1
|
Zangi R. Breakdown of Langmuir Adsorption Isotherm in Small Closed Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38315174 PMCID: PMC10883037 DOI: 10.1021/acs.langmuir.3c03894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
For more than a century, monolayer adsorptions in which adsorbate molecules and adsorbing sites behave ideally have been successfully described by Langmuir's adsorption isotherm. For example, the amount of adsorbed material, as a function of concentration of the material which is not adsorbed, obeys Langmuir's equation. In this paper, we argue that this relation is valid only for macroscopic systems. However, when particle numbers of adsorbate molecules and/or adsorbing sites are small, Langmuir's model fails to describe the chemical equilibrium of the system. This is because the kinetics of forming, or the probability of observing, occupied sites arises from two-body interactions, and as such, ought to include cross-correlations between particle numbers of the adsorbate and adsorbing sites. The effect of these correlations, as reflected by deviations in predicting composition when correlations are ignored, increases with decreasing particle numbers and becomes substantial when only few adsorbate molecules, or adsorbing sites, are present in the system. In addition, any change that augments the fraction of occupied sites at equilibrium (e.g., smaller volume, lower temperature, or stronger adsorption energy) further increases the discrepancy between observed properties of small systems and those predicted by Langmuir's theory. In contrast, for large systems, these cross-correlations become negligible, and therefore when expressing properties involving two-body processes, it is possible to consider independently the concentration of each component. By applying statistical mechanics concepts, we derive a general expression of the equilibrium constant for adsorption. It is also demonstrated that in ensembles in which total numbers of particles are fixed, the magnitudes of fluctuations in particle numbers alone can predict the average chemical composition of the system. Moreover, an alternative adsorption equation, predicting the average fraction of occupied sites from the value of the equilibrium constant, is proposed. All derived relations were tested against results obtained by Monte Carlo simulations.
Collapse
Affiliation(s)
- Ronen Zangi
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- Department of Organic Chemistry I, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
2
|
Xu C, Ma B, Dong X, Lei L, Hao Q, Zhao C, Liu H. Assembly of Reusable DNA Blocks for Data Storage Using the Principle of Movable Type Printing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24097-24108. [PMID: 37184884 DOI: 10.1021/acsami.3c01860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Due to its high coding density and longevity, DNA is a compelling data storage alternative. However, current DNA data storage systems rely on the de novo synthesis of enormous DNA molecules, resulting in low data editability, high synthesis costs, and restrictions on further applications. Here, we demonstrate the programmable assembly of reusable DNA blocks for versatile data storage using the ancient movable type printing principle. Digital data are first encoded into nucleotide sequences in DNA hairpins, which are then synthesized and immobilized on solid beads as modular DNA blocks. Using DNA polymerase-catalyzed primer exchange reaction, data can be continuously replicated from hairpins on DNA blocks and attached to a primer in tandem to produce new information. The assembly of DNA blocks is highly programmable, producing various data by reusing a finite number of DNA blocks and reducing synthesis costs (∼1718 versus 3000 to 30,000 US$ per megabyte using conventional methods). We demonstrate the flexible assembly of texts, images, and random numbers using DNA blocks and the integration with DNA logic circuits to manipulate data synthesis. This work suggests a flexible paradigm by recombining already synthesized DNA to build cost-effective and intelligent DNA data storage systems.
Collapse
Affiliation(s)
- Chengtao Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University Institution, 2# Sipailou, Nanjing, Jiangsu 210096, China
| | - Biao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University Institution, 2# Sipailou, Nanjing, Jiangsu 210096, China
| | - Xing Dong
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University Institution, 2# Sipailou, Nanjing, Jiangsu 210096, China
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University Institution, 2# Sipailou, Nanjing, Jiangsu 210096, China
| | - Qing Hao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University Institution, 2# Sipailou, Nanjing, Jiangsu 210096, China
| | - Chao Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University Institution, 2# Sipailou, Nanjing, Jiangsu 210096, China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University Institution, 2# Sipailou, Nanjing, Jiangsu 210096, China
| |
Collapse
|
3
|
Huang J, Gambietz S, Saccà B. Self-Assembled Artificial DNA Nanocompartments and Their Bioapplications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202253. [PMID: 35775957 DOI: 10.1002/smll.202202253] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Compartmentalization is the strategy evolved by nature to control reactions in space and time. The ability to emulate this strategy through synthetic compartmentalization systems has rapidly evolved in the past years, accompanied by an increasing understanding of the effects of spatial confinement on the thermodynamic and kinetic properties of the guest molecules. DNA nanotechnology has played a pivotal role in this scientific endeavor and is still one of the most promising approaches for the construction of nanocompartments with programmable structural features and nanometer-scaled addressability. In this review, the design approaches, bioapplications, and theoretical frameworks of self-assembled DNA nanocompartments are surveyed. From DNA polyhedral cages to virus-like capsules, the construction principles of such intriguing architectures are illustrated. Various applications of DNA nanocompartments, including their use for programmable enzyme scaffolding, single-molecule studies, biosensing, and as artificial nanofactories, ending with an ample description of DNA nanocages for biomedical purposes, are then reported. Finally, the theoretical hypotheses that make DNA nanocompartments, and nanosystems in general, a topic of great interest in modern science, are described and the progresses that have been done until now in the comprehension of the peculiar phenomena that occur within nanosized environments are summarized.
Collapse
Affiliation(s)
- Jing Huang
- ZMB, Faculty of Biology, University Duisburg-Essen, 45141, Essen, Germany
| | - Sabrina Gambietz
- ZMB, Faculty of Biology, University Duisburg-Essen, 45141, Essen, Germany
| | - Barbara Saccà
- ZMB, Faculty of Biology, University Duisburg-Essen, 45141, Essen, Germany
| |
Collapse
|
4
|
Pandey S, Jonchhe S, Mishra S, Emura T, Sugiyama H, Endo M, Mao H. Zeptoliter DNA Origami Reactor to Reveal Cosolute Effects on Nanoconfined G-Quadruplexes. J Phys Chem Lett 2022; 13:8692-8698. [PMID: 36094396 PMCID: PMC10323737 DOI: 10.1021/acs.jpclett.2c02253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cellular environments such as nanoconfinement and molecular crowding can change biomolecular properties. However, in nanoconfinement, it is extremely challenging to investigate effects of crowding cosolutes on macromolecules. By using optical tweezers, here, we elucidated the effects of hexaethylene glycol (HEG) on the mechanical stability of a telomeric G-quadruplex (GQ) in a zeptoliter DNA origami reactor (zepto-reactor). When HEG molecules were introduced in the GQ-containing zepto-reactor at different positions, we found that the GQ species split into two equilibrated populations, reflecting diverse effects of the oligoethylene glycol on the GQ via either a long-range dehydration effect or direct interactions. When the number of HEG molecules was increased, the stability of the GQ unexpectedly decreased, suggesting that the direct destabilizing interaction between the GQ and HEG is dominating over the long-range stabilizing dehydration effects of the HEG in hydrophilic nanocavities. These findings indicate that a nanoconfined environment can alter regular effects of cosolutes on biomacromolecules.
Collapse
Affiliation(s)
- Shankar Pandey
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Sagun Jonchhe
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Shubham Mishra
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Tomoko Emura
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell–Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell–Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
- Organization for Research and Development of Innovative Science and Technology, Kansai University, Suita, Osaka 564-8680, Japan1
| | - Hanbin Mao
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
5
|
Zhang J, Huang Y, Sun M, Song T, Wan S, Yang C, Song Y. Mechanosensing view of SARS-CoV-2 infection by a DNA nano-assembly. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:101048. [PMID: 36157982 PMCID: PMC9490855 DOI: 10.1016/j.xcrp.2022.101048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/18/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
The mechanical force between a virus and its host cell plays a critical role in viral infection. However, characterization of the virus-cell mechanical force at the whole-virus level remains a challenge. Herein, we develop a platform in which the virus is anchored with multivalence-controlled aptamers to achieve transfer of the virus-cell mechanical force to a DNA tension gauge tether (Virus-TGT). When the TGT is ruptured, the complex of binding module-virus-cell is detached from the substrate, accompanied by decreased host cell-substrate adhesion, thus revealing the mechanical force between whole-virus and cell. Using Virus-TGT, direct evidence about the biomechanical force between SARS-CoV-2 and the host cell is obtained. The relative mechanical force gap (<10 pN) at the cellular level between the wild-type virus to cell and a variant virus to cell is measured, suggesting a possible positive correlation between virus-cell mechanical force and infectivity. Overall, this strategy provides a new perspective to probe the SARS-CoV-2 mechanical force.
Collapse
Affiliation(s)
- Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Miao Sun
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Ting Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Shuang Wan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|