs) that are critical intermediates in the reaction of homologous recombination. ATP binding maintains the NPF in a competent conformation for strand pairing and exchange. Once strand exchange is completed, ATP hydrolysis licenses the filament for disassembly. Here we show that the ATP-binding site of the RAD51 NPF contains a second metal ion. In the presence of ATP, the metal ion promotes the local folding of RAD51 into the conformation required for DNA binding. The metal ion is absent in the ADP-bound RAD51 filament, that rearranges in a conformation incompatible with DNA binding. The presence of the second metal ion explains how RAD51 couples the nucleotide state of the filament to DNA binding. We propose that loss of the second metal ion upon ATP hydrolysis drives RAD51 dissociation from the DNA and weakens filament stability, contributing to NPF disassembly.
Collapse
Affiliation(s)
- Robert Appleby
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | | | - Luay Joudeh
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
20
|
Wei Y, Geng W, Zhang T, He H, Zhai J. N-acetylcysteine rescues meiotic arrest during spermatogenesis in mice exposed to BDE-209. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50952-50968. [PMID: 36807852 DOI: 10.1007/s11356-023-25874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/07/2023] [Indexed: 04/16/2023]
Abstract
Deca-bromodiphenyl ethers (BDE-209) has been widely used in electronic devices and textiles as additives to flame retardants. Growing evidence showed that BDE-209 exposure leads to poorer sperm quality and male reproductive dysfunction. However, the underlying mechanisms of BDE-209 exposure caused a decline in sperm quality remains unclear. This study aimed to evaluate the protective effects of N-acetylcysteine (NAC) on meiotic arrest in spermatocytes and decreased sperm quality in BDE-209-exposed mice. In the study, mice were treated with NAC (150 mg/kg BW) 2 h before administrated with BDE-209 (80 mg/kg BW) for 2 weeks. For the in vitro studies, spermatocyte cell line GC-2spd cells were pretreated with NAC (5 mM) 2 h before treated with BDE-209 (50 μM) for 24 h. We found that pretreatment with NAC attenuated the oxidative stress status induced by BDE-209 in vivo and in vitro. Moreover, pretreatment with NAC rescued the testicular histology impairment and decreased the testicular organ coefficient in BDE-209-exposed mice. In addition, NAC supplement partially promoted meiotic prophase and improved sperm quality in BDE-209-exposed mice. Furthermore, NAC pretreatment effectively improved DNA damage repair by recovering DMC1, RAD51, and MLH1. In conclusion, BDE-209 caused spermatogenesis dysfunction related to the meiotic arrest medicated by oxidative stress, decreasing sperm quality.
Collapse
Affiliation(s)
- Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Wenfeng Geng
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
- Department of Health Supervision, Administrative Committee of Hefei Xinzhan High-Tech Industrial Development Zone, Wenzhong Rd 999, Hefei, 230000, China
| | - Taifa Zhang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China.
| |
Collapse
|
21
|
Xu X, Wang C, Xiao Q, Huang X, Zhou Y, Luo X, Zhang Y, Xu X, Qin Q, Liu S. The alternative transcription and expression characterization of Dmc1 in autotetraploid Carassius auratus. Front Genet 2023; 14:1135006. [PMID: 37056290 PMCID: PMC10086133 DOI: 10.3389/fgene.2023.1135006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Established autotetraploids often have a highly stable meiosis with high fertility compared with neo-autotetraploids. The autotetraploid Carassius auratus (4n = 200, RRRR) (4nRR), which stemmed from whole-genome duplication of Carassius auratus red var. (2n = 100, RR) (RCC), produces diploid gametes with an adopted diploid-like chromosome pairing in meiosis and maintains the formation of autotetraploid lineages. In this study, we focused on Dmc1, a meiosis-specific recombinase during the prophase of meiosis I, and elaborated on the genetic variation, alternative transcription, expression characterization, and epigenetic modification of Dmc1 in RCC and 4nRR. Two original Dmc1 from RCC were identified in 4nRR, and two duplicated Dmc1 differences in genetic composition were observed in 4nRR. Furthermore, we only noticed that one original and one duplicated Dmc1 were expressed in RCC and 4nRR, respectively. However, both possessed identical gene expression profiles, differential expression of sexual dimorphism, and hypomethylation levels. These results indicated that the specific expression of duplicated Dmc1 may be involve in the progression of meiosis of the diploid-like chromosome pairing in autotetraploid Carassius auratus. Herein, the findings significantly increase knowledge of meiosis of autopolyploid fish and provide meaningful insights into genetic breeding in polyploidy fish.
Collapse
|
22
|
Wang M, Li F, Wu H, Liu Q, Li S. PredPromoter-MF(2L): A Novel Approach of Promoter Prediction Based on Multi-source Feature Fusion and Deep Forest. Interdiscip Sci 2022; 14:697-711. [PMID: 35488998 DOI: 10.1007/s12539-022-00520-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022]
Abstract
Promoters short DNA sequences play vital roles in initiating gene transcription. However, it remains a challenge to identify promoters using conventional experiment techniques in a high-throughput manner. To this end, several computational predictors based on machine learning models have been developed, while their performance is unsatisfactory. In this study, we proposed a novel two-layer predictor, called PredPromoter-MF(2L), based on multi-source feature fusion and ensemble learning. PredPromoter-MF(2L) was developed based on various deep features learned by a pre-trained deep learning network model and sequence-derived features. Feature selection based on XGBoost was applied to reduce fused features dimensions, and a cascade deep forest model was trained on the selected feature subset for promoter prediction. The results both fivefold cross-validation and independent test demonstrated that PredPromoter-MF(2L) outperformed state-of-the-art methods.
Collapse
Affiliation(s)
- Miao Wang
- College of Information Engineering, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Fuyi Li
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, VIC, 3000, Australia
| | - Hao Wu
- School of Software, Shandong University, Jinan, 250100, Shandong, China
| | - Quanzhong Liu
- College of Information Engineering, Northwest A&F University, Yangling, 712100, Shanxi, China.
| | - Shuqin Li
- College of Information Engineering, Northwest A&F University, Yangling, 712100, Shanxi, China.
| |
Collapse
|
23
|
DMC1 attenuates RAD51-mediated recombination in Arabidopsis. PLoS Genet 2022; 18:e1010322. [PMID: 36007010 PMCID: PMC9451096 DOI: 10.1371/journal.pgen.1010322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/07/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
Ensuring balanced distribution of chromosomes in gametes, meiotic recombination is essential for fertility in most sexually reproducing organisms. The repair of the programmed DNA double strand breaks that initiate meiotic recombination requires two DNA strand-exchange proteins, RAD51 and DMC1, to search for and invade an intact DNA molecule on the homologous chromosome. DMC1 is meiosis-specific, while RAD51 is essential for both mitotic and meiotic homologous recombination. DMC1 is the main catalytically active strand-exchange protein during meiosis, while this activity of RAD51 is downregulated. RAD51 is however an essential cofactor in meiosis, supporting the function of DMC1. This work presents a study of the mechanism(s) involved in this and our results point to DMC1 being, at least, a major actor in the meiotic suppression of the RAD51 strand-exchange activity in plants. Ectopic expression of DMC1 in somatic cells renders plants hypersensitive to DNA damage and specifically impairs RAD51-dependent homologous recombination. DNA damage-induced RAD51 focus formation in somatic cells is not however suppressed by ectopic expression of DMC1. Interestingly, DMC1 also forms damage-induced foci in these cells and we further show that the ability of DMC1 to prevent RAD51-mediated recombination is associated with local assembly of DMC1 at DNA breaks. In support of our hypothesis, expression of a dominant negative DMC1 protein in meiosis impairs RAD51-mediated DSB repair. We propose that DMC1 acts to prevent RAD51-mediated recombination in Arabidopsis and that this down-regulation requires local assembly of DMC1 nucleofilaments. Essential for fertility and responsible for a major part of genetic variation in sexually reproducing species, meiotic recombination establishes the physical linkages between homologous chromosomes which ensure their balanced segregation in the production of gametes. These linkages, or chiasmata, result from DNA strand exchange catalyzed by the RAD51 and DMC1 recombinases and their numbers and distribution are tightly regulated. Essential for maintaining chromosomal integrity in mitotic cells, the strand-exchange activity of RAD51 is downregulated in meiosis, where it plays a supporting role to the activity of DMC1. Notwithstanding considerable attention from the genetics community, precisely why this is done and the mechanisms involved are far from being fully understood. We show here in the plant Arabidopsis that DMC1 can downregulate RAD51 strand-exchange activity and propose that this may be a general mechanism for suppression of RAD51-mediated recombination in meiosis.
Collapse
|