1
|
Nawabi H, Belin S. Translational machinery and translation regulation in axon regeneration. Neural Regen Res 2025; 20:1392-1394. [PMID: 39075899 DOI: 10.4103/nrr.nrr-d-24-00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/21/2024] [Indexed: 07/31/2024] Open
Affiliation(s)
- Homaira Nawabi
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | | |
Collapse
|
2
|
Filipek K, Blanchet S, Molestak E, Zaciura M, Wu CCC, Horbowicz-Drożdżal P, Grela P, Zalewski M, Kmiecik S, González-Ibarra A, Krokowski D, Latoch P, Starosta AL, Mołoń M, Shao Y, Borkiewicz L, Michalec-Wawiórka B, Wawiórka L, Kubiński K, Socała K, Wlaź P, Cunningham KW, Green R, Rodnina MV, Tchórzewski M. Phosphorylation of P-stalk proteins defines the ribosomal state for interaction with auxiliary protein factors. EMBO Rep 2024:10.1038/s44319-024-00297-1. [PMID: 39468350 DOI: 10.1038/s44319-024-00297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Ribosomal action is facilitated by the orchestrated work of trans-acting factors and ribosomal elements, which are subject to regulatory events, often involving phosphorylation. One such element is the ribosomal P-stalk, which plays a dual function: it activates translational GTPases, which support basic ribosomal functions, and interacts with the Gcn2 kinase, linking the ribosomes to the ISR pathway. We show that P-stalk proteins, which form a pentamer, exist in the cell exclusively in a phosphorylated state at five C-terminal domains (CTDs), ensuring optimal translation (speed and accuracy) and may play a role in the timely regulation of the Gcn2-dependent stress response. Phosphorylation of the CTD induces a structural transition from a collapsed to a coil-like structure, and the CTD gains conformational freedom, allowing specific but transient binding to various protein partners, optimizing the ribosome action. The report reveals a unique feature of the P-stalk proteins, indicating that, unlike most ribosomal proteins, which are regulated by phosphorylation in an on/off manner, the P-stalk proteins exist in a constantly phosphorylated state, which optimizes their interaction with auxiliary factors.
Collapse
Affiliation(s)
- Kamil Filipek
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sandra Blanchet
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute for Integrative Biology of the Cell, I2BC, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Eliza Molestak
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Monika Zaciura
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Colin Chih-Chien Wu
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Section of Translational Control of Gene Expression, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Patrycja Horbowicz-Drożdżal
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Przemysław Grela
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Mateusz Zalewski
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Sebastian Kmiecik
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Alan González-Ibarra
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Dawid Krokowski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Przemysław Latoch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agata L Starosta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Mateusz Mołoń
- Institute of Biology, University of Rzeszow, Rzeszow, Poland
| | - Yutian Shao
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Lidia Borkiewicz
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Racławickie 1, 20-059, Lublin, Poland
| | - Barbara Michalec-Wawiórka
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Leszek Wawiórka
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Konrad Kubiński
- Department of Molecular Biology, Institute of Biological Sciences, John Paul II Catholic University of Lublin, Lublin, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Kyle W Cunningham
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Marek Tchórzewski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland.
| |
Collapse
|
3
|
Yang B, Cao L, Ge K, Lv C, Zhao Z, Zheng T, Gao S, Zhang J, Wang T, Jiang J, Qin Y. FeSA‐Ir/Metallene Nanozymes Induce Sequential Ferroptosis‐Pyroptosis for Multi‐Immunogenic Responses Against Lung Metastasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401110. [PMID: 38874051 DOI: 10.1002/smll.202401110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/01/2024] [Indexed: 06/15/2024]
Abstract
For cancer metastasis inhibition, the combining of nanozymes with immune checkpoint blockade (ICB) therapy remains the major challenge in controllable reactive oxygen species (ROS) generation for creating effective immunogenicity. Herein, new nanozymes with light-controlled ROS production in terms of quantity and variety are developed by conjugating supramolecular-wrapped Fe single atom on iridium metallene with lattice-strained nanoislands (FeSA-Ir@PF NSs). The Fenton-like catalysis of FeSA-Ir@PF NSs effectively produced •OH radicals in dark, which induced ferroptosis and apoptosis of cancer cells. While under second near-infrared (NIR-II) light irradiation, FeSA-Ir@PF NSs showed ultrahigh photothermal conversion efficiency (𝜂, 75.29%), cooperative robust •OH generation, photocatalytic O2 and 1O2 generation, and caused significant pyroptosis of cancer cells. The controllable ROS generation, sequential cancer cells ferroptosis and pyroptosis, led 99.1% primary tumor inhibition and multi-immunogenic responses in vivo. Most importantly, the inhibition of cancer lung metastasis is completely achieved by FeSA-Ir@PF NSs with immune checkpoint inhibitors, as demonstrated in different mice lung metastasis models, including circulating tumor cells (CTCs) model. This work provided new inspiration for developing nanozymes for cancer treatments and metastasis inhibition.
Collapse
Affiliation(s)
- Baochan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Lingzhi Cao
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China
| | - Kun Ge
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China
| | - Chaofan Lv
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Zunling Zhao
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Tianyu Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shutao Gao
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Jinchao Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Qin
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
4
|
Ulke J, Chopra S, Kadiri OLJ, Geserick P, Stein V, Cheshmeh S, Kleinridders A, Kappert K. PTPRJ is a negative regulator of insulin signaling in neuronal cells, impacting protein biosynthesis, and neurite outgrowth. J Neuroendocrinol 2024:e13446. [PMID: 39253900 DOI: 10.1111/jne.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/29/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
Central insulin resistance has been linked to the development of neurodegenerative diseases and mood disorders. Various proteins belonging to the enzyme family of protein tyrosine phosphatases (PTPs) act as inhibitors of insulin signaling. Protein tyrosine phosphatase receptor type J (PTPRJ) has been identified as a negative regulator in insulin signaling in the periphery. However, the impact of PTPRJ on insulin signaling and its functional role in neuronal cells is largely unknown. Therefore, we generated a Ptprj knockout (KO) cell model in the murine neuroblast cell line Neuro2a by CRISPR-Cas9 gene editing. Ptprj KO cells displayed enhanced insulin signaling, as shown by increased phosphorylation of the insulin receptor (INSR), IRS-1, AKT, and ERK1/2. Further, proximity ligation assays (PLA) revealed both direct interaction of PTPRJ with the INSR and recruitment of this phosphatase to the receptor upon insulin stimulation. By RNA sequencing gene expression analysis, we identified multiple gene clusters responsible for glucose uptake and metabolism, and genes involved in the synthesis of various lipids being mainly upregulated under PTPRJ deficiency. Furthermore, multiple Ca2+ transporters were differentially expressed along with decreased protein biosynthesis. This was accompanied by an increase in endoplasmic reticulum (ER) stress markers. On a functional level, PTPRJ deficiency compromised cell differentiation and neurite outgrowth, suggesting a role in nervous system development. Taken together, PTPRJ emerges as a negative regulator of central insulin signaling, impacting neuronal metabolism and neurite outgrowth.
Collapse
Affiliation(s)
- Jannis Ulke
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Simran Chopra
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Otsuware Linda-Josephine Kadiri
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Peter Geserick
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Vanessa Stein
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sahar Cheshmeh
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - André Kleinridders
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Kai Kappert
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
5
|
Ramalho S, Dopler A, Faller W. Ribosome specialization in cancer: a spotlight on ribosomal proteins. NAR Cancer 2024; 6:zcae029. [PMID: 38989007 PMCID: PMC11231584 DOI: 10.1093/narcan/zcae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
In the past few decades, our view of ribosomes has changed substantially. Rather than passive machines without significant variability, it is now acknowledged that they are heterogeneous, and have direct regulatory capacity. This 'ribosome heterogeneity' comes in many flavors, including in both the RNA and protein components of ribosomes, so there are many paths through which ribosome specialization could arise. It is easy to imagine that specialized ribosomes could have wide physiological roles, through the translation of specific mRNA populations, and there is now evidence for this in several contexts. Translation is highly dysregulated in cancer, needed to support oncogenic phenotypes and to overcome cellular stress. However, the role of ribosome specialization in this is not clear. In this review we focus on specialized ribosomes in cancer. Specifically, we assess the impact that post-translational modifications and differential ribosome incorporation of ribosomal proteins (RPs) have in this disease. We focus on studies that have shown a ribosome-mediated change in translation of specific mRNA populations, and hypothesize how such a process could be driving other phenotypes. We review the impact of RP-mediated heterogeneity in both intrinsic and extrinsic oncogenic processes, and consider how this knowledge could be leveraged to benefit patients.
Collapse
Affiliation(s)
- Sofia Ramalho
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Anna Dopler
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - William James Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
6
|
Ribeiro FC, Cozachenco D, Argyrousi EK, Staniszewski A, Wiebe S, Calixtro JD, Soares‐Neto R, Al‐Chami A, Sayegh FE, Bermudez S, Arsenault E, Cossenza M, Lacaille J, Nader K, Sun H, De Felice FG, Lourenco MV, Arancio O, Aguilar‐Valles A, Sonenberg N, Ferreira ST. The ketamine metabolite (2R,6R)-hydroxynorketamine rescues hippocampal mRNA translation, synaptic plasticity and memory in mouse models of Alzheimer's disease. Alzheimers Dement 2024; 20:5398-5410. [PMID: 38934107 PMCID: PMC11350050 DOI: 10.1002/alz.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION Impaired brain protein synthesis, synaptic plasticity, and memory are major hallmarks of Alzheimer's disease (AD). The ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) has been shown to modulate protein synthesis, but its effects on memory in AD models remain elusive. METHODS We investigated the effects of HNK on hippocampal protein synthesis, long-term potentiation (LTP), and memory in AD mouse models. RESULTS HNK activated extracellular signal-regulated kinase 1/2 (ERK1/2), mechanistic target of rapamycin (mTOR), and p70S6 kinase 1 (S6K1)/ribosomal protein S6 signaling pathways. Treatment with HNK rescued hippocampal LTP and memory deficits in amyloid-β oligomers (AβO)-infused mice in an ERK1/2-dependent manner. Treatment with HNK further corrected aberrant transcription, LTP and memory in aged APP/PS1 mice. DISCUSSION Our findings demonstrate that HNK induces signaling and transcriptional responses that correct synaptic and memory deficits in AD mice. These results raise the prospect that HNK could serve as a therapeutic approach in AD. HIGHLIGHTS The ketamine metabolite HNK activates hippocampal ERK/mTOR/S6 signaling pathways. HNK corrects hippocampal synaptic and memory defects in two mouse models of AD. Rescue of synaptic and memory impairments by HNK depends on ERK signaling. HNK corrects aberrant transcriptional signatures in APP/PS1 mice.
Collapse
Affiliation(s)
- Felipe C. Ribeiro
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroRio de JaneiroBrazil
| | - Danielle Cozachenco
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroRio de JaneiroBrazil
| | - Elentina K. Argyrousi
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
| | - Agnieszka Staniszewski
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
| | - Shane Wiebe
- Department of BiochemistryMcGill UniversityMontrealQuebecCanada
| | - Joao D. Calixtro
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroRio de JaneiroBrazil
| | - Rubens Soares‐Neto
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroRio de JaneiroBrazil
| | - Aycheh Al‐Chami
- Department of NeuroscienceCarleton UniversityOttawaOntarioCanada
| | - Fatema El Sayegh
- Department of NeuroscienceCarleton UniversityOttawaOntarioCanada
| | - Sara Bermudez
- Department of BiochemistryMcGill UniversityMontrealQuebecCanada
| | - Emily Arsenault
- Department of NeuroscienceCarleton UniversityOttawaOntarioCanada
| | - Marcelo Cossenza
- Department of Physiology and Pharmacology, Fluminense Federal UniversityBiomedical InstituteNiteróiRio de JaneiroBrazil
| | - Jean‐Claude Lacaille
- Department of Neurosciences, Université de MontréalCentre for Interdisciplinary Research on Brain and Learning and Research Group on Neural Signaling and CircuitsMontrealQuebecCanada
| | - Karim Nader
- Department of PsychologyMcGill UniversityMontrealQuebecCanada
| | - Hongyu Sun
- Department of NeuroscienceCarleton UniversityOttawaOntarioCanada
| | - Fernanda G. De Felice
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroRio de JaneiroBrazil
- Department of Biomedical and Molecular Sciences, Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Department of PsychiatryQueen's UniversityKingstonOntarioCanada
- D'Or Institute for Research and EducationRio de JaneiroRio de JaneiroBrazil
| | - Mychael V. Lourenco
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroRio de JaneiroBrazil
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
| | | | - Nahum Sonenberg
- Department of BiochemistryMcGill UniversityMontrealQuebecCanada
| | - Sergio T. Ferreira
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroRio de JaneiroBrazil
- D'Or Institute for Research and EducationRio de JaneiroRio de JaneiroBrazil
- Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRio de JaneiroBrazil
| |
Collapse
|
7
|
Lo Conte M, Lucchino V, Scalise S, Zannino C, Valente D, Rossignoli G, Murfuni MS, Cicconetti C, Scaramuzzino L, Matassa DS, Procopio A, Martello G, Cuda G, Parrotta EI. Unraveling the impact of ZZZ3 on the mTOR/ribosome pathway in human embryonic stem cells homeostasis. Stem Cell Reports 2024; 19:729-743. [PMID: 38701777 PMCID: PMC11103890 DOI: 10.1016/j.stemcr.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Embryonic stem cells (ESCs) are defined as stem cells with self-renewing and differentiation capabilities. These unique properties are tightly regulated and controlled by complex genetic and molecular mechanisms, whose understanding is essential for both basic and translational research. A large number of studies have mostly focused on understanding the molecular mechanisms governing pluripotency and differentiation of ESCs, while the regulation of proliferation has received comparably less attention. Here, we investigate the role of ZZZ3 (zinc finger ZZ-type containing 3) in human ESCs homeostasis. We found that knockdown of ZZZ3 negatively impacts ribosome biogenesis, translation, and mTOR signaling, leading to a significant reduction in cell proliferation. This process occurs without affecting pluripotency, suggesting that ZZZ3-depleted ESCs enter a "dormant-like" state and that proliferation and pluripotency can be uncoupled also in human ESCs.
Collapse
Affiliation(s)
- Michela Lo Conte
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Valeria Lucchino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Stefania Scalise
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Clara Zannino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Desirèe Valente
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Giada Rossignoli
- Department of Biology (DiBio), University of Padua, Padua, Italy
| | - Maria Stella Murfuni
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Chiara Cicconetti
- Department of Life Sciences and Systems Biology, University of Turin, Via Nizza 52, 10126 Torino, Italy; Italian Institute for Genomic Medicine (IIGM), 10060 Candiolo Torino, Italy
| | - Luana Scaramuzzino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Danilo Swann Matassa
- Department of Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Procopio
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | | | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy.
| | | |
Collapse
|
8
|
Molinaro G, Bowles JE, Croom K, Gonzalez D, Mirjafary S, Birnbaum SG, Razak KA, Gibson JR, Huber KM. Female-specific dysfunction of sensory neocortical circuits in a mouse model of autism mediated by mGluR5 and estrogen receptor α. Cell Rep 2024; 43:114056. [PMID: 38581678 PMCID: PMC11112681 DOI: 10.1016/j.celrep.2024.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/26/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024] Open
Abstract
Little is known of the brain mechanisms that mediate sex-specific autism symptoms. Here, we demonstrate that deletion of the autism spectrum disorder (ASD)-risk gene, Pten, in neocortical pyramidal neurons (NSEPten knockout [KO]) results in robust cortical circuit hyperexcitability selectively in female mice observed as prolonged spontaneous persistent activity states. Circuit hyperexcitability in females is mediated by metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) signaling to mitogen-activated protein kinases (Erk1/2) and de novo protein synthesis. Pten KO layer 5 neurons have a female-specific increase in mGluR5 and mGluR5-dependent protein synthesis. Furthermore, mGluR5-ERα complexes are generally elevated in female cortices, and genetic reduction of ERα rescues enhanced circuit excitability, protein synthesis, and neuron size selectively in NSEPten KO females. Female NSEPten KO mice display deficits in sensory processing and social behaviors as well as mGluR5-dependent seizures. These results reveal mechanisms by which sex and a high-confidence ASD-risk gene interact to affect brain function and behavior.
Collapse
Affiliation(s)
- Gemma Molinaro
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jacob E Bowles
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Katilynne Croom
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, USA
| | - Darya Gonzalez
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Saba Mirjafary
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Shari G Birnbaum
- Department of Psychiatry, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Khaleel A Razak
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, USA; Department of Psychology, University of California, Riverside, Riverside, CA, USA
| | - Jay R Gibson
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kimberly M Huber
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
9
|
Hochstoeger T, Chao JA. Towards a molecular understanding of the 5'TOP motif in regulating translation of ribosomal mRNAs. Semin Cell Dev Biol 2024; 154:99-104. [PMID: 37316417 DOI: 10.1016/j.semcdb.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 04/14/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Vertebrate cells have evolved a simple, yet elegant, mechanism for coordinated regulation of ribosome biogenesis mediated by the 5' terminal oligopyrimidine motif (5'TOP). This motif allows cells to rapidly adapt to changes in the environment by specifically modulating translation rate of mRNAs encoding the translation machinery. Here, we provide an overview of the origin of this motif, its characterization, and progress in identifying the key regulatory factors involved. We highlight challenges in the field of 5'TOP research, and discuss future approaches that we think will be able to resolve outstanding questions.
Collapse
Affiliation(s)
- Tobias Hochstoeger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
10
|
Molinaro G, Bowles JE, Croom K, Gonzalez D, Mirjafary S, Birnbaum S, Razak KA, Gibson JR, Huber KM. Female specific dysfunction of sensory neocortical circuits in a mouse model of autism mediated by mGluR5 and Estrogen Receptor α. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.10.552857. [PMID: 37609208 PMCID: PMC10441407 DOI: 10.1101/2023.08.10.552857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Autism manifests differently in males and females and the brain mechanisms that mediate these sex-dependent differences are unknown. Here, we demonstrate that deletion of the ASD-risk gene, Pten, in neocortical pyramidal neurons (NSE Pten KO) results in robust hyperexcitability of local neocortical circuits in female, but not male, mice, observed as prolonged, spontaneous persistent activity states (UP states). Circuit hyperexcitability in NSE Pten KO mice is mediated by enhanced and/or altered signaling of metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) to ERK and protein synthesis selectively in Pten deleted female neurons. In support of this idea, Pten deleted Layer 5 cortical neurons have female-specific increases in mGluR5 and mGluR5-driven protein synthesis. In addition, mGluR5-ERα complexes are elevated in female cortex and genetic reduction of ERα in Pten KO cortical neurons rescues circuit excitability, protein synthesis and enlarged neurons selectively in females. Abnormal timing and hyperexcitability of neocortical circuits in female NSE Pten KO mice are associated with deficits in temporal processing of sensory stimuli and social behaviors as well as mGluR5-dependent seizures. Female-specific cortical hyperexcitability and mGluR5-dependent seizures are also observed in a human disease relevant mouse model, germline Pten +/- mice. Our results reveal molecular mechanisms by which sex and a high impact ASD-risk gene interact to affect brain function and behavior.
Collapse
|
11
|
Williams TD, Rousseau A. Translation regulation in response to stress. FEBS J 2024. [PMID: 38308808 DOI: 10.1111/febs.17076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Cell stresses occur in a wide variety of settings: in disease, during industrial processes, and as part of normal day-to-day rhythms. Adaptation to these stresses requires cells to alter their proteome. Cells modify the proteins they synthesize to aid proteome adaptation. Changes in both mRNA transcription and translation contribute to altered protein synthesis. Here, we discuss the changes in translational mechanisms that occur following the onset of stress, and the impact these have on stress adaptation.
Collapse
Affiliation(s)
- Thomas D Williams
- MRC-PPU, School of Life Sciences, University of Dundee, UK
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | |
Collapse
|
12
|
Dasgupta A, Urquidi Camacho RA, Enganti R, Cho SK, Tucker LL, Torreverde JS, Abraham PE, von Arnim AG. A phosphorylation-deficient ribosomal protein eS6 is largely functional in Arabidopsis thaliana, rescuing mutant defects from global translation and gene expression to photosynthesis and growth. PLANT DIRECT 2024; 8:e566. [PMID: 38250458 PMCID: PMC10799217 DOI: 10.1002/pld3.566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/04/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
The eukaryote-specific ribosomal protein of the small subunit eS6 is phosphorylated through the target of rapamycin (TOR) kinase pathway. Although this phosphorylation event responds dynamically to environmental conditions and has been studied for over 50 years, its biochemical and physiological significance remains controversial and poorly understood. Here, we report data from Arabidopsis thaliana, which indicate that plants expressing only a phospho-deficient isoform of eS6 grow essentially normally under laboratory conditions. The eS6z (RPS6A) paralog of eS6 functionally rescued a double mutant in both rps6a and rps6b genes when expressed at approximately twice the wild-type dosage. A mutant isoform of eS6z lacking the major six phosphorylatable serine and threonine residues in its carboxyl-terminal tail also rescued the lethality, rosette growth, and polyribosome loading of the double mutant. This isoform also complemented many mutant phenotypes of rps6 that were newly characterized here, including photosynthetic efficiency, and most of the gene expression defects that were measured by transcriptomics and proteomics. However, compared with plants rescued with a phospho-enabled version of eS6z, the phospho-deficient seedlings retained a mild pointed-leaf phenotype, root growth was reduced, and certain cell cycle-related mRNAs and ribosome biogenesis proteins were misexpressed. The residual defects of the phospho-deficient seedlings could be understood as an incomplete rescue of the rps6 mutant defects. There was little or no evidence for gain-of-function defects. As previously published, the phospho-deficient eS6z also rescued the rps6a and rps6b single mutants; however, phosphorylation of the eS6y (RPS6B) paralog remained lower than predicted, further underscoring that plants can tolerate phospho-deficiency of eS6 well. Our data also yield new insights into how plants cope with mutations in essential, duplicated ribosomal protein isoforms.
Collapse
Affiliation(s)
- Anwesha Dasgupta
- Department of Biochemistry & Cellular and Molecular BiologyThe University of TennesseeKnoxvilleTennesseeUSA
| | | | - Ramya Enganti
- Department of Biochemistry & Cellular and Molecular BiologyThe University of TennesseeKnoxvilleTennesseeUSA
| | - Sung Ki Cho
- Department of Biochemistry & Cellular and Molecular BiologyThe University of TennesseeKnoxvilleTennesseeUSA
| | - Lindsey L. Tucker
- Department of Biochemistry & Cellular and Molecular BiologyThe University of TennesseeKnoxvilleTennesseeUSA
| | - John S. Torreverde
- Department of Biochemistry & Cellular and Molecular BiologyThe University of TennesseeKnoxvilleTennesseeUSA
| | - Paul E. Abraham
- Graduate School of Genome Science and TechnologyThe University of TennesseeKnoxvilleTennesseeUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Albrecht G. von Arnim
- Department of Biochemistry & Cellular and Molecular BiologyThe University of TennesseeKnoxvilleTennesseeUSA
- Graduate School of Genome Science and TechnologyThe University of TennesseeKnoxvilleTennesseeUSA
| |
Collapse
|
13
|
Concina G, Gurgone A, Boggio EM, Raspanti A, Pizzo R, Morello N, Castroflorio E, Pizzorusso T, Sacchetti B, Giustetto M. Stabilizing Immature Dendritic Spines in the Auditory Cortex: A Key Mechanism for mTORC1-Mediated Enhancement of Long-Term Fear Memories. J Neurosci 2023; 43:8744-8755. [PMID: 37857485 PMCID: PMC10727119 DOI: 10.1523/jneurosci.0204-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 10/21/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) pathway has emerged as a key molecular mechanism underlying memory processes. Although mTOR inhibition is known to block memory processes, it remains elusive whether and how an enhancement of mTOR signaling may improve memory processes. Here we found in male mice that the administration of VO-OHpic, an inhibitor of the phosphatase and tensin homolog (PTEN) that negatively modulates AKT-mTOR pathway, enhanced auditory fear memory for days and weeks, while it left short-term memory unchanged. Memory enhancement was associated with a long-lasting increase in immature-type dendritic spines of pyramidal neurons into the auditory cortex. The persistence of spine remodeling over time arose by the interplay between PTEN inhibition and memory processes, as VO-OHpic induced only a transient immature spine growth in the somatosensory cortex, a region not involved in long-term auditory memory. Both the potentiation of fear memories and increase in immature spines were hampered by rapamycin, a selective inhibitor of mTORC1. These data revealed that memory can be potentiated over time by the administration of a selective PTEN inhibitor. In addition to disclosing new information on the cellular mechanisms underlying long-term memory maintenance, our study provides new insights on the molecular processes that aid enhancing memories over time.SIGNIFICANCE STATEMENT The neuronal mechanisms that may help improve the maintenance of long-term memories are still elusive. The inhibition of mammalian-target of rapamycin (mTOR) signaling shows that this pathway plays a crucial role in synaptic plasticity and memory formation. However, whether its activation may strengthen long-term memory storage is unclear. We assessed the consequences of positive modulation of AKT-mTOR pathway obtained by VO-OHpic administration, a phosphatase and tensin homolog inhibitor, on memory retention and underlying synaptic modifications. We found that mTOR activation greatly enhanced memory maintenance for weeks by producing a long-lasting increase of immature-type dendritic spines in pyramidal neurons of the auditory cortex. These results offer new insights on the cellular and molecular mechanisms that can aid enhancing memories over time.
Collapse
Affiliation(s)
- Giulia Concina
- Department of Neuroscience, University of Turin, Turin, 10125, Italy
| | - Antonia Gurgone
- Department of Neuroscience, University of Turin, Turin, 10125, Italy
| | - Elena M Boggio
- Institute of Neuroscience, National Research Council, Pisa, 56124, Italy
| | | | - Riccardo Pizzo
- Department of Neuroscience, University of Turin, Turin, 10125, Italy
| | - Noemi Morello
- Department of Neuroscience, University of Turin, Turin, 10125, Italy
| | | | - Tommaso Pizzorusso
- Institute of Neuroscience, National Research Council, Pisa, 56124, Italy
- Scuola Normale Superiore, Biology Laboratory BIO@SNS, Pisa, 56124, Italy
| | | | | |
Collapse
|
14
|
Hu CT, Pei SJ, Wang JL, Zu LD, Shen WW, Yuan L, Gao F, Jiang LR, Yau SST, Fu GH. Quantitative proteomics profiling reveals the inhibition of trastuzumab antitumor efficacy by phosphorylated RPS6 in gastric carcinoma. Cancer Chemother Pharmacol 2023; 92:341-355. [PMID: 37507485 DOI: 10.1007/s00280-023-04571-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND The anti-HER2 antibody trastuzumab is a standard treatment for gastric carcinoma with HER2 overexpression, but not all patients benefit from treatment with HER2-targeted therapies due to intrinsic and acquired resistance. Thus, more precise predictors for selecting patients to receive trastuzumab therapy are urgently needed. METHODS We applied mass spectrometry-based proteomic analysis to 38 HER2-positive gastric tumor biopsies from 19 patients pretreated with trastuzumab (responders n = 10; nonresponders, n = 9) to identify factors that may influence innate sensitivity or resistance to trastuzumab therapy and validated the results in tumor cells and patient samples. RESULTS Statistical analyses revealed significantly lower phosphorylated ribosomal S6 (p-RPS6) levels in responders than nonresponders, and this downregulation was associated with a durable response and better overall survival after anti-HER2 therapy. High p-RPS6 levels could trigger AKT/mTOR/RPS6 signaling and inhibit trastuzumab antitumor efficacy in nonresponders. We demonstrated that RPS6 phosphorylation inhibitors in combination with trastuzumab effectively suppressed HER2-positive GC cell survival through the inhibition of the AKT/mTOR/RPS6 axis. CONCLUSIONS Our findings provide for the first time a detailed proteomics profile of current protein alterations in patients before anti-HER2 therapy and present a novel and optimal predictor for the response to trastuzumab treatment. HER2-positive GC patients with low expression of p-RPS6 are more likely to benefit from trastuzumab therapy than those with high expression. However, those with high expression of p-RPS6 may benefit from trastuzumab in combination with RPS6 phosphorylation inhibitors.
Collapse
Affiliation(s)
- Chun-Ting Hu
- Department of Pathology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shao-Jun Pei
- School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jing-Long Wang
- Department of Pathology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Dong Zu
- Department of Pathology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Wei Shen
- Department of Pathology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Yuan
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Gao
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Ren Jiang
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Stephen S-T Yau
- Yanqi Lake Beijing Institute of Mathematical Sciences and Applications (BIMSA), Huairou District, Beijing, 101400, People's Republic of China.
- Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Guo-Hui Fu
- Department of Pathology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Lu Y, Wang S, Jiao Y. The Effects of Deregulated Ribosomal Biogenesis in Cancer. Biomolecules 2023; 13:1593. [PMID: 38002277 PMCID: PMC10669593 DOI: 10.3390/biom13111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Ribosomes are macromolecular ribonucleoprotein complexes assembled from RNA and proteins. Functional ribosomes arise from the nucleolus, require ribosomal RNA processing and the coordinated assembly of ribosomal proteins (RPs), and are frequently hyperactivated to support the requirement for protein synthesis during the self-biosynthetic and metabolic activities of cancer cells. Studies have provided relevant information on targeted anticancer molecules involved in ribosome biogenesis (RiBi), as increased RiBi is characteristic of many types of cancer. The association between unlimited cell proliferation and alterations in specific steps of RiBi has been highlighted as a possible critical driver of tumorigenesis and metastasis. Thus, alterations in numerous regulators and actors involved in RiBi, particularly in cancer, significantly affect the rate and quality of protein synthesis and, ultimately, the transcriptome to generate the associated proteome. Alterations in RiBi in cancer cells activate nucleolar stress response-related pathways that play important roles in cancer-targeted interventions and immunotherapies. In this review, we focus on the association between alterations in RiBi and cancer. Emphasis is placed on RiBi deregulation and its secondary consequences, including changes in protein synthesis, loss of RPs, adaptive transcription and translation, nucleolar stress regulation, metabolic changes, and the impaired ribosome biogenesis checkpoint.
Collapse
Affiliation(s)
| | - Shizhuo Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110055, China;
| | - Yisheng Jiao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110055, China;
| |
Collapse
|
16
|
Rahaman S, Faravelli S, Voegeli S, Becskei A. Polysome propensity and tunable thresholds in coding sequence length enable differential mRNA stability. SCIENCE ADVANCES 2023; 9:eadh9545. [PMID: 37756413 PMCID: PMC10530222 DOI: 10.1126/sciadv.adh9545] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
The half-life of mRNAs, as well as their translation, increases in proportion to the optimal codons, indicating a tight coupling of codon-dependent differential translation and degradation. Little is known about the regulation of this coupling. We found that the mRNA stability gain in yeast depends on the mRNA coding sequence length. Below a critical length, codon optimality fails to affect the stability of mRNAs although they can be efficiently translated into short peptides and proteins. Above this threshold length, codon optimality-dependent differential mRNA stability emerges in a switch-like fashion, which coincides with a similar increase in the polysome propensity of the mRNAs. This threshold length can be tuned by the untranslated regions (UTR). Some of these UTRs can destabilize mRNAs without reducing translation, which plays a role in controlling the amplitude of the oscillatory expression of cell cycle genes. Our findings help understand the translation of short peptides from noncoding RNAs and the translation by localized monosomes in neurons.
Collapse
Affiliation(s)
- Sayanur Rahaman
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | | | | | | |
Collapse
|
17
|
Smith JAB, Murach KA, Dyar KA, Zierath JR. Exercise metabolism and adaptation in skeletal muscle. Nat Rev Mol Cell Biol 2023; 24:607-632. [PMID: 37225892 PMCID: PMC10527431 DOI: 10.1038/s41580-023-00606-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/26/2023]
Abstract
Viewing metabolism through the lens of exercise biology has proven an accessible and practical strategy to gain new insights into local and systemic metabolic regulation. Recent methodological developments have advanced understanding of the central role of skeletal muscle in many exercise-associated health benefits and have uncovered the molecular underpinnings driving adaptive responses to training regimens. In this Review, we provide a contemporary view of the metabolic flexibility and functional plasticity of skeletal muscle in response to exercise. First, we provide background on the macrostructure and ultrastructure of skeletal muscle fibres, highlighting the current understanding of sarcomeric networks and mitochondrial subpopulations. Next, we discuss acute exercise skeletal muscle metabolism and the signalling, transcriptional and epigenetic regulation of adaptations to exercise training. We address knowledge gaps throughout and propose future directions for the field. This Review contextualizes recent research of skeletal muscle exercise metabolism, framing further advances and translation into practice.
Collapse
Affiliation(s)
- Jonathon A B Smith
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kevin A Murach
- Molecular Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kenneth A Dyar
- Metabolic Physiology, Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Camacho V. Translate or differentiate? Molecular mechanisms of ETV6-related thrombocytopenia. J Thromb Haemost 2023; 21:2367-2369. [PMID: 37597896 DOI: 10.1016/j.jtha.2023.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 08/21/2023]
Affiliation(s)
- Virginia Camacho
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
19
|
Aboragah AA, Alharthi AS, Wichasit N, Loor JJ. Body condition prepartum and its association with term placentome nutrient transporters, one‑carbon metabolism pathway activity, and intermediate metabolites in Holstein cows. Res Vet Sci 2023; 162:104956. [PMID: 37516040 DOI: 10.1016/j.rvsc.2023.104956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023]
Abstract
We investigated linkages among BCS prior to calving and placentome concentrations of metabolites, proteins in one‑carbon metabolism (OCM) and protein synthesis, and nutrient transport. Multiparous Holstein cows retrospectively divided by prepartal BCS at -4 weeks relative to parturition into high BCS (HBCS = 3.58 ± 0.23; n = 9) or normal BCS (NBCS = 3.02 ± 0.17; n = 13) were used. BCS was assessed using a 5-point scale (1 = thin, 5 = fat). Four placentomes per cow were collected at delivery and frozen in liquid N. Western blotting was used for protein abundance. Cystathionine-β-synthase (CBS) and betaine-homocysteine-S-methyltransferase (BHMT) activity were measured via 14C assays. Amino acids (AA) and metabolites in OCM were measured by liquid chromatography mass spectrometry (LC-MS). Compared with NBCS cows, the cellular stress sensor p-eIF2α was more than 2-fold greater (P = 0.04) in HBCS. Abundance of the AA-catabolism enzyme branched-chain α-ketoacid dehydrogenase complex was lower (P = 0.05) in HBCS cows. Although BHMT activity did not differ, greater concentration of betaine (P = 0.01) and lower (P = 0.05) concentration of dimethylglycine in HBCS cows suggested reduced flux through the methionine cycle. Despite a lack of difference in CBS activity, lower concentrations of cystathionine (P = 0.03) and hypotaurine (P = 0.04) along with lower cysteine and the tendency for lower total GSH (P = 0.10) in HBCS cows suggested a decrease in transsulfuration. Overall, associations between OCM in placentomes and BCS at calving exist. Identifying mechanisms responsible for these effects merits further research.
Collapse
Affiliation(s)
- Ahmad A Aboragah
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA; Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrahman S Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nithat Wichasit
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA; Department of Agricultural Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA; Division of Nutritional Sciences, University of Illinois, Urbana 61801, USA.
| |
Collapse
|
20
|
Smolen KA, Papke CM, Swingle MR, Musiyenko A, Li C, Salter EA, Camp AD, Honkanen RE, Kettenbach AN. Quantitative proteomics and phosphoproteomics of PP2A-PPP2R5D variants reveal deregulation of RPS6 phosphorylation via converging signaling cascades. J Biol Chem 2023; 299:105154. [PMID: 37572851 PMCID: PMC10485637 DOI: 10.1016/j.jbc.2023.105154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023] Open
Abstract
Genetic germline variants of PPP2R5D (encoding: phosphoprotein phosphatase 2 regulatory protein 5D) result in PPP2R5D-related disorder (Jordan's Syndrome), which is characterized by intellectual disability, hypotonia, seizures, macrocephaly, autism spectrum disorder, and delayed motor skill development. The disorder originates from de novo single nucleotide mutations, generating missense variants that act in a dominant manner. Pathogenic mutations altering 13 different amino acids have been identified, with the E198K variant accounting for ∼40% of reported cases. However, the generation of a heterozygous E198K variant cell line to study the molecular effects of the pathogenic mutation has been challenging. Here, we use CRISPR-PRIME genomic editing to introduce a transition (c.592G>A) in a single PPP2R5D allele in HEK293 cells, generating E198K-heterozygous lines to complement existing E420K variant lines. We generate global protein and phosphorylation profiles of WT, E198K, and E420K cell lines and find unique and shared changes between variants and WT cells in kinase- and phosphatase-controlled signaling cascades. We observed ribosomal protein S6 (RPS6) hyperphosphorylation as a shared signaling alteration, indicative of increased ribosomal protein S6-kinase activity. Treatment with rapamycin or an RPS6-kinase inhibitor (LY2584702) suppressed RPS6 phosphorylation in both, suggesting upstream activation of mTORC1/p70S6K. Intriguingly, our data suggests ERK-dependent activation of mTORC1 in both E198K and E420K variant cells, with additional AKT-mediated mTORC1 activation in the E420K variant. Thus, although upstream activation of mTORC1 differs between PPP2R5D-related disorder genotypes, inhibition of mTORC1 or RPS6 kinases warrants further investigation as potential therapeutic strategies for patients.
Collapse
Affiliation(s)
- Kali A Smolen
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Cinta M Papke
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Mark R Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Alla Musiyenko
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Chenchen Li
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - E Alan Salter
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Ashley D Camp
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Richard E Honkanen
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA.
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA.
| |
Collapse
|
21
|
Meyer FEU, Santos GL, Doan TP, DeGrave AN, Bues B, Lutz S. Pirfenidone affects human cardiac fibroblast proliferation and cell cycle activity in 2D cultures and engineered connective tissues. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1687-1699. [PMID: 36800014 PMCID: PMC10338590 DOI: 10.1007/s00210-023-02421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023]
Abstract
The anti-fibrotic drug pirfenidone (PFD) is currently in clinical testing for the treatment of heart failure with preserved ejection fraction; however, its effects on human cardiac cells have not been fully investigated. Therefore, we aimed to characterize the impact of PFD on human cardiac fibroblasts (CF) in 2D culture as well as in 3D-engineered connective tissues (ECT). We analyzed proliferation by automated cell counting and changes in signaling by immunoblotting. We generated ECT with different geometries to modify the cellular phenotype and investigated the effects of PFD on cell number and viability as well as on cell cycle activity. We further studied its effect on ECT compaction, contraction, stiffening, and strain resistance by ECT imaging, pole deflection analysis, and ultimate tensile testing. Our data demonstrate that PFD inhibits human CF proliferation in a concentration-dependent manner with an IC50 of 0.43 mg/ml and its anti-mitogenic effect was further corroborated by an inhibition of MEK1/2, ERK1/2, and riboprotein S6 (rpS6) phosphorylation. In ECT, a lower cell cycle activity was found in PFD-treated ECT and fewer cells resided in these ECT after 5 days of culture compared to the control. Moreover, ECT compaction as well as ECT contraction was impaired. Consequently, biomechanical analyses demonstrated that PFD reduced the stiffness of ECT. Taken together, our data demonstrate that the anti-fibrotic action of PFD on human CF is based on its anti-mitogenic effect in 2D cultures and ECT.
Collapse
Affiliation(s)
| | - Gabriela Leao Santos
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
- Randall Centre for Cell and Molecular Biophysics, Kings College London, London, UK
- DZHK (German Centre for Cardiovascular Research) Partner Site, Goettingen, Germany
| | - Thao Phuong Doan
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
| | - Alisa Nicole DeGrave
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
- DZHK (German Centre for Cardiovascular Research) Partner Site, Goettingen, Germany
| | - Bastian Bues
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
| | - Susanne Lutz
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany.
- DZHK (German Centre for Cardiovascular Research) Partner Site, Goettingen, Germany.
| |
Collapse
|
22
|
Liu J, Lin J, Chen J, Maimaitiyiming Y, Su K, Sun S, Zhan G, Hsu CH. Bisphenol C induces developmental defects in liver and intestine through mTOR signaling in zebrafish (Danio rerio). CHEMOSPHERE 2023; 322:138195. [PMID: 36822516 DOI: 10.1016/j.chemosphere.2023.138195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA) was widely used in the plastic products and banned in infant food containers in many countries due to the environmental and biological toxicity. As a common substitute of BPA to manufacture products, Bisphenol C (BPC) is frequently detected in human samples like infants and toddlers' urine, indicating infants and young children are at risk of BPC exposure. However, the understanding of effects of BPC exposure on early development is limited. Herein, we evaluated the early developmental toxicity of BPC and studied the underlying mechanism in a zebrafish model. We found BPC exposure leading to liver and intestinal developmental defects in zebrafish, which occurred via disruption of GPER-AKT-mTOR-RPS6 pathway. Specifically, BPC downregulated phosphorylated and total levels of mTOR, which synergistically reduced the phosphorylation of RPS6, suppressing the translation of genes essential for cell proliferation in liver and intestine such as yap1 and tcf4. Collectively, our results not only observed clear toxicity of BPC during liver and intestinal development but also demonstrated the underlying mechanism of BPC-mediated defects via disrupting the GPER-AKT-mTOR-RPS6 pathway.
Collapse
Affiliation(s)
- Jinfeng Liu
- Women's Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Jiebo Lin
- Women's Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Jiafeng Chen
- Women's Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Yasen Maimaitiyiming
- Women's Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China; Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Kunhui Su
- Women's Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Siqi Sun
- Women's Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Guankai Zhan
- Women's Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Chih-Hung Hsu
- Women's Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
23
|
Decourt C, Schaeffer J, Blot B, Paccard A, Excoffier B, Pende M, Nawabi H, Belin S. The RSK2-RPS6 axis promotes axonal regeneration in the peripheral and central nervous systems. PLoS Biol 2023; 21:e3002044. [PMID: 37068088 PMCID: PMC10109519 DOI: 10.1371/journal.pbio.3002044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/21/2023] [Indexed: 04/18/2023] Open
Abstract
Unlike immature neurons and the ones from the peripheral nervous system (PNS), mature neurons from the central nervous system (CNS) cannot regenerate after injury. In the past 15 years, tremendous progress has been made to identify molecules and pathways necessary for neuroprotection and/or axon regeneration after CNS injury. In most regenerative models, phosphorylated ribosomal protein S6 (p-RPS6) is up-regulated in neurons, which is often associated with an activation of the mTOR (mammalian target of rapamycin) pathway. However, the exact contribution of posttranslational modifications of this ribosomal protein in CNS regeneration remains elusive. In this study, we demonstrate that RPS6 phosphorylation is essential for PNS and CNS regeneration in mice. We show that this phosphorylation is induced during the preconditioning effect in dorsal root ganglion (DRG) neurons and that it is controlled by the p90S6 kinase RSK2. Our results reveal that RSK2 controls the preconditioning effect and that the RSK2-RPS6 axis is key for this process, as well as for PNS regeneration. Finally, we demonstrate that RSK2 promotes CNS regeneration in the dorsal column, spinal cord synaptic plasticity, and target innervation leading to functional recovery. Our data establish the critical role of RPS6 phosphorylation controlled by RSK2 in CNS regeneration and give new insights into the mechanisms related to axon growth and circuit formation after traumatic lesion.
Collapse
Affiliation(s)
- Charlotte Decourt
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Julia Schaeffer
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Beatrice Blot
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Antoine Paccard
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Blandine Excoffier
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Mario Pende
- Institut Necker Enfants Malades, INSERM U1151, Université de Paris, Paris, France
| | - Homaira Nawabi
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Stephane Belin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| |
Collapse
|
24
|
Hori H, Kotani A, Abe J, Matsuguchi S, Hirai Y. Extracellular epimorphin impairs expression and processing of profilaggrin in HaCaT keratinocytes. Cytotechnology 2023; 75:123-133. [PMID: 36969570 PMCID: PMC10030722 DOI: 10.1007/s10616-022-00566-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
The expression and processing of filaggrin, a filament-associated protein in the skin epidermis, is closely associated with keratinocyte cornification. The large precursor profilaggrin (Pro-FLG) is initially detected at the granular layer in keratohyalin granules, subsequently processed into 10 to 12 filaggrin monomers (mFLGs) for keratin assembly, and ultimately degraded into smaller peptides that behave as natural moisturizing factor (NMF) at the outermost epidermis. We previously reported that epimorphin (EPM) extruded upon external stimuli severely perturbs epidermal terminal differentiation. Using HaCaT keratinocytes with inducible expression and recombinant EPM and FLG, we investigated the effect of extracellular EPM on the expression profile of filaggrin. As expression and processing of Pro-FLG in primary keratinocytes are accompanied with apoptotic cell death, we employed HaCaT keratinocytes that grow and express filaggrin mRNA in standard culture medium. In response to ectopic stimulation with extracellular EPM, Pro-FLG expression decreased with elimination of keratohyalin granules in the cells, with filaggrin mRNA remained constant and profilaggrin processing was not accelerated. Additionally, using a recombinant form of mFLG engineered for intracellular localization, we found that extracellular EPM hindered proteolytic cleavage of mFLG for production of NMF. Taken together, extracellularly extruded EPM, an epidermal cornification blocker, not only decreases Pro-FLG expression but also reduces the production of NMF in HaCaT keratinocytes. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-022-00566-8.
Collapse
Affiliation(s)
- Haruna Hori
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1, GakuenUegahara, Sanda, 669-1330 Japan
- Present Address: Oppen Cosmetics Co, LTD. 2-17-1 Kisibeminami, Suita, 565-8501 Japan
| | - Ayaka Kotani
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1, GakuenUegahara, Sanda, 669-1330 Japan
| | - Junya Abe
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1, GakuenUegahara, Sanda, 669-1330 Japan
| | - Shuji Matsuguchi
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1, GakuenUegahara, Sanda, 669-1330 Japan
| | - Yohei Hirai
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1, GakuenUegahara, Sanda, 669-1330 Japan
| |
Collapse
|
25
|
Jiang Q, Sherlock DN, Guyader J, Loor JJ. Abundance of Amino Acid Transporters and mTOR Pathway Components in the Gastrointestinal Tract of Lactating Holstein Cows. Animals (Basel) 2023; 13:ani13071189. [PMID: 37048445 PMCID: PMC10093496 DOI: 10.3390/ani13071189] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Data from non-ruminants indicate that amino acid (AA) transport into cells can regulate mTOR pathway activity and protein synthesis. Whether mTOR is expressed in the ruminant gastrointestinal tract (GIT) and how it may be related to AA transporters and the AA concentrations in the tissue is unknown. Ruminal papillae and the epithelia of the duodenum, jejunum, and ileum collected at slaughter from eight clinically healthy Holstein in mid-lactation were used. Metabolites and RNA were extracted from tissue for liquid chromatography–mass spectrometry and RT-qPCR analysis. The glycine and asparagine concentrations in the rumen were greater than those in the intestine (p < 0.05), but the concentrations of other AAs were greater in the small intestine than those in the rumen. Among the 20 AAs identified, the concentrations of glutamate, alanine, and glycine were the greatest. The mRNA abundances of AKT1 and MTOR were greater in the small intestine than those in the rumen (p < 0.05). Similarly, the SLC1A1, SLC6A6, SLC7A8, SLC38A1, SLC38A7, and SLC43A2 mRNA abundances were greater (p < 0.05) in the small intestine than those in the rumen. The mRNA abundances of SLC1A5, SLC3A2, and SLC7A5 were greater in the rumen than those in the small intestine (p < 0.05). Overall, the present study provides fundamental data on the relationship between mTOR pathway components and the transport of AAs in different sections of the gastrointestinal tract.
Collapse
Affiliation(s)
- Qianming Jiang
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | - Jessie Guyader
- Evonik Operations GmbH, Hanau-Wolfgang, 63457 Essen, Germany
| | - Juan J. Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
26
|
Blair JD, Hartman A, Zenk F, Dalgarno C, Treutlein B, Satija R. Phospho-seq: Integrated, multi-modal profiling of intracellular protein dynamics in single cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534442. [PMID: 37034703 PMCID: PMC10081255 DOI: 10.1101/2023.03.27.534442] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
Cell signaling plays a critical role in regulating cellular behavior and fate. While multimodal single-cell sequencing technologies are rapidly advancing, scalable and flexible profiling of cell signaling states alongside other molecular modalities remains challenging. Here we present Phospho-seq, an integrated approach that aims to quantify phosphorylated intracellular and intranuclear proteins, and to connect their activity with cis-regulatory elements and transcriptional targets. We utilize a simplified benchtop antibody conjugation method to create large custom antibody panels for simultaneous protein and scATAC-seq profiling on whole cells, and integrate this information with scRNA-seq datasets via bridge integration. We apply our workflow to cell lines, induced pluripotent stem cells, and 3-month-old brain organoids to demonstrate its broad applicability. We demonstrate that Phospho-seq can define cellular states and trajectories, reconstruct gene regulatory relationships, and characterize the causes and consequences of heterogeneous cell signaling in neurodevelopment.
Collapse
Affiliation(s)
- John D. Blair
- New York Genome Center, New York, NY
- New York University, Center for Genomics and Systems Biology, New York, NY
| | | | | | | | | | - Rahul Satija
- New York Genome Center, New York, NY
- New York University, Center for Genomics and Systems Biology, New York, NY
| |
Collapse
|
27
|
Jin L, Mi T, Wu X, Wang Z, Zhang Z, Liu J, Wang Z, Wang J, Li M, Ren C, Guo P, He D. BI-D1870 Induces Mitotic Dysfunction and Apoptosis in Neuroblastoma by Regulating the PI3K-Akt-mTORC1 Signal Axis. Cancers (Basel) 2023; 15:cancers15072023. [PMID: 37046682 PMCID: PMC10093276 DOI: 10.3390/cancers15072023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction: Neuroblastoma (NB) is one of the most common extracranial solid malignant tumors in children. The 5-year survival rate of high-risk or refractory NB is less than 50%. Therefore, developing new effective therapeutics for NB remains an urgent challenge. Materials and Methods: Based on the NB dataset TARGET-NBL in the TCGA database, the prognosis-related genes were analyzed using univariate cox regression (p < 0.01). The protein network interaction of prognostic genes was analyzed using STRING to obtain 150 hub genes with HR > 1 and 150 hub genes with HR < 1. The Connectivity Map database was used to predict a therapeutic drug: BI-D1870, a ribosomal S6 kinase inhibitor. The inhibitory effect of BI-D1870 on NB was investigated through in vivo and in vitro experiments, and its inhibitory mechanism was explored. Results: Both the in vivo and in vitro experiments showed that BI-D1870 could inhibit tumor proliferation and induce tumor apoptosis. Furthermore, we proved that BI-D1870 caused G2/M phase arrest and mitosis damage in cells. RNA-seq of cells showed that BI-D1870 may inhibit the growth of NB by inhibiting the PI3K-Akt-mTOR axis. Western blot and immunofluorescence testing showed that BI-D1870 inhibited the PI3K-Akt-mTORC1 signal pathway to regulate the phosphorylation of RPS6 and 4E BP1 proteins, inhibit protein translation, and inhibit microtubule formation, thus preventing mitotic proliferation and inducing apoptosis. Conclusions: This study provides strong support that BI-D1870 may be a potential adjuvant therapy for NB.
Collapse
|
28
|
Miller SC, MacDonald CC, Kellogg MK, Karamysheva ZN, Karamyshev AL. Specialized Ribosomes in Health and Disease. Int J Mol Sci 2023; 24:ijms24076334. [PMID: 37047306 PMCID: PMC10093926 DOI: 10.3390/ijms24076334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Ribosomal heterogeneity exists within cells and between different cell types, at specific developmental stages, and occurs in response to environmental stimuli. Mounting evidence supports the existence of specialized ribosomes, or specific changes to the ribosome that regulate the translation of a specific group of transcripts. These alterations have been shown to affect the affinity of ribosomes for certain mRNAs or change the cotranslational folding of nascent polypeptides at the exit tunnel. The identification of specialized ribosomes requires evidence of the incorporation of different ribosomal proteins or of modifications to rRNA and/or protein that lead(s) to physiologically relevant changes in translation. In this review, we summarize ribosomal heterogeneity and specialization in mammals and discuss their relevance to several human diseases.
Collapse
Affiliation(s)
- Sarah C. Miller
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Clinton C. MacDonald
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Morgana K. Kellogg
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | - Andrey L. Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Correspondence: ; Tel.: +1-806-743-4102
| |
Collapse
|
29
|
Translational Control of Metabolism and Cell Cycle Progression in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24054885. [PMID: 36902316 PMCID: PMC10002961 DOI: 10.3390/ijms24054885] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The liver is a metabolic hub characterized by high levels of protein synthesis. Eukaryotic initiation factors, eIFs, control the first phase of translation, initiation. Initiation factors are essential for tumor progression and, since they regulate the translation of specific mRNAs downstream of oncogenic signaling cascades, may be druggable. In this review, we address the issue of whether the massive translational machinery of liver cells contributes to liver pathology and to the progression of hepatocellular carcinoma (HCC); it represents a valuable biomarker and druggable target. First, we observe that the common markers of HCC cells, such as phosphorylated ribosomal protein S6, belong to the ribosomal and translational apparatus. This fact is in agreement with observations that demonstrate a huge amplification of the ribosomal machinery during the progression to HCC. Some translation factors, such as eIF4E and eIF6, are then harnessed by oncogenic signaling. In particular, the action of eIF4E and eIF6 is particularly important in HCC when driven by fatty liver pathologies. Indeed, both eIF4E and eIF6 amplify at the translational level the production and accumulation of fatty acids. As it is evident that abnormal levels of these factors drive cancer, we discuss their therapeutic value.
Collapse
|
30
|
Nguyen TU, Hector H, Pederson EN, Lin J, Ouyang Z, Wendel HG, Singh K. Rapamycin-Induced Feedback Activation of eIF4E-EIF4A Dependent mRNA Translation in Pancreatic Cancer. Cancers (Basel) 2023; 15:1444. [PMID: 36900235 PMCID: PMC10001351 DOI: 10.3390/cancers15051444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
Pancreatic cancer cells adapt molecular mechanisms to activate the protein synthesis to support tumor growth. This study reports the mTOR inhibitor rapamycin's specific and genome-wide effect on mRNA translation. Using ribosome footprinting in pancreatic cancer cells that lack the expression of 4EBP1, we establish the effect of mTOR-S6-dependent mRNAs translation. Rapamycin inhibits the translation of a subset of mRNAs including p70-S6K and proteins involved in the cell cycle and cancer cell growth. In addition, we identify translation programs that are activated following mTOR inhibition. Interestingly, rapamycin treatment results in the translational activation of kinases that are involved in mTOR signaling such as p90-RSK1. We further show that phospho-AKT1 and phospho-eIF4E are upregulated following mTOR inhibition suggesting a feedback activation of translation by rapamycin. Next, targeting eIF4E and eIF4A-dependent translation by using specific eIF4A inhibitors in combination with rapamycin shows significant growth inhibition in pancreatic cancer cells. In short, we establish the specific effect of mTOR-S6 on translation in cells lacking 4EBP1 and show that mTOR inhibition leads to feedback activation of translation via AKT-RSK1-eIF4E signals. Therefore, targeting translation downstream of mTOR presents a more efficient therapeutic strategy in pancreatic cancer.
Collapse
Affiliation(s)
- Trang Uyen Nguyen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Albert Einstein Cancer Center, Bronx, NY 10461, USA
| | - Harrison Hector
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Albert Einstein Cancer Center, Bronx, NY 10461, USA
| | - Eric Nels Pederson
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jianan Lin
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Zhengqing Ouyang
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Hans-Guido Wendel
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kamini Singh
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Albert Einstein Cancer Center, Bronx, NY 10461, USA
| |
Collapse
|
31
|
Comerford SA, Hinnant EA, Chen Y, Hammer RE. Hepatic ribosomal protein S6 (Rps6) insufficiency results in failed bile duct development and loss of hepatocyte viability; a ribosomopathy-like phenotype that is partially p53-dependent. PLoS Genet 2023; 19:e1010595. [PMID: 36656901 PMCID: PMC9888725 DOI: 10.1371/journal.pgen.1010595] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/31/2023] [Accepted: 12/26/2022] [Indexed: 01/20/2023] Open
Abstract
Defective ribosome biogenesis (RiBi) underlies a group of clinically diverse human diseases collectively known as the ribosomopathies, core manifestations of which include cytopenias and developmental abnormalities that are believed to stem primarily from an inability to synthesize adequate numbers of ribosomes and concomitant activation of p53. The importance of a correctly functioning RiBi machinery for maintaining tissue homeostasis is illustrated by the observation that, despite having a paucity of certain cell types in early life, ribosomopathy patients have an increased risk for developing cancer later in life. This suggests that hypoproliferative states trigger adaptive responses that can, over time, become maladaptive and inadvertently drive unchecked hyperproliferation and predispose to cancer. Here we describe an experimentally induced ribosomopathy in the mouse and show that a normal level of hepatic ribosomal protein S6 (Rps6) is required for proper bile duct development and preservation of hepatocyte viability and that its insufficiency later promotes overgrowth and predisposes to liver cancer which is accelerated in the absence of the tumor-suppressor PTEN. We also show that the overexpression of c-Myc in the liver ameliorates, while expression of a mutant hyperstable form of p53 partially recapitulates specific aspects of the hepatopathies induced by Rps6 deletion. Surprisingly, co-deletion of p53 in the Rps6-deficient background fails to restore biliary development or significantly improve hepatic function. This study not only reveals a previously unappreciated dependence of the developing liver on adequate levels of Rps6 and exquisitely controlled p53 signaling, but suggests that the increased cancer risk in ribosomopathy patients may, in part, stem from an inability to preserve normal tissue homeostasis in the face of chronic injury and regeneration.
Collapse
Affiliation(s)
- Sarah A. Comerford
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Elizabeth A. Hinnant
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yidong Chen
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas. United States of America
| | - Robert E. Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
32
|
Bakshi A, Moin M, Gayatri MB, Reddy ABM, Datla R, Madhav MS, Kirti PB. Involvement of Target of Rapamycin (TOR) Signaling in the Regulation of Crosstalk between Ribosomal Protein Small Subunit 6 Kinase-1 (RPS6K-1) and Ribosomal Proteins. PLANTS (BASEL, SWITZERLAND) 2023; 12:176. [PMID: 36616305 PMCID: PMC9824793 DOI: 10.3390/plants12010176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The target of rapamycin (TOR) protein phosphorylates its downstream effector p70kDa ribosomal protein S6 kinases (S6K1) for ribosome biogenesis and translation initiation in eukaryotes. However, the molecular mechanism of TOR-S6K1-ribosomal protein (RP) signaling is not well understood in plants. In the present study, we report the transcriptional upregulation of ribosomal protein large and small subunit (RPL and RPS) genes in the previously established TOR overexpressing transgenic lines of rice (in Oryza sativa ssp. indica, variety BPT-5204, TR-2.24 and TR-15.1) and of Arabidopsis thaliana (in Col 0 ecotype, ATR-1.4.27 and ATR-3.7.32). The mRNA levels of RP genes from this study were compared with those previously available in transcriptomic datasets on the expression of RPs in relation to TOR inhibitor and in the TOR-RNAi lines of Arabidopsis thaliana. We further analyzed TOR activity, i.e., S6K1 phosphorylation in SALK lines of Arabidopsis with mutation in rpl6, rpl18, rpl23, rpl24 and rps28C, where the rpl18 mutant showed inactivation of S6K1 phosphorylation. We also predicted similar putative Ser/Thr phosphorylation sites for ribosomal S6 kinases (RSKs) in the RPs of Oryza sativa ssp. indica and Arabidopsis thaliana. The findings of this study indicate that the TOR pathway is possibly interlinked in a cyclic manner via the phosphorylation of S6K1 as a modulatory step for the regulation of RP function to switch 'on'/'off' the translational regulation for balanced plant growth.
Collapse
Affiliation(s)
- Achala Bakshi
- Indian Institute of Rice Research, Rajendranagar, Hyderabad 500030, Telangana, India
- Global Institute for Food Security, Saskatoon, SK S7N 0W9, Canada
| | - Mazahar Moin
- Indian Institute of Rice Research, Rajendranagar, Hyderabad 500030, Telangana, India
- Agri Biotech Foundation, PJTS Agricultural University Campus, Rajendranagar, Hyderabad 500030, Telangana, India
| | - Meher B. Gayatri
- Department of Animal Biology, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Aramati B. M. Reddy
- Department of Animal Biology, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Raju Datla
- Global Institute for Food Security, Saskatoon, SK S7N 0W9, Canada
| | - Maganti S. Madhav
- Indian Institute of Rice Research, Rajendranagar, Hyderabad 500030, Telangana, India
- Central Tobacco Research Institute, Rajahmundry 533105, Andhra Pradesh, India
| | - Pulugurtha B. Kirti
- Agri Biotech Foundation, PJTS Agricultural University Campus, Rajendranagar, Hyderabad 500030, Telangana, India
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
33
|
Champagne J, Mordente K, Nagel R, Agami R. Slippy-Sloppy translation: a tale of programmed and induced-ribosomal frameshifting. Trends Genet 2022; 38:1123-1133. [PMID: 35641342 DOI: 10.1016/j.tig.2022.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/24/2023]
Abstract
Programmed ribosomal frameshifting (PRF) is a key mechanism that viruses use to generate essential proteins for replication, and as a means of regulating gene expression. PRF generally involves recoding signals or frameshift stimulators to elevate the occurrence of frameshifting at shift-prone 'slippery' sequences. Given its essential role in viral replication, targeting PRF was envisioned as an attractive tool to block viral infection. However, in contrast to controlled-PRF mechanisms, recent studies have shown that ribosomes of many human cancer cell types are prone to frameshifting upon amino acid shortage; thus, these cells are deemed to be sloppy. The resulting products of a sloppy frameshift at the 'hungry' codons are aberrant proteins the degradation and display of which at the cell surface can trigger T cell activation. In this review, we address recent discoveries in ribosomal frameshifting and their functional consequences for the proteome in human cancer cells.
Collapse
Affiliation(s)
- Julien Champagne
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Kelly Mordente
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Remco Nagel
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands; Erasmus MC, Rotterdam University, Rotterdam, The Netherlands.
| |
Collapse
|
34
|
Ulicna L, Kimmey SC, Weber CM, Allard GM, Wang A, Bui NQ, Bendall SC, Crabtree GR, Bean GR, Van Rechem C. The Interaction of SWI/SNF with the Ribosome Regulates Translation and Confers Sensitivity to Translation Pathway Inhibitors in Cancers with Complex Perturbations. Cancer Res 2022; 82:2829-2837. [PMID: 35749589 PMCID: PMC9379364 DOI: 10.1158/0008-5472.can-21-1360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 01/10/2022] [Accepted: 06/15/2022] [Indexed: 01/09/2023]
Abstract
Subunits from the chromatin remodelers mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) are mutated, deleted, or amplified in more than 40% of cancers. Understanding their functions in normal cells and the consequences of cancerous alterations will provide insight into developing new targeted therapies. Here we examined whether mSWI/SNF mutations increase cellular sensitivity to specific drugs. Taking advantage of the DepMap studies, we demonstrate that cancer cells harboring mutations of specific mSWI/SNF subunits exhibit a genetic dependency on translation factors and are sensitive to translation pathway inhibitors. Furthermore, mSWI/SNF subunits were present in the cytoplasm and interacted with the translation initiation machinery, and short-term inhibition and depletion of specific subunits decreased global translation, implicating a direct role for these factors in translation. Depletion of specific mSWI/SNF subunits also increased sensitivity to mTOR-PI3K inhibitors. In patient-derived breast cancer samples, mSWI/SNF subunits expression in both the nucleus and the cytoplasm was substantially altered. In conclusion, an unexpected cytoplasmic role for mSWI/SNF complexes in translation suggests potential new therapeutic opportunities for patients afflicted by cancers demonstrating alterations in their subunits. SIGNIFICANCE This work establishes direct functions for mSWI/SNF in translation and demonstrates that alterations in mSWI/SNF confer a therapeutic vulnerability to translation pathway inhibitors in cancer cells.
Collapse
Affiliation(s)
- Livia Ulicna
- Department of Pathology, Stanford University, Stanford, California
| | - Samuel C. Kimmey
- Department of Pathology, Stanford University, Stanford, California.,Department of Medicine/Oncology, Stanford University, Stanford, California
| | | | - Grace M. Allard
- Department of Pathology, Stanford University, Stanford, California
| | - Aihui Wang
- Department of Pathology, Stanford University, Stanford, California
| | - Nam Q. Bui
- Department of Medicine/Oncology, Stanford University, Stanford, California
| | - Sean C. Bendall
- Department of Pathology, Stanford University, Stanford, California
| | - Gerald R. Crabtree
- Department of Pathology, Stanford University, Stanford, California.,Department of Developmental Biology, Stanford University, Stanford, California
| | - Gregory R. Bean
- Department of Pathology, Stanford University, Stanford, California
| | - Capucine Van Rechem
- Department of Pathology, Stanford University, Stanford, California.,Corresponding Author: Capucine Van Rechem, Ph.D. Stanford Medicine Department of Pathology, 269 Campus Drive, CCSR-3245C, Stanford, CA 94305-5176. Phone: 650-723-7698; E-mail:
| |
Collapse
|
35
|
Fumagalli S, Pende M. S6 kinase 1 at the central node of cell size and ageing. Front Cell Dev Biol 2022; 10:949196. [PMID: 36036012 PMCID: PMC9417411 DOI: 10.3389/fcell.2022.949196] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Genetic evidence in living organisms from yeast to plants and animals, including humans, unquestionably identifies the Target Of Rapamycin kinase (TOR or mTOR for mammalian/mechanistic) signal transduction pathway as a master regulator of growth through the control of cell size and cell number. Among the mTOR targets, the activation of p70 S6 kinase 1 (S6K1) is exquisitely sensitive to nutrient availability and rapamycin inhibition. Of note, in vivo analysis of mutant flies and mice reveals that S6K1 predominantly regulates cell size versus cell proliferation. Here we review the putative mechanisms of S6K1 action on cell size by considering the main functional categories of S6K1 targets: substrates involved in nucleic acid and protein synthesis, fat mass accumulation, retrograde control of insulin action, senescence program and cytoskeleton organization. We discuss how S6K1 may be involved in the observed interconnection between cell size, regenerative and ageing responses.
Collapse
Affiliation(s)
| | - Mario Pende
- *Correspondence: Stefano Fumagalli, ; Mario Pende,
| |
Collapse
|
36
|
Culurciello R, Bosso A, Troisi R, Barrella V, Di Nardo I, Borriello M, Gaglione R, Pistorio V, Aceto S, Cafaro V, Notomista E, Sica F, Arciello A, Pizzo E. Protective Effects of Recombinant Human Angiogenin in Keratinocytes: New Insights on Oxidative Stress Response Mediated by RNases. Int J Mol Sci 2022; 23:ijms23158781. [PMID: 35955913 PMCID: PMC9369303 DOI: 10.3390/ijms23158781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Human angiogenin (ANG) is a 14-kDa ribonuclease involved in different pathophysiological processes including tumorigenesis, neuroprotection, inflammation, innate immunity, reproduction, the regeneration of damaged tissues and stress cell response, depending on its intracellular localization. Under physiological conditions, ANG moves to the cell nucleus where it enhances rRNA transcription; conversely, recent reports indicate that under stress conditions, ANG accumulates in the cytoplasmic compartment and modulates the production of tiRNAs, a novel class of small RNAs that contribute to the translational inhibition and recruitment of stress granules (SGs). To date, there is still limited and controversial experimental evidence relating to a hypothetical role of ANG in the epidermis, the outermost layer of human skin, which is continually exposed to external stressors. The present study collects compelling evidence that endogenous ANG is able to modify its subcellular localization on HaCaT cells, depending on different cellular stresses. Furthermore, the use of recombinant ANG allowed to determine as this special enzyme is effectively able to counter at various levels the alterations of cellular homeostasis in HaCaT cells, actually opening a new vision on the possible functions that this special enzyme can support also in the stress response of human skin.
Collapse
Affiliation(s)
- Rosanna Culurciello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), University of Naples Federico II, 80126 Naples, Italy
| | - Andrea Bosso
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Valentina Barrella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Ilaria Di Nardo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Valeria Pistorio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Valeria Cafaro
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), University of Naples Federico II, 80126 Naples, Italy
- Correspondence: ; Tel.: +39-081679151
| |
Collapse
|
37
|
Baytas O, Kauer JA, Morrow EM. Loss of mitochondrial enzyme GPT2 causes early neurodegeneration in locus coeruleus. Neurobiol Dis 2022; 173:105831. [PMID: 35908744 PMCID: PMC9669404 DOI: 10.1016/j.nbd.2022.105831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022] Open
Abstract
Locus coeruleus (LC) is among the first brain areas to degenerate in Alzheimer’s disease and Parkinson’s disease; however, the underlying causes for the vulnerability of LC neurons are not well defined. Here we report a novel mechanism of degeneration of LC neurons caused by loss of the mitochondrial enzyme glutamate pyruvate transaminase 2 (GPT2). GPT2 Deficiency is a newly-recognized childhood neurometabolic disorder. The GPT2 enzyme regulates cell growth through replenishment of tricarboxylic acid (TCA) cycle intermediates and modulation of amino acid metabolism. In Gpt2-null mice, we observe an early loss of tyrosine hydroxylase (TH)-positive neurons in LC and reduced soma size at postnatal day 18. Gpt2-null LC shows selective positive Fluoro-Jade C staining. Neuron loss is accompanied by selective, prominent microgliosis and astrogliosis in LC. We observe reduced noradrenergic projections to and norepinephrine levels in hippocampus and spinal cord. Whole cell recordings in Gpt2-null LC slices show reduced soma size and abnormal action potentials with altered firing kinetics. Strikingly, we observe early decreases in phosphorylated S6 in Gpt2-null LC, preceding prominent p62 aggregation, increased LC3B-II to LC3B-I ratio, and neuronal loss. These data are consistent with a possible mechanism involving deficiency in protein synthesis and cell growth, associated subsequently with abnormal autophagy and neurodegeneration. As compared to the few genetic animal models with LC degeneration, loss of LC neurons in Gpt2-null mice is developmentally the earliest. Early neuron loss in LC in a model of human neurometabolic disease provides important clues regarding the metabolic vulnerability of LC and may lead to new therapeutic targets.
Collapse
Affiliation(s)
- Ozan Baytas
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA; Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA; Neuroscience Graduate Program, Brown University, Providence, RI 02912, USA
| | - Julie A Kauer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Eric M Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA; Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA.
| |
Collapse
|