1
|
Qiu C, Crittenden SL, Carrick BH, Dillard LB, Costa Dos Santos SJ, Dandey VP, Dutcher RC, Viverette EG, Wine RN, Woodworth J, Campbell ZT, Wickens M, Borgnia MJ, Kimble J, Tanaka Hall TM. A higher order PUF complex is central to regulation of C. elegans germline stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599074. [PMID: 38915480 PMCID: PMC11195197 DOI: 10.1101/2024.06.14.599074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
PUF RNA-binding proteins are broadly conserved stem cell regulators. Nematode PUF proteins maintain germline stem cells (GSCs) and, with key partner proteins, repress differentiation mRNAs, including gld-1. Here we report that PUF protein FBF-2 and its partner LST-1 form a ternary complex that represses gld-1 via a pair of adjacent FBF-2 binding elements (FBEs) in its 3ÚTR. One LST-1 molecule links two FBF-2 molecules via motifs in the LST-1 intrinsically-disordered region; the gld-1 FBE pair includes a well-established 'canonical' FBE and a newly-identified noncanonical FBE. Remarkably, this FBE pair drives both full RNA repression in GSCs and full RNA activation upon differentiation. Discovery of the LST-1-FBF-2 ternary complex, the gld-1 adjacent FBEs, and their in vivo significance predicts an expanded regulatory repertoire of different assemblies of PUF-partner complexes in nematode germline stem cells. It also suggests analogous PUF controls may await discovery in other biological contexts and organisms.
Collapse
Affiliation(s)
- Chen Qiu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | - Brian H. Carrick
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
- Current address: MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Lucas B. Dillard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- Current address: Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephany J. Costa Dos Santos
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
- These authors contributed equally to the manuscript and are listed in alphabetical order
| | - Venkata P. Dandey
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- These authors contributed equally to the manuscript and are listed in alphabetical order
| | - Robert C. Dutcher
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- These authors contributed equally to the manuscript and are listed in alphabetical order
| | - Elizabeth G. Viverette
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- These authors contributed equally to the manuscript and are listed in alphabetical order
- Current address: Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert N. Wine
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- These authors contributed equally to the manuscript and are listed in alphabetical order
| | - Jennifer Woodworth
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
- These authors contributed equally to the manuscript and are listed in alphabetical order
| | - Zachary T. Campbell
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Mario J. Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Traci M. Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- Lead contact
| |
Collapse
|
2
|
Carrick BH, Crittenden SL, Chen F, Linsley M, Woodworth J, Kroll-Conner P, Ferdous AS, Keleş S, Wickens M, Kimble J. PUF partner interactions at a conserved interface shape the RNA-binding landscape and cell fate in Caenorhabditis elegans. Dev Cell 2024; 59:661-675.e7. [PMID: 38290520 PMCID: PMC11253550 DOI: 10.1016/j.devcel.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/10/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Protein-RNA regulatory networks underpin much of biology. C. elegans FBF-2, a PUF-RNA-binding protein, binds over 1,000 RNAs to govern stem cells and differentiation. FBF-2 interacts with multiple protein partners via a key tyrosine, Y479. Here, we investigate the in vivo significance of partnerships using a Y479A mutant. Occupancy of the Y479A mutant protein increases or decreases at specific sites across the transcriptome, varying with RNAs. Germline development also changes in a specific fashion: Y479A abolishes one FBF-2 function-the sperm-to-oocyte cell fate switch. Y479A's effects on the regulation of one mRNA, gld-1, are critical to this fate change, though other network changes are also important. FBF-2 switches from repression to activation of gld-1 RNA, likely by distinct FBF-2 partnerships. The role of RNA-binding protein partnerships in governing RNA regulatory networks will likely extend broadly, as such partnerships pervade RNA controls in virtually all metazoan tissues and species.
Collapse
Affiliation(s)
- Brian H Carrick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Sarah L Crittenden
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Fan Chen
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - MaryGrace Linsley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jennifer Woodworth
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Peggy Kroll-Conner
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ahlan S Ferdous
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sündüz Keleş
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
3
|
Smith PR, Campbell ZT. RNA-binding proteins in pain. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1843. [PMID: 38576117 PMCID: PMC11003723 DOI: 10.1002/wrna.1843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
RNAs are meticulously controlled by proteins. Through direct and indirect associations, every facet in the brief life of an mRNA is subject to regulation. RNA-binding proteins (RBPs) permeate biology. Here, we focus on their roles in pain. Chronic pain is among the largest challenges facing medicine and requires new strategies. Mounting pharmacologic and genetic evidence obtained in pre-clinical models suggests fundamental roles for a broad array of RBPs. We describe their diverse roles that span RNA modification, splicing, stability, translation, and decay. Finally, we highlight opportunities to expand our understanding of regulatory interactions that contribute to pain signaling. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Regulation RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Patrick R. Smith
- Department of Anaesthesiology, University of Wisconsin-Madison, Madison, WI, USA 53792
| | - Zachary T. Campbell
- Department of Anaesthesiology, University of Wisconsin-Madison, Madison, WI, USA 53792
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53792
| |
Collapse
|
4
|
Qiu C, Zhang Z, Wine RN, Campbell ZT, Zhang J, Hall TMT. Intra- and inter-molecular regulation by intrinsically-disordered regions governs PUF protein RNA binding. Nat Commun 2023; 14:7323. [PMID: 37953271 PMCID: PMC10641069 DOI: 10.1038/s41467-023-43098-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
PUF proteins are characterized by globular RNA-binding domains. They also interact with partner proteins that modulate their RNA-binding activities. Caenorhabditis elegans PUF protein fem-3 binding factor-2 (FBF-2) partners with intrinsically disordered Lateral Signaling Target-1 (LST-1) to regulate target mRNAs in germline stem cells. Here, we report that an intrinsically disordered region (IDR) at the C-terminus of FBF-2 autoinhibits its RNA-binding affinity by increasing the off rate for RNA binding. Moreover, the FBF-2 C-terminal region interacts with its globular RNA-binding domain at the same site where LST-1 binds. This intramolecular interaction restrains an electronegative cluster of amino acid residues near the 5' end of the bound RNA to inhibit RNA binding. LST-1 binding in place of the FBF-2 C-terminus therefore releases autoinhibition and increases RNA-binding affinity. This regulatory mechanism, driven by IDRs, provides a biochemical and biophysical explanation for the interdependence of FBF-2 and LST-1 in germline stem cell self-renewal.
Collapse
Affiliation(s)
- Chen Qiu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Zihan Zhang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert N Wine
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Zachary T Campbell
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jun Zhang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
5
|
Davis GM, Hipwell H, Boag PR. Oogenesis in Caenorhabditis elegans. Sex Dev 2023; 17:73-83. [PMID: 37232019 PMCID: PMC10659005 DOI: 10.1159/000531019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The nematode, Caenorhabditis elegans has proven itself as a valuable model for investigating metazoan biology. C. elegans have a transparent body, an invariant cell lineage, and a high level of genetic conservation which makes it a desirable model organism. Although used to elucidate many aspects of somatic biology, a distinct advantage of C. elegans is its well annotated germline which allows all aspects of oogenesis to be observed in real time within a single animal. C. elegans hermaphrodites have two U-shaped gonad arms which produce their own sperm that is later stored to fertilise their own oocytes. These two germlines take up much of the internal space of each animal and germ cells are therefore the most abundant cell present within each animal. This feature and the genetic phenotypes observed for mutant worm gonads have allowed many novel findings that established our early understanding of germ cell dynamics. The mutant phenotypes also allowed key features of meiosis and germ cell maturation to be unveiled. SUMMARY This review will focus on the key aspects that make C. elegans an outstanding model for exploring each feature of oogenesis. This will include the fundamental steps associated with germline function and germ cell maturation and will be of use for those interested in exploring reproductive metazoan biology. KEY MESSAGES Since germ cell biology is highly conserved in animals, much can be gained from study of a simple metazoan like C. elegans. Past findings have enhanced understanding on topics that would be more laborious or challenging in more complex animal models.
Collapse
Affiliation(s)
- Gregory M. Davis
- Institute of Innovation, Science and Sustainability, Federation University, Churchill, VIC, Australia
| | - Hayleigh Hipwell
- Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Peter R. Boag
- Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| |
Collapse
|
6
|
Ferdous AS, Costa Dos Santos SJ, Kanzler CR, Shin H, Carrick BH, Crittenden SL, Wickens M, Kimble J. The in vivo functional significance of PUF hub partnerships in C. elegans germline stem cells. Development 2023; 150:dev201705. [PMID: 37070766 PMCID: PMC10259659 DOI: 10.1242/dev.201705] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/29/2023] [Indexed: 04/19/2023]
Abstract
PUF RNA-binding proteins are conserved stem cell regulators. Four PUF proteins govern self-renewal of Caenorhabditis elegans germline stem cells together with two intrinsically disordered proteins, LST-1 and SYGL-1. Based on yeast two-hybrid results, we previously proposed a composite self-renewal hub in the stem cell regulatory network, with eight PUF partnerships and extensive redundancy. Here, we investigate LST-1-PUF and SYGL-1-PUF partnerships and their molecular activities in their natural context - nematode stem cells. We confirm LST-1-PUF partnerships and their specificity to self-renewal PUFs by co-immunoprecipitation and show that an LST-1(AmBm) mutant defective for PUF-interacting motifs does not complex with PUFs in nematodes. LST-1(AmBm) is used to explore the in vivo functional significance of the LST-1-PUF partnership. Tethered LST-1 requires this partnership to repress expression of a reporter RNA, and LST-1 requires the partnership to co-immunoprecipitate with NTL-1/Not1 of the CCR4-NOT complex. We suggest that the partnership provides multiple molecular interactions that work together to form an effector complex on PUF target RNAs in vivo. Comparison of LST-1-PUF and Nanos-Pumilio reveals fundamental molecular differences, making LST-1-PUF a distinct paradigm for PUF partnerships.
Collapse
Affiliation(s)
- Ahlan S. Ferdous
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Charlotte R. Kanzler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Heaji Shin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian H. Carrick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sarah L. Crittenden
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
7
|
Ferdous AS, Costa Dos Santos SJ, Kanzler CR, Shin H, Carrick BH, Crittenden SL, Wickens M, Kimble J. Functional significance of PUF partnerships in C. elegans germline stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528708. [PMID: 36824876 PMCID: PMC9949348 DOI: 10.1101/2023.02.15.528708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
PUF RNA-binding proteins are conserved stem cell regulators. Four PUF proteins govern self-renewal of C. elegans germline stem cells together with two intrinsically disordered proteins, LST-1 and SYGL-1. Based on yeast two-hybrid results, we proposed a composite self-renewal hub in the stem cell regulatory network, with eight PUF partnerships and extensive redundancy. Here, we investigate LST-1-PUF and SYGL-1-PUF partnerships and their molecular activities in their natural context - nematode stem cells. We confirm LST-1-PUF partnerships and their specificity to self-renewal PUFs by co-immunoprecipitation and show that an LST-1(A m B m ) mutant defective for PUF-interacting motifs does not complex with PUFs in nematodes. LST-1(A m B m ) is used to explore the functional significance of the LST-1-PUF partnership. Tethered LST-1 requires the partnership to repress expression of a reporter RNA, and LST-1 requires the partnership to co-immunoprecipitate with NTL-1/Not1 of the CCR4-NOT complex. We suggest that the partnership provides multiple molecular interactions that work together to form an effector complex on PUF target RNAs. Comparison of PUF-LST-1 and Pumilio-Nanos reveals fundamental molecular differences, making PUF-LST-1 a distinct paradigm for PUF partnerships. Summary statement Partnerships between PUF RNA-binding proteins and intrinsically disordered proteins are essential for stem cell maintenance and RNA repression.
Collapse
Affiliation(s)
- Ahlan S Ferdous
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Charlotte R Kanzler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Heaji Shin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian H Carrick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sarah L Crittenden
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|