1
|
Giraldo-Ocampo S, Valiente-Echeverría F, Soto-Rifo R. Host RNA-Binding Proteins as Regulators of HIV-1 Replication. Viruses 2024; 17:43. [PMID: 39861832 PMCID: PMC11768693 DOI: 10.3390/v17010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
RNA-binding proteins (RBPs) are cellular factors involved in every step of RNA metabolism. During HIV-1 infection, these proteins are key players in the fine-tuning of viral and host cellular and molecular pathways, including (but not limited to) viral entry, transcription, splicing, RNA modification, translation, decay, assembly, and packaging, as well as the modulation of the antiviral response. Targeted studies have been of paramount importance in identifying and understanding the role of RNA-binding proteins that bind to HIV-1 RNAs. However, novel approaches aimed at identifying all the proteins bound to specific RNAs (RBPome), such as RNA interactome capture, have also contributed to expanding our understanding of the HIV-1 replication cycle, allowing the identification of RBPs with functions not only in viral RNA metabolism but also in cellular metabolism. Strikingly, several of the RBPs found through interactome capture are not canonical RBPs, meaning that they do not have conventional RNA-binding domains and are therefore not readily predicted as being RBPs. Further studies on the different cellular targets of HIV-1, such as subtypes of T cells or myeloid cells, or on the context (active replication versus reactivation from latency) are needed to fully elucidate the host RBPome bound to the viral RNA, which will allow researchers and clinicians to discover new therapeutic targets during active replication and provirus reactivation from latency.
Collapse
Affiliation(s)
- Sebastian Giraldo-Ocampo
- Laboratory of Molecular and Cellular Virology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (S.G.-O.); (F.V.-E.)
- Center for HIV/AIDS Integral Research (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Millennium Institute in Immunology and Immunotherapy, Santiago 8380453, Chile
| | - Fernando Valiente-Echeverría
- Laboratory of Molecular and Cellular Virology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (S.G.-O.); (F.V.-E.)
- Center for HIV/AIDS Integral Research (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Millennium Institute in Immunology and Immunotherapy, Santiago 8380453, Chile
| | - Ricardo Soto-Rifo
- Laboratory of Molecular and Cellular Virology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (S.G.-O.); (F.V.-E.)
- Center for HIV/AIDS Integral Research (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Millennium Institute in Immunology and Immunotherapy, Santiago 8380453, Chile
| |
Collapse
|
2
|
Heng X, Herrera AP, Song Z, Boris-Lawrie K. Retroviral PBS-segment sequence and structure: Orchestrating early and late replication events. Retrovirology 2024; 21:12. [PMID: 38886829 PMCID: PMC11181671 DOI: 10.1186/s12977-024-00646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
An essential regulatory hub for retroviral replication events, the 5' untranslated region (UTR) encodes an ensemble of cis-acting replication elements that overlap in a logical manner to carry out divergent RNA activities in cells and in virions. The primer binding site (PBS) and primer activation sequence initiate the reverse transcription process in virions, yet overlap with structural elements that regulate expression of the complex viral proteome. PBS-segment also encompasses the attachment site for Integrase to cut and paste the 3' long terminal repeat into the host chromosome to form the provirus and purine residues necessary to execute the precise stoichiometry of genome-length transcripts and spliced viral RNAs. Recent genetic mapping, cofactor affinity experiments, NMR and SAXS have elucidated that the HIV-1 PBS-segment folds into a three-way junction structure. The three-way junction structure is recognized by the host's nuclear RNA helicase A/DHX9 (RHA). RHA tethers host trimethyl guanosine synthase 1 to the Rev/Rev responsive element (RRE)-containing RNAs for m7-guanosine Cap hyper methylation that bolsters virion infectivity significantly. The HIV-1 trimethylated (TMG) Cap licenses specialized translation of virion proteins under conditions that repress translation of the regulatory proteins. Clearly host-adaption and RNA shapeshifting comprise the fundamental basis for PBS-segment orchestrating both reverse transcription of virion RNA and the nuclear modification of m7G-Cap for biphasic translation of the complex viral proteome. These recent observations, which have exposed even greater complexity of retroviral RNA biology than previously established, are the impetus for this article. Basic research to fully comprehend the marriage of PBS-segment structures and host RNA binding proteins that carry out retroviral early and late replication events is likely to expose an immutable virus-specific therapeutic target to attenuate retrovirus proliferation.
Collapse
Affiliation(s)
- Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA.
| | - Amanda Paz Herrera
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Zhenwei Song
- Department of Veterinary and Biomedical Sciences, Institute for Molecular Virology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Kathleen Boris-Lawrie
- Department of Veterinary and Biomedical Sciences, Institute for Molecular Virology, University of Minnesota, Saint Paul, MN, 55108, USA.
| |
Collapse
|
3
|
Levintov L, Vashisth H. Structural and computational studies of HIV-1 RNA. RNA Biol 2024; 21:1-32. [PMID: 38100535 PMCID: PMC10730233 DOI: 10.1080/15476286.2023.2289709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Viruses remain a global threat to animals, plants, and humans. The type 1 human immunodeficiency virus (HIV-1) is a member of the retrovirus family and carries an RNA genome, which is reverse transcribed into viral DNA and further integrated into the host-cell DNA for viral replication and proliferation. The RNA structures from the HIV-1 genome provide valuable insights into the mechanisms underlying the viral replication cycle. Moreover, these structures serve as models for designing novel therapeutic approaches. Here, we review structural data on RNA from the HIV-1 genome as well as computational studies based on these structural data. The review is organized according to the type of structured RNA element which contributes to different steps in the viral replication cycle. This is followed by an overview of the HIV-1 transactivation response element (TAR) RNA as a model system for understanding dynamics and interactions in the viral RNA systems. The review concludes with a description of computational studies, highlighting the impact of biomolecular simulations in elucidating the mechanistic details of various steps in the HIV-1's replication cycle.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, USA
| | - Harish Vashisth
- Department of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, USA
| |
Collapse
|
4
|
Krishnan A, Ali LM, Prabhu SG, Pillai VN, Chameettachal A, Vivet-Boudou V, Bernacchi S, Mustafa F, Marquet R, Rizvi TA. Identification of a putative Gag binding site critical for feline immunodeficiency virus genomic RNA packaging. RNA (NEW YORK, N.Y.) 2023; 30:68-88. [PMID: 37914398 PMCID: PMC10726167 DOI: 10.1261/rna.079840.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
The retroviral Gag precursor plays a central role in the selection and packaging of viral genomic RNA (gRNA) by binding to virus-specific packaging signal(s) (psi or ψ). Previously, we mapped the feline immunodeficiency virus (FIV) ψ to two discontinuous regions within the 5' end of the gRNA that assumes a higher order structure harboring several structural motifs. To better define the region and structural elements important for gRNA packaging, we methodically investigated these FIV ψ sequences using genetic, biochemical, and structure-function relationship approaches. Our mutational analysis revealed that the unpaired U85CUG88 stretch within FIV ψ is crucial for gRNA encapsidation into nascent virions. High-throughput selective 2' hydroxyl acylation analyzed by primer extension (hSHAPE) performed on wild type (WT) and mutant FIV ψ sequences, with substitutions in the U85CUG88 stretch, revealed that these mutations had limited structural impact and maintained nucleotides 80-92 unpaired, as in the WT structure. Since these mutations dramatically affected packaging, our data suggest that the single-stranded U85CUG88 sequence is important during FIV RNA packaging. Filter-binding assays performed using purified FIV Pr50Gag on WT and mutant U85CUG88 ψ RNAs led to reduced levels of Pr50Gag binding to mutant U85CUG88 ψ RNAs, indicating that the U85CUG88 stretch is crucial for ψ RNA-Pr50Gag interactions. Delineating sequences important for FIV gRNA encapsidation should enhance our understanding of both gRNA packaging and virion assembly, making them potential targets for novel retroviral therapeutic interventions, as well as the development of FIV-based vectors for human gene therapy.
Collapse
Affiliation(s)
- Anjana Krishnan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Lizna M Ali
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Suresha G Prabhu
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Vineeta N Pillai
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Akhil Chameettachal
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 67084 Strasbourg cedex, France
| | - Serena Bernacchi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 67084 Strasbourg cedex, France
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Zayed bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, United Arab Emirates
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 67084 Strasbourg cedex, France
| | - Tahir A Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Zayed bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Zarudnaya MI, Potyahaylo AL, Kolomiets IM, Gorb LG. Structural diversity of the region encompassing DIS, SD and Psi hairpins in HIV and SIV genomes. Virus Res 2023; 336:199197. [PMID: 37574135 PMCID: PMC10483063 DOI: 10.1016/j.virusres.2023.199197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
We investigated in silico the secondary structure of the region encompassing DIS, SD and Psi hairpins in HIV-1 genomes of rare groups N, O and P, HIV-2 genomes and SIV genomes from chimpanzees, gorillas and monkeys. We found that the structure of this region in SIVcpzptt genomes of the 1st and the 2nd clusters is similar to that in HIV-1 genomes of groups M and N, respectively. Further, the structure of the region encompassing DIS, SD and Psi hairpins is similar in HIV-1 genomes of groups O and P and SIVgor genomes. Here we report that the DIS hairpin and truncated Psi hairpin are conserved in all HIV-1 and SIVcpz/gor genomes studied, while only the sequence of the splice donor site, but not the architecture of the SD hairpin involving this signal is conserved in HIV-1N/O/P and SIVcpz/gor genomes. A study on the 5' leader structure in genomes of 28 different SIV lineages infecting monkeys showed that the domain closed by U5-AUG duplex can form in all these genomes. This domain mainly consists of 2 subdomains, one of which includes the signal PBS (PBS subdomain) and another contains a putative DIS hairpin (DIS subdomain). DIS subdomains contain 1-8 hairpins. None of them is similar to those in HIV-1 or SIVcpz/gor genomes. The palindrome GUGCAC was found only in SIVdrl/mnd-2, the GACGC-GCGUC duplex (Sakuragi et al., 2012) - only in SIVrcm/drl/mnd-2 and a putative 5' G-quadruplex - in SIVdeb/drl/rcm/stm genomes. In genomes of eight SIV lineages, DIS hairpin has palindrome UGCGCA. Studies on the 5' leader in 64 HIV-2 genomes of different subtypes showed, in particular, that this region has sequences of a putative 5' G-quadruplex and a putative duplex similar to the GACGC-GCGUC duplex. The secondary structures of the region encompassing DIS, SD and Psi hairpins in HIV-2 genomes of subtype B and recombinant 01_AB are similar and differ from that in genomes of subtype A.
Collapse
Affiliation(s)
- M I Zarudnaya
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
| | - A L Potyahaylo
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
| | - I M Kolomiets
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
| | - L G Gorb
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine.
| |
Collapse
|
6
|
Deng J, Fang X, Huang L, Li S, Xu L, Ye K, Zhang J, Zhang K, Zhang QC. RNA structure determination: From 2D to 3D. FUNDAMENTAL RESEARCH 2023; 3:727-737. [PMID: 38933295 PMCID: PMC11197651 DOI: 10.1016/j.fmre.2023.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2024] Open
Abstract
RNA molecules serve a wide range of functions that are closely linked to their structures. The basic structural units of RNA consist of single- and double-stranded regions. In order to carry out advanced functions such as catalysis and ligand binding, certain types of RNAs can adopt higher-order structures. The analysis of RNA structures has progressed alongside advancements in structural biology techniques, but it comes with its own set of challenges and corresponding solutions. In this review, we will discuss recent advances in RNA structure analysis techniques, including structural probing methods, X-ray crystallography, nuclear magnetic resonance, cryo-electron microscopy, and small-angle X-ray scattering. Often, a combination of multiple techniques is employed for the integrated analysis of RNA structures. We also survey important RNA structures that have been recently determined using various techniques.
Collapse
Affiliation(s)
- Jie Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xianyang Fang
- Beijing Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shanshan Li
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Lilei Xu
- Beijing Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinsong Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Kaiming Zhang
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
7
|
Borovská I, Vořechovský I, Královičová J. Alu RNA fold links splicing with signal recognition particle proteins. Nucleic Acids Res 2023; 51:8199-8216. [PMID: 37309897 PMCID: PMC10450188 DOI: 10.1093/nar/gkad500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
Transcriptomic diversity in primates was considerably expanded by exonizations of intronic Alu elements. To better understand their cellular mechanisms we have used structure-based mutagenesis coupled with functional and proteomic assays to study the impact of successive primate mutations and their combinations on inclusion of a sense-oriented AluJ exon in the human F8 gene. We show that the splicing outcome was better predicted by consecutive RNA conformation changes than by computationally derived splicing regulatory motifs. We also demonstrate an involvement of SRP9/14 (signal recognition particle) heterodimer in splicing regulation of Alu-derived exons. Nucleotide substitutions that accumulated during primate evolution relaxed the conserved left-arm AluJ structure including helix H1 and reduced the capacity of SRP9/14 to stabilize the closed Alu conformation. RNA secondary structure-constrained mutations that promoted open Y-shaped conformations of the Alu made the Alu exon inclusion reliant on DHX9. Finally, we identified additional SRP9/14 sensitive Alu exons and predicted their functional roles in the cell. Together, these results provide unique insights into architectural elements required for sense Alu exonization, identify conserved pre-mRNA structures involved in exon selection and point to a possible chaperone activity of SRP9/14 outside the mammalian signal recognition particle.
Collapse
Affiliation(s)
- Ivana Borovská
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava 840 05, Slovak Republic
| | - Igor Vořechovský
- Faculty of Medicine, University of Southampton, HDH, MP808, Southampton SO16 6YD, United Kingdom
| | - Jana Královičová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava 840 05, Slovak Republic
- Institute of Zoology, Slovak Academy of Sciences, Bratislava 845 06, Slovak Republic
| |
Collapse
|
8
|
Boris-Lawrie K, Singh G, Osmer PS, Zucko D, Staller S, Heng X. Anomalous HIV-1 RNA, How Cap-Methylation Segregates Viral Transcripts by Form and Function. Viruses 2022; 14:935. [PMID: 35632676 PMCID: PMC9145092 DOI: 10.3390/v14050935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022] Open
Abstract
The acquisition of m7G-cap-binding proteins is now recognized as a major variable driving the form and function of host RNAs. This manuscript compares the 5'-cap-RNA binding proteins that engage HIV-1 precursor RNAs, host mRNAs, small nuclear (sn)- and small nucleolar (sno) RNAs and sort into disparate RNA-fate pathways. Before completion of the transcription cycle, the transcription start site of nascent class II RNAs is appended to a non-templated guanosine that is methylated (m7G-cap) and bound by hetero-dimeric CBP80-CBP20 cap binding complex (CBC). The CBC is a nexus for the co-transcriptional processing of precursor RNAs to mRNAs and the snRNA and snoRNA of spliceosomal and ribosomal ribonucleoproteins (RNPs). Just as sn/sno-RNAs experience hyper-methylation of m7G-cap to trimethylguanosine (TMG)-cap, so do select HIV RNAs and an emerging cohort of mRNAs. TMG-cap is blocked from Watson:Crick base pairing and disqualified from participating in secondary structure. The HIV TMG-cap has been shown to license select viral transcripts for specialized cap-dependent translation initiation without eIF4E that is dependent upon CBP80/NCBP3. The exceptional activity of HIV precursor RNAs secures their access to maturation pathways of sn/snoRNAs, canonical and non-canonical host mRNAs in proper stoichiometry to execute the retroviral replication cycle.
Collapse
Affiliation(s)
- Kathleen Boris-Lawrie
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA; (G.S.); (D.Z.)
| | - Gatikrushna Singh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA; (G.S.); (D.Z.)
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Patrick S. Osmer
- Department of Astronomy, The Ohio State University, Columbus, OH 43210, USA;
| | - Dora Zucko
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA; (G.S.); (D.Z.)
| | - Seth Staller
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA;
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|
9
|
HIV-1 hypermethylated guanosine cap licenses specialized translation unaffected by mTOR. Proc Natl Acad Sci U S A 2022; 119:2105153118. [PMID: 34949712 PMCID: PMC8740576 DOI: 10.1073/pnas.2105153118] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 12/29/2022] Open
Abstract
The proliferation of viral pathogens is restricted by hosts, but resilient pathogens antagonize the restriction by hosts. Findings explain that HIV-1 blocked mono-methylated guanosine cap by hypermethylation and engaged novel cap-binding complex for virion protein translation unaffected by global translation inhibition. The hypermethylated cap activity required RNA-structure-dependent binding of RNA helicase A/DHX9. eIF4E interaction proceeded on completely spliced HIV messenger RNA templates encoding viral regulatory proteins, thus eIF4E inactivation by catalytic site mTOR inhibitor suppressed regulatory protein translation, while structural/accessory protein translation was maintained. Two mutually exclusive translation pathways antagonize hosts and facilitate HIV-1 proliferation in primary CD4+ T cells to the detriment of hosts. eIF4E inactivation imposed an operational rheostat that suppressed regulatory proteins, while maintaining virion production in immune cells. Appended to the 5′ end of nascent RNA polymerase II transcripts is 7-methyl guanosine (m7G-cap) that engages nuclear cap-binding complex (CBC) to facilitate messenger RNA (mRNA) maturation. Mature mRNAs exchange CBC for eIF4E, the rate-limiting translation factor that is controlled through mTOR. Experiments in immune cells have now documented HIV-1 incompletely processed transcripts exhibited hypermethylated m7G-cap and that the down-regulation of the trimethylguanosine synthetase-1–reduced HIV-1 infectivity and virion protein synthesis by several orders of magnitude. HIV-1 cap hypermethylation required nuclear RNA helicase A (RHA)/DHX9 interaction with the shape of the 5′ untranslated region (UTR) primer binding site (PBS) segment. Down-regulation of RHA or the anomalous shape of the PBS segment abrogated hypermethylated caps and derepressed eIF4E binding for virion protein translation during global down-regulation of host translation. mTOR inhibition was detrimental to HIV-1 proliferation and attenuated Tat, Rev, and Nef synthesis. This study identified mutually exclusive translation pathways and the calibration of virion structural/accessory protein synthesis with de novo synthesis of the viral regulatory proteins. The hypermethylation of select, viral mRNA resulted in CBC exchange to heterodimeric CBP80/NCBP3 that expanded the functional capacity of HIV-1 in immune cells.
Collapse
|
10
|
Interplay between Host tRNAs and HIV-1: A Structural Perspective. Viruses 2021; 13:v13091819. [PMID: 34578400 PMCID: PMC8473020 DOI: 10.3390/v13091819] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/23/2022] Open
Abstract
The cellular metabolism of host tRNAs and life cycle of HIV-1 cross paths at several key virus-host interfaces. Emerging data suggest a multi-faceted interplay between host tRNAs and HIV-1 that plays essential roles, both structural and regulatory, in viral genome replication, genome packaging, and virion biogenesis. HIV-1 not only hijacks host tRNAs and transforms them into obligatory reverse transcription primers but further commandeers tRNAs to regulate the localization of its major structural protein, Gag, via a specific interface. This review highlights recent advances in understanding tRNA-HIV-1 interactions, primarily from a structural perspective, which start to elucidate their underlying molecular mechanisms, intrinsic specificities, and biological significances. Such understanding may provide new avenues toward developing HIV/AIDS treatments and therapeutics including small molecules and RNA biologics that target these host-virus interfaces.
Collapse
|