1
|
Murciano-Calles J, Rodríguez-Martínez A, Palencia A, Andújar-Sánchez M, Iglesias-Bexiga M, Corbi-Verge C, Buzón P, Ruiz-Sanz J, Martínez JC, Pérez-Sánchez H, Cámara-Artigas A, Luque I. Phage display identification of high-affinity ligands for human TSG101-UEV: A structural and thermodynamic study of PTAP recognition. Int J Biol Macromol 2024; 274:133233. [PMID: 38901510 DOI: 10.1016/j.ijbiomac.2024.133233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
The ubiquitin E2 variant domain of TSG101 (TSG101-UEV) plays a pivotal role in protein sorting and virus budding by recognizing PTAP motifs within ubiquitinated proteins. Disrupting TSG101-UEV/PTAP interactions has emerged as a promising strategy for the development of novel host-oriented antivirals with a broad spectrum of action. Nonetheless, finding inhibitors with good properties as therapeutic agents remains a challenge since the key determinants of binding affinity and specificity are still poorly understood. Here we present a detailed thermodynamic, structural, and dynamic characterization viral PTAP Late domain recognition by TSG101-UEV, combining isothermal titration calorimetry, X-ray diffraction structural studies, molecular dynamics simulations, and computational analysis of intramolecular communication pathways. Our analysis highlights key contributions from conserved hydrophobic contacts and water-mediated hydrogen bonds at the PTAP binding interface. We have identified additional electrostatic hotspots adjacent to the core motif that modulate affinity. Using competitive phage display screening we have improved affinity by 1-2 orders of magnitude, producing novel peptides with low micromolar affinities that combine critical elements found in the best natural binders. Molecular dynamics simulations revealed that optimized peptides engage new pockets on the UEV domain surface. This study provides a comprehensive view of the molecular forces directing TSG101-UEV recognition of PTAP motifs, revealing that binding is governed by conserved structural elements yet tuneable through targeted optimization. These insights open new venues to design inhibitors targeting TSG101-dependent pathways with potential application as novel broad-spectrum antivirals.
Collapse
Affiliation(s)
- Javier Murciano-Calles
- Department of Physical Chemistry, Institute of Biotechnology and Unit of Excellence in Chemistry applied to Biomedicine and Environment, University of Granada, 18071 Granada, Spain
| | - Alejandro Rodríguez-Martínez
- Department of Physical Chemistry, Institute of Biotechnology and Unit of Excellence in Chemistry applied to Biomedicine and Environment, University of Granada, 18071 Granada, Spain; Structural Bioinformatics and High-Performance Computing (BIO-HPC) Research Group, Universidad Católica de Murcia (UCAM), Guadalupe, Spain
| | - Andrés Palencia
- Department of Physical Chemistry, Institute of Biotechnology and Unit of Excellence in Chemistry applied to Biomedicine and Environment, University of Granada, 18071 Granada, Spain
| | - Montserrat Andújar-Sánchez
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3) and CIAMBITAL, University of Almería, Carretera de Sacramento s/n 04120 Almería, Spain
| | - Manuel Iglesias-Bexiga
- Department of Physical Chemistry, Institute of Biotechnology and Unit of Excellence in Chemistry applied to Biomedicine and Environment, University of Granada, 18071 Granada, Spain
| | - Carles Corbi-Verge
- Department of Physical Chemistry, Institute of Biotechnology and Unit of Excellence in Chemistry applied to Biomedicine and Environment, University of Granada, 18071 Granada, Spain
| | - Pedro Buzón
- Department of Physical Chemistry, Institute of Biotechnology and Unit of Excellence in Chemistry applied to Biomedicine and Environment, University of Granada, 18071 Granada, Spain
| | - Javier Ruiz-Sanz
- Department of Physical Chemistry, Institute of Biotechnology and Unit of Excellence in Chemistry applied to Biomedicine and Environment, University of Granada, 18071 Granada, Spain
| | - Jose C Martínez
- Department of Physical Chemistry, Institute of Biotechnology and Unit of Excellence in Chemistry applied to Biomedicine and Environment, University of Granada, 18071 Granada, Spain
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High-Performance Computing (BIO-HPC) Research Group, Universidad Católica de Murcia (UCAM), Guadalupe, Spain
| | - Ana Cámara-Artigas
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3) and CIAMBITAL, University of Almería, Carretera de Sacramento s/n 04120 Almería, Spain
| | - Irene Luque
- Department of Physical Chemistry, Institute of Biotechnology and Unit of Excellence in Chemistry applied to Biomedicine and Environment, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
2
|
Xia Y, Pan X, Shen HB. A comprehensive survey on protein-ligand binding site prediction. Curr Opin Struct Biol 2024; 86:102793. [PMID: 38447285 DOI: 10.1016/j.sbi.2024.102793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
Protein-ligand binding site prediction is critical for protein function annotation and drug discovery. Biological experiments are time-consuming and require significant equipment, materials, and labor resources. Developing accurate and efficient computational methods for protein-ligand interaction prediction is essential. Here, we summarize the key challenges associated with ligand binding site (LBS) prediction and introduce recently published methods from their input features, computational algorithms, and ligand types. Furthermore, we investigate the specificity of allosteric site identification as a particular LBS type. Finally, we discuss the prospective directions for machine learning-based LBS prediction in the near future.
Collapse
Affiliation(s)
- Ying Xia
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
| | - Xiaoyong Pan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China.
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China.
| |
Collapse
|
3
|
Tee WV, Berezovsky IN. Allosteric drugs: New principles and design approaches. Curr Opin Struct Biol 2024; 84:102758. [PMID: 38171188 DOI: 10.1016/j.sbi.2023.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Focusing on an important biomedical implication of allostery - design of allosteric drugs, we describe characteristics of allosteric sites, effectors, and their modes of actions distinguishing them from the orthosteric counterparts and calling for new principles and protocols in the quests for allosteric drugs. We show the importance of considering both binding affinity and allosteric signaling in establishing the structure-activity relationships (SARs) toward design of allosteric effectors, arguing that pairs of allosteric sites and their effector ligands - the site-effector pairs - should be generated and adjusted simultaneously in the framework of what we call directed design protocol. Key ideas and approaches for designing allosteric effectors including reverse perturbation, targeted and agnostic analysis are also discussed here. Several promising computational approaches are highlighted, along with the need for and potential advantages of utilizing generative models to facilitate discovery/design of new allosteric drugs.
Collapse
Affiliation(s)
- Wei-Ven Tee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671.
| | - Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117579, Singapore.
| |
Collapse
|
4
|
He J, Liu X, Zhu C, Zha J, Li Q, Zhao M, Wei J, Li M, Wu C, Wang J, Jiao Y, Ning S, Zhou J, Hong Y, Liu Y, He H, Zhang M, Chen F, Li Y, He X, Wu J, Lu S, Song K, Lu X, Zhang J. ASD2023: towards the integrating landscapes of allosteric knowledgebase. Nucleic Acids Res 2024; 52:D376-D383. [PMID: 37870448 PMCID: PMC10767950 DOI: 10.1093/nar/gkad915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
Allosteric regulation, induced by perturbations at an allosteric site topographically distinct from the orthosteric site, is one of the most direct and efficient ways to fine-tune macromolecular function. The Allosteric Database (ASD; accessible online at http://mdl.shsmu.edu.cn/ASD) has been systematically developed since 2009 to provide comprehensive information on allosteric regulation. In recent years, allostery has seen sustained growth and wide-ranging applications in life sciences, from basic research to new therapeutics development, while also elucidating emerging obstacles across allosteric research stages. To overcome these challenges and maintain high-quality data center services, novel features were curated in the ASD2023 update: (i) 66 589 potential allosteric sites, covering > 80% of the human proteome and constituting the human allosteric pocketome; (ii) 748 allosteric protein-protein interaction (PPI) modulators with clear mechanisms, aiding protein machine studies and PPI-targeted drug discovery; (iii) 'Allosteric Hit-to-Lead,' a pioneering dataset providing panoramic views from 87 well-defined allosteric hits to 6565 leads and (iv) 456 dualsteric modulators for exploring the simultaneous regulation of allosteric and orthosteric sites. Meanwhile, ASD2023 maintains a significant growth of foundational allosteric data. Based on these efforts, the allosteric knowledgebase is progressively evolving towards an integrated landscape, facilitating advancements in allosteric target identification, mechanistic exploration and drug discovery.
Collapse
Affiliation(s)
- Jixiao He
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinyi Liu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chunhao Zhu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Jinyin Zha
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Li
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mingzhu Zhao
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiacheng Wei
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mingyu Li
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chengwei Wu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Junyuan Wang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Yonglai Jiao
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shaobo Ning
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiamin Zhou
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Yue Hong
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yonghui Liu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongxi He
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Mingyang Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Feiying Chen
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanxiu Li
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinheng He
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Wu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shaoyong Lu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kun Song
- Nutshell Therapeutics, Shanghai 201210, China
| | - Xuefeng Lu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Jian Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Lu X, Lan X, Lu S, Zhang J. Progressive computational approaches to facilitate decryption of allosteric mechanism and drug discovery. Curr Opin Struct Biol 2023; 83:102701. [PMID: 37716092 DOI: 10.1016/j.sbi.2023.102701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/18/2023]
Abstract
Allostery is a ubiquitous biological phenomenon where perturbation at topologically distal areas of a protein serves as a trigger to fine-tune the orthosteric site and thus regulate protein function. The investigation of allosteric regulation greatly enhances our understanding of human diseases and broadens avenue for drug discovery. For decades, owing to the difficulty in allostery characterization through serendipitous experimental screening, researchers have developed several innovative computational approaches, which proves to accelerate the elucidation of allostery. Herein, we review the state-of-the-art advance of computational methodologies for allostery study, with particular emphasis on promising trends emerging over the past two years. We expect this review will outline the latest landscape of allostery study and inspire researchers to further facilitate this field.
Collapse
Affiliation(s)
- Xun Lu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaobing Lan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Shaoyong Lu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Gao B, Zhu S. Enhancement of SARS-CoV-2 receptor-binding domain activity by two microbial defensins. Front Microbiol 2023; 14:1195156. [PMID: 37405160 PMCID: PMC10315472 DOI: 10.3389/fmicb.2023.1195156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/16/2023] [Indexed: 07/06/2023] Open
Abstract
Peptide binders are of great interest to both basic and biomedical research due to their unique properties in manipulating protein functions in a precise spatial and temporal manner. The receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein is a ligand that captures human angiotensin-converting enzyme 2 (ACE2) to initiate infection. The development of binders of RBDs has value either as antiviral leads or as versatile tools to study the functional properties of RBDs dependent on their binding positions on the RBDs. In this study, we report two microbe-derived antibacterial defensins with RBD-binding activity. These two naturally occurring binders bind wild-type RBD (WT RBD) and RBDs from various variants with moderate-to-high affinity (7.6-1,450 nM) and act as activators that enhance the ACE2-binding activity of RBDs. Using a computational approach, we mapped an allosteric pathway in WT RBD that connects its ACE2-binding sites to other distal regions. The latter is targeted by the defensins, in which a cation-π interaction could trigger the peptide-elicited allostery in RBDs. The discovery of the two positive allosteric peptides of SARS-CoV-2 RBD will promote the development of new molecular tools for investigating the biochemical mechanisms of RBD allostery.
Collapse
|
7
|
Gu J, Isozumi N, Gao B, Ohki S, Zhu S. Mutation-driven evolution of antibacterial function in an ancestral antifungal scaffold: Significance for peptide engineering. Front Microbiol 2022; 13:1053078. [PMID: 36532476 PMCID: PMC9751787 DOI: 10.3389/fmicb.2022.1053078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/15/2022] [Indexed: 07/02/2024] Open
Abstract
Mutation-driven evolution of novel function on an old gene has been documented in many development- and adaptive immunity-related genes but is poorly understood in immune effector molecules. Drosomycin-type antifungal peptides (DTAFPs) are a family of defensin-type effectors found in plants and ecdysozoans. Their primitive function was to control fungal infection and then co-opted for fighting against bacterial infection in plants, insects, and nematodes. This provides a model to study the structural and evolutionary mechanisms behind such functional diversification. In the present study, we determined the solution structure of mehamycin, a DTAFP from the Northern root-knot nematode Meloidogyne hapla with antibacterial activity and an 18-mer insert, and studied the mutational effect through using a mutant with the insert deleted. Mehamycin adopts an expected cysteine-stabilized α-helix and β-sheet fold in its core scaffold and the inserted region, called single Disulfide Bridge-linked Domain (abbreviated as sDBD), forms an extended loop protruding from the scaffold. The latter folds into an amphipathic architecture stabilized by one disulfide bridge, which likely confers mehamycin a bacterial membrane permeability. Deletion of the sDBD remarkably decreased the ability but accompanying an increase in thermostability, indicative of a structure-function trade-off in the mehamycin evolution. Allosteric analysis revealed an interior interaction between the two domains, which might promote point mutations at some key sites of the core domain and ultimately give rise to the emergence of antibacterial function. Our work may be valuable in guiding protein engineering of mehamycin to improve its activity and stability.
Collapse
Affiliation(s)
- Jing Gu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Noriyoshi Isozumi
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa, Japan
| | - Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shinya Ohki
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa, Japan
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Strömich L, Wu N, Barahona M, Yaliraki SN. Allosteric Hotspots in the Main Protease of SARS-CoV-2. J Mol Biol 2022; 434:167748. [PMID: 35843284 PMCID: PMC9288249 DOI: 10.1016/j.jmb.2022.167748] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
Abstract
Inhibiting the main protease of SARS-CoV-2 is of great interest in tackling the COVID-19 pandemic caused by the virus. Most efforts have been centred on inhibiting the binding site of the enzyme. However, considering allosteric sites, distant from the active or orthosteric site, broadens the search space for drug candidates and confers the advantages of allosteric drug targeting. Here, we report the allosteric communication pathways in the main protease dimer by using two novel fully atomistic graph-theoretical methods: Bond-to-bond propensity, which has been previously successful in identifying allosteric sites in extensive benchmark data sets without a priori knowledge, and Markov transient analysis, which has previously aided in finding novel drug targets in catalytic protein families. Using statistical bootstrapping, we score the highest ranking sites against random sites at similar distances, and we identify four statistically significant putative allosteric sites as good candidates for alternative drug targeting.
Collapse
Affiliation(s)
- Léonie Strömich
- Department of Chemistry Imperial College London, United Kingdom
| | - Nan Wu
- Department of Chemistry Imperial College London, United Kingdom
| | | | | |
Collapse
|
9
|
Verkhivker GM, Agajanian S, Kassab R, Krishnan K. Frustration-driven allosteric regulation and signal transmission in the SARS-CoV-2 spike omicron trimer structures: a crosstalk of the omicron mutation sites allosterically regulates tradeoffs of protein stability and conformational adaptability. Phys Chem Chem Phys 2022; 24:17723-17743. [PMID: 35839100 DOI: 10.1039/d2cp01893d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dissecting the regulatory principles underlying function and activity of the SARS-CoV-2 spike protein at the atomic level is of paramount importance for understanding the mechanisms of virus transmissibility and immune escape. In this work, we introduce a hierarchical computational approach for atomistic modeling of allosteric mechanisms in the SARS-CoV-2 Omicron spike proteins and present evidence of a frustration-based allostery as an important energetic driver of the conformational changes and spike activation. By examining conformational landscapes and the residue interaction networks in the SARS-CoV-2 Omicron spike protein structures, we have shown that the Omicron mutational sites are dynamically coupled and form a central engine of the allosterically regulated spike machinery that regulates the balance and tradeoffs between conformational plasticity, protein stability, and functional adaptability. We have found that the Omicron mutational sites at the inter-protomer regions form regulatory hotspot clusters that control functional transitions between the closed and open states. Through perturbation-based modeling of allosteric interaction networks and diffusion analysis of communications in the closed and open spike states, we have quantified the allosterically regulated activation mechanism and uncover specific regulatory roles of the Omicron mutations. Atomistic reconstruction of allosteric communication pathways and kinetic modeling using Markov transient analysis reveal that the Omicron mutations form the inter-protomer electrostatic bridges that operate as a network of coupled regulatory switches that could control global conformational changes and signal transmission in the spike protein. The results of this study have revealed distinct and yet complementary roles of the Omicron mutation sites as a network of hotspots that enable allosteric modulation of structural stability and conformational changes which are central for spike activation and virus transmissibility.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.,Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA.,Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Steve Agajanian
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Ryan Kassab
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Keerthi Krishnan
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| |
Collapse
|
10
|
Wu N, Yaliraki SN, Barahona M. Prediction of Protein Allosteric Signalling Pathways and Functional Residues Through Paths of Optimised Propensity. J Mol Biol 2022; 434:167749. [PMID: 35841931 DOI: 10.1016/j.jmb.2022.167749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
Allostery commonly refers to the mechanism that regulates protein activity through the binding of a molecule at a different, usually distal, site from the orthosteric site. The omnipresence of allosteric regulation in nature and its potential for drug design and screening render the study of allostery invaluable. Nevertheless, challenges remain as few computational methods are available to effectively predict allosteric sites, identify signalling pathways involved in allostery, or to aid with the design of suitable molecules targeting such sites. Recently, bond-to-bond propensity analysis has been shown successful at identifying allosteric sites for a large and diverse group of proteins from knowledge of the orthosteric sites and its ligands alone by using network analysis applied to energy-weighted atomistic protein graphs. To address the identification of signalling pathways, we propose here a method to compute and score paths of optimised propensity that link the orthosteric site with the identified allosteric sites, and identifies crucial residues that contribute to those paths. We showcase the approach with three well-studied allosteric proteins: h-Ras, caspase-1, and 3-phosphoinositide-dependent kinase-1 (PDK1). Key residues in both orthosteric and allosteric sites were identified and showed agreement with experimental results, and pivotal signalling residues along the pathway were also revealed, thus providing alternative targets for drug design. By using the computed path scores, we were also able to differentiate the activity of different allosteric modulators.
Collapse
Affiliation(s)
- Nan Wu
- Department of Chemistry Imperial College London, United Kingdom
| | | | | |
Collapse
|
11
|
Zhu Z, Deng Z, Wang Q, Wang Y, Zhang D, Xu R, Guo L, Wen H. Simulation and Machine Learning Methods for Ion-Channel Structure Determination, Mechanistic Studies and Drug Design. Front Pharmacol 2022; 13:939555. [PMID: 35837274 PMCID: PMC9275593 DOI: 10.3389/fphar.2022.939555] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Ion channels are expressed in almost all living cells, controlling the in-and-out communications, making them ideal drug targets, especially for central nervous system diseases. However, owing to their dynamic nature and the presence of a membrane environment, ion channels remain difficult targets for the past decades. Recent advancement in cryo-electron microscopy and computational methods has shed light on this issue. An explosion in high-resolution ion channel structures paved way for structure-based rational drug design and the state-of-the-art simulation and machine learning techniques dramatically improved the efficiency and effectiveness of computer-aided drug design. Here we present an overview of how simulation and machine learning-based methods fundamentally changed the ion channel-related drug design at different levels, as well as the emerging trends in the field.
Collapse
Affiliation(s)
- Zhengdan Zhu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing Institute of Big Data Research, Beijing, China
| | - Zhenfeng Deng
- DP Technology, Beijing, China
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | | | | | - Duo Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- DP Technology, Beijing, China
| | - Ruihan Xu
- DP Technology, Beijing, China
- National Engineering Research Center of Visual Technology, Peking University, Beijing, China
| | | | - Han Wen
- DP Technology, Beijing, China
| |
Collapse
|
12
|
Ni D, Liu Y, Kong R, Yu Z, Lu S, Zhang J. Computational elucidation of allosteric communication in proteins for allosteric drug design. Drug Discov Today 2022; 27:2226-2234. [DOI: 10.1016/j.drudis.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/22/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
|
13
|
Chen J, Vishweshwaraiah YL, Dokholyan NV. Design and engineering of allosteric communications in proteins. Curr Opin Struct Biol 2022; 73:102334. [PMID: 35180676 PMCID: PMC8957532 DOI: 10.1016/j.sbi.2022.102334] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 01/26/2023]
Abstract
Allostery in proteins plays an important role in regulating protein activities and influencing many biological processes such as gene expression, enzyme catalysis, and cell signaling. The process of allostery takes place when a signal detected at a site on a protein is transmitted via a mechanical pathway to a functional site and, thus, influences its activity. The pathway of allosteric communication consists of amino acids that form a network with covalent and non-covalent bonds. By mutating residues in this allosteric network, protein engineers have successfully established novel allosteric pathways to achieve desired properties in the target protein. In this review, we highlight the most recent and state-of-the-art techniques for allosteric communication engineering. We also discuss the challenges that need to be overcome and future directions for engineering protein allostery.
Collapse
Affiliation(s)
- Jiaxing Chen
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033-0850, USA. https://twitter.com/JiaxingChen18
| | - Yashavantha L Vishweshwaraiah
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033-0850, USA. https://twitter.com/IAmYashHegde
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033-0850, USA; Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033-0850, USA; Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
14
|
Zha J, Li M, Kong R, Lu S, Zhang J. Explaining and Predicting Allostery with Allosteric Database and Modern Analytical Techniques. J Mol Biol 2022; 434:167481. [DOI: 10.1016/j.jmb.2022.167481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 12/17/2022]
|
15
|
Wu N, Strömich L, Yaliraki SN. Prediction of allosteric sites and signaling: Insights from benchmarking datasets. PATTERNS (NEW YORK, N.Y.) 2022; 3:100408. [PMID: 35079717 PMCID: PMC8767309 DOI: 10.1016/j.patter.2021.100408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/06/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
Allostery is a pervasive mechanism that regulates protein activity through ligand binding at a site different from the orthosteric site. The universality of allosteric regulation complemented by the benefits of highly specific and potentially non-toxic allosteric drugs makes uncovering allosteric sites invaluable. However, there are few computational methods to effectively predict them. Bond-to-bond propensity analysis has successfully predicted allosteric sites in 19 of 20 cases using an energy-weighted atomistic graph. We here extended the analysis onto 432 structures of 146 proteins from two benchmarking datasets for allosteric proteins: ASBench and CASBench. We further introduced two statistical measures to account for the cumulative effect of high-propensity residues and the crucial residues in a given site. The allosteric site is recovered for 127 of 146 proteins (407 of 432 structures) knowing only the orthosteric sites or ligands. The quantitative analysis using a range of statistical measures enables better characterization of potential allosteric sites and mechanisms involved.
Collapse
Affiliation(s)
- Nan Wu
- Department of Chemistry, Imperial College London, London W12 0BZ, UK
| | - Léonie Strömich
- Department of Chemistry, Imperial College London, London W12 0BZ, UK
| | | |
Collapse
|
16
|
Fan J, Liu Y, Kong R, Ni D, Yu Z, Lu S, Zhang J. Harnessing Reversed Allosteric Communication: A Novel Strategy for Allosteric Drug Discovery. J Med Chem 2021; 64:17728-17743. [PMID: 34878270 DOI: 10.1021/acs.jmedchem.1c01695] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allostery is a fundamental and extensive mechanism of intramolecular signal transmission. Allosteric drugs possess several unique pharmacological advantages over traditional orthosteric drugs, including greater selectivity, better physicochemical properties, and lower off-target toxicity. However, owing to the complexity of allosteric regulation, experimental approaches for the development of allosteric modulators are traditionally serendipitous. Recently, the reversed allosteric communication theory has been proposed, providing a feasible tool for the unbiased detection of allosteric sites. Herein, we review the latest research on the reversed allosteric communication effect using the examples of sirtuin 6, epidermal growth factor receptor, 3-phosphoinositide-dependent protein kinase 1, and Related to A and C kinases (RAC) serine/threonine protein kinase B and recapitulate the methodologies of reversed allosteric communication strategy. The novel reversed allosteric communication strategy greatly expands the horizon of allosteric site identification and allosteric mechanism exploration and is expected to accelerate an end-to-end framework for drug discovery.
Collapse
Affiliation(s)
- Jigang Fan
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China.,State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.,Zhiyuan Innovative Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Duan Ni
- The Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | - Shaoyong Lu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China.,State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.,Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China.,State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.,Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
17
|
Ni D, Chai Z, Wang Y, Li M, Yu Z, Liu Y, Lu S, Zhang J. Along the allostery stream: Recent advances in computational methods for allosteric drug discovery. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Duan Ni
- College of Pharmacy Ningxia Medical University Yinchuan China
- The Charles Perkins Centre University of Sydney Sydney New South Wales Australia
| | - Zongtao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital Second Military Medical University Shanghai China
| | - Ying Wang
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Mingyu Li
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
| | | | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Shaoyong Lu
- College of Pharmacy Ningxia Medical University Yinchuan China
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
- Medicinal Chemistry and Bioinformatics Center Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jian Zhang
- College of Pharmacy Ningxia Medical University Yinchuan China
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
- Medicinal Chemistry and Bioinformatics Center Shanghai Jiao Tong University School of Medicine Shanghai China
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou China
| |
Collapse
|