1
|
Del-Pozo-Rodriguez J, Tilly P, Lecat R, Vaca HR, Mosser L, Brivio E, Balla T, Gomes MV, Ramos-Morales E, Schwaller N, Salinas-Giegé T, VanNoy G, England EM, Lovgren AK, O'Leary M, Chopra M, Ojeda NM, Toosi MB, Eslahi A, Alerasool M, Mojarrad M, Pais LS, Yeh RC, Gable DL, Hashem MO, Abdulwahab F, Alzaidan H, Aldhalaan H, Tous E, Alsagheir A, Alowain M, Tamim A, Alfayez K, Alhashem A, Alnuzha A, Kamel M, Al-Awam BS, Elnaggar W, Almenabawy N, O'Donnell-Luria A, Neil JE, Gleeson JG, Walsh CA, Alkuraya FS, AlAbdi L, Elkhateeb N, Selim L, Srivastava S, Nedialkova DD, Drouard L, Romier C, Bayam E, Godin JD. Neurodevelopmental disorders associated variants in ADAT3 disrupt the activity of the ADAT2/ADAT3 tRNA deaminase complex and impair neuronal migration. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.01.24303485. [PMID: 38496416 PMCID: PMC10942499 DOI: 10.1101/2024.03.01.24303485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The ADAT2/ADAT3 complex catalyzes the adenosine to inosine modification at the wobble position of eukaryotic tRNAs. Mutations in ADAT3 , the catalytically inactive subunit of the ADAT2/ADAT3 complex, have been identified in patients presenting with severe neurodevelopmental disorders (NDDs). Yet, the physiological function of ADAT2/ADAT3 complex during brain development remains totally unknown. Here we showed that maintaining a proper level of ADAT2/ADAT3 catalytic activity is required for correct radial migration of projection neurons in the developing mouse cortex. In addition, we not only reported 20 new NDD patients carrying biallelic variants in ADAT3 but also deeply characterized the impact of those variants on ADAT2/ADAT3 structure, biochemical properties, enzymatic activity and tRNAs editing and abundance. We demonstrated that all the identified variants alter both the abundance and the activity of the complex leading to a significant decrease of I 34 with direct consequence on their steady-state. Using in vivo complementation assays, we correlated the severity of the migration phenotype with the degree of the loss of function caused by the variants. Altogether, our results indicate a critical role of ADAT2/ADAT3 during cortical development and provide cellular and molecular insights into the pathogenicity of ADAT3-related neurodevelopmental disorder.
Collapse
|
2
|
Wulff T, Hahnke K, Lécrivain AL, Schmidt K, Ahmed-Begrich R, Finstermeier K, Charpentier E. Dynamics of diversified A-to-I editing in Streptococcus pyogenes is governed by changes in mRNA stability. Nucleic Acids Res 2024; 52:11234-11253. [PMID: 39087550 PMCID: PMC11472039 DOI: 10.1093/nar/gkae629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 07/01/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing plays an important role in the post-transcriptional regulation of eukaryotic cell physiology. However, our understanding of the occurrence, function and regulation of A-to-I editing in bacteria remains limited. Bacterial mRNA editing is catalysed by the deaminase TadA, which was originally described to modify a single tRNA in Escherichia coli. Intriguingly, several bacterial species appear to perform A-to-I editing on more than one tRNA. Here, we provide evidence that in the human pathogen Streptococcus pyogenes, tRNA editing has expanded to an additional tRNA substrate. Using RNA sequencing, we identified more than 27 editing sites in the transcriptome of S. pyogenes SF370 and demonstrate that the adaptation of S. pyogenes TadA to a second tRNA substrate has also diversified the sequence context and recoding scope of mRNA editing. Based on the observation that editing is dynamically regulated in response to several infection-relevant stimuli, such as oxidative stress, we further investigated the underlying determinants of editing dynamics and identified mRNA stability as a key modulator of A-to-I editing. Overall, our findings reveal the presence and diversification of A-to-I editing in S. pyogenes and provide novel insights into the plasticity of the editome and its regulation in bacteria.
Collapse
Affiliation(s)
- Thomas F Wulff
- Max Planck Unit for the Science of Pathogens, 10117 Berlin, Germany
| | - Karin Hahnke
- Max Planck Unit for the Science of Pathogens, 10117 Berlin, Germany
| | | | - Katja Schmidt
- Max Planck Unit for the Science of Pathogens, 10117 Berlin, Germany
| | | | | | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, 10117 Berlin, Germany
- Institute for Biology, Humboldt University Berlin, 10115 Berlin, Germany
| |
Collapse
|
3
|
Mao XL, Eriani G, Zhou XL. ADATs: roles in tRNA editing and relevance to disease. Acta Biochim Biophys Sin (Shanghai) 2024; 57:73-83. [PMID: 39034823 DOI: 10.3724/abbs.2024125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Transfer RNAs (tRNAs) play central roles in protein biosynthesis. Post-transcriptional RNA modifications affect tRNA function and stability. Among these modifications, RNA editing is a widespread RNA modification in three domains of life. Proteins of the adenosine deaminase acting on tRNA (ADAT) family were discovered more than 20 years ago. They catalyze the deamination of adenosine to inosine (A-to-I) or cytidine to uridine (C-to-U) during tRNA maturation. The most studied example is the TadA- or ADAT2/3-mediated A-to-I conversion of the tRNA wobble position in the anticodon of prokaryotic or eukaryotic tRNAs, respectively. This review provides detailed information on A-to-I and C-to-U editing of tRNAs in different domains of life, presents recent new findings on ADATs for DNA editing, and finally comments on the association of mutations in the ADAT3 gene with intellectual disability.
Collapse
Affiliation(s)
- Xue-Ling Mao
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Gilbert Eriani
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 allée Konrad Roentgen, 67084 Strasbourg, France
| | - Xiao-Long Zhou
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
4
|
Feng C, Xin K, Du Y, Zou J, Xing X, Xiu Q, Zhang Y, Zhang R, Huang W, Wang Q, Jiang C, Wang X, Kang Z, Xu JR, Liu H. Unveiling the A-to-I mRNA editing machinery and its regulation and evolution in fungi. Nat Commun 2024; 15:3934. [PMID: 38729938 PMCID: PMC11087585 DOI: 10.1038/s41467-024-48336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
A-to-I mRNA editing in animals is mediated by ADARs, but the mechanism underlying sexual stage-specific A-to-I mRNA editing in fungi remains unknown. Here, we show that the eukaryotic tRNA-specific heterodimeric deaminase FgTad2-FgTad3 is responsible for A-to-I mRNA editing in Fusarium graminearum. This editing capacity relies on the interaction between FgTad3 and a sexual stage-specific protein called Ame1. Although Ame1 orthologs are widely distributed in fungi, the interaction originates in Sordariomycetes. We have identified key residues responsible for the FgTad3-Ame1 interaction. The expression and activity of FgTad2-FgTad3 are regulated through alternative promoters, alternative translation initiation, and post-translational modifications. Our study demonstrates that the FgTad2-FgTad3-Ame1 complex can efficiently edit mRNA in yeasts, bacteria, and human cells, with important implications for the development of base editors in therapy and agriculture. Overall, this study uncovers mechanisms, regulation, and evolution of RNA editing in fungi, highlighting the role of protein-protein interactions in modulating deaminase function.
Collapse
Affiliation(s)
- Chanjing Feng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kaiyun Xin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanfei Du
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jingwen Zou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoxing Xing
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qi Xiu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yijie Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weiwei Huang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qinhu Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cong Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojie Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Huiquan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
5
|
Ashley CN, Broni E, Miller WA. ADAR Family Proteins: A Structural Review. Curr Issues Mol Biol 2024; 46:3919-3945. [PMID: 38785511 PMCID: PMC11120146 DOI: 10.3390/cimb46050243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
This review aims to highlight the structures of ADAR proteins that have been crucial in the discernment of their functions and are relevant to future therapeutic development. ADAR proteins can correct or diversify genetic information, underscoring their pivotal contribution to protein diversity and the sophistication of neuronal networks. ADAR proteins have numerous functions in RNA editing independent roles and through the mechanisms of A-I RNA editing that continue to be revealed. Provided is a detailed examination of the ADAR family members-ADAR1, ADAR2, and ADAR3-each characterized by distinct isoforms that offer both structural diversity and functional variability, significantly affecting RNA editing mechanisms and exhibiting tissue-specific regulatory patterns, highlighting their shared features, such as double-stranded RNA binding domains (dsRBD) and a catalytic deaminase domain (CDD). Moreover, it explores ADARs' extensive roles in immunity, RNA interference, and disease modulation, demonstrating their ambivalent nature in both the advancement and inhibition of diseases. Through this comprehensive analysis, the review seeks to underline the potential of targeting ADAR proteins in therapeutic strategies, urging continued investigation into their biological mechanisms and health implications.
Collapse
Affiliation(s)
- Carolyn N. Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA; (C.N.A.); (E.B.)
| | - Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA; (C.N.A.); (E.B.)
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA; (C.N.A.); (E.B.)
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
6
|
Zhang D, Zhu L, Gao Y, Wang Y, Li P. RNA editing enzymes: structure, biological functions and applications. Cell Biosci 2024; 14:34. [PMID: 38493171 PMCID: PMC10944622 DOI: 10.1186/s13578-024-01216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
With the advancement of sequencing technologies and bioinformatics, over than 170 different RNA modifications have been identified. However, only a few of these modifications can lead to base pair changes, which are called RNA editing. RNA editing is a ubiquitous modification in mammalian transcriptomes and is an important co/posttranscriptional modification that plays a crucial role in various cellular processes. There are two main types of RNA editing events: adenosine to inosine (A-to-I) editing, catalyzed by ADARs on double-stranded RNA or ADATs on tRNA, and cytosine to uridine (C-to-U) editing catalyzed by APOBECs. This article provides an overview of the structure, function, and applications of RNA editing enzymes. We discuss the structural characteristics of three RNA editing enzyme families and their catalytic mechanisms in RNA editing. We also explain the biological role of RNA editing, particularly in innate immunity, cancer biogenesis, and antiviral activity. Additionally, this article describes RNA editing tools for manipulating RNA to correct disease-causing mutations, as well as the potential applications of RNA editing enzymes in the field of biotechnology and therapy.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Giguère S, Wang X, Huber S, Xu L, Warner J, Weldon SR, Hu J, Phan QA, Tumang K, Prum T, Ma D, Kirsch KH, Nair U, Dedon P, Batista FD. Antibody production relies on the tRNA inosine wobble modification to meet biased codon demand. Science 2024; 383:205-211. [PMID: 38207021 PMCID: PMC10954030 DOI: 10.1126/science.adi1763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Antibodies are produced at high rates to provide immunoprotection, which puts pressure on the B cell translational machinery. Here, we identified a pattern of codon usage conserved across antibody genes. One feature thereof is the hyperutilization of codons that lack genome-encoded Watson-Crick transfer RNAs (tRNAs), instead relying on the posttranscriptional tRNA modification inosine (I34), which expands the decoding capacity of specific tRNAs through wobbling. Antibody-secreting cells had increased I34 levels and were more reliant on I34 for protein production than naïve B cells. Furthermore, antibody I34-dependent codon usage may influence B cell passage through regulatory checkpoints. Our work elucidates the interface between the tRNA pool and protein production in the immune system and has implications for the design and selection of antibodies for vaccines and therapeutics.
Collapse
Affiliation(s)
- Sophie Giguère
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Xuesong Wang
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Sabrina Huber
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Liling Xu
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - John Warner
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Stephanie R. Weldon
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jennifer Hu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Quynh Anh Phan
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Katie Tumang
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Thavaleak Prum
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Duanduan Ma
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kathrin H. Kirsch
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Usha Nair
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Peter Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Singapore-MIT Alliance for Research and Technology, Singapore 138602
| | - Facundo D. Batista
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Budzko L, Hoffa-Sobiech K, Jackowiak P, Figlerowicz M. Engineered deaminases as a key component of DNA and RNA editing tools. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102062. [PMID: 38028200 PMCID: PMC10661471 DOI: 10.1016/j.omtn.2023.102062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Over recent years, zinc-dependent deaminases have attracted increasing interest as key components of nucleic acid editing tools that can generate point mutations at specific sites in either DNA or RNA by combining a targeting module (such as a catalytically impaired CRISPR-Cas component) and an effector module (most often a deaminase). Deaminase-based molecular tools are already being utilized in a wide spectrum of therapeutic and research applications; however, their medical and biotechnological potential seems to be much greater. Recent reports indicate that the further development of nucleic acid editing systems depends largely on our ability to engineer the substrate specificity and catalytic activity of the editors themselves. In this review, we summarize the current trends and achievements in deaminase engineering. The presented data indicate that the potential of these enzymes has not yet been fully revealed or understood. Several examples show that even relatively minor changes in the structure of deaminases can give them completely new and unique properties.
Collapse
Affiliation(s)
- Lucyna Budzko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Karolina Hoffa-Sobiech
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Paulina Jackowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
9
|
Yao H, Li T, Ma Z, Wang X, Xu L, Zhang Y, Cai Y, Tang Z. Codon usage pattern of the ancestor of green plants revealed through Rhodophyta. BMC Genomics 2023; 24:538. [PMID: 37697255 PMCID: PMC10496412 DOI: 10.1186/s12864-023-09586-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023] Open
Abstract
Rhodophyta are among the closest known relatives of green plants. Studying the codons of their genomes can help us understand the codon usage pattern and characteristics of the ancestor of green plants. By studying the codon usage pattern of all available red algae, it was found that although there are some differences among species, high-bias genes in most red algae prefer codons ending with GC. Correlation analysis, Nc-GC3s plots, parity rule 2 plots, neutrality plot analysis, differential protein region analysis and comparison of the nucleotide content of introns and flanking sequences showed that the bias phenomenon is likely to be influenced by local mutation pressure and natural selection, the latter of which is the dominant factor in terms of translation accuracy and efficiency. It is worth noting that selection on translation accuracy could even be detected in the low-bias genes of individual species. In addition, we identified 15 common optimal codons in seven red algae except for G. sulphuraria for the first time, most of which were found to be complementary and bound to the tRNA genes with the highest copy number. Interestingly, tRNA modification was found for the highly degenerate amino acids of all multicellular red algae and individual unicellular red algae, which indicates that highly biased genes tend to use modified tRNA in translation. Our research not only lays a foundation for exploring the characteristics of codon usage of the red algae as green plant ancestors, but will also facilitate the design and performance of transgenic work in some economic red algae in the future.
Collapse
Affiliation(s)
- Huipeng Yao
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China.
| | - Tingting Li
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Zheng Ma
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Xiyuan Wang
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Lixiao Xu
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Yuxin Zhang
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Yi Cai
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Zizhong Tang
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| |
Collapse
|
10
|
Schroader JH, Handley MT, Reddy K. Inosine triphosphate pyrophosphatase: A guardian of the cellular nucleotide pool and potential mediator of RNA function. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1790. [PMID: 37092460 DOI: 10.1002/wrna.1790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023]
Abstract
Inosine triphosphate pyrophosphatase (ITPase), encoded by the ITPA gene in humans, is an important enzyme that preserves the integrity of cellular nucleotide pools by hydrolyzing the noncanonical purine nucleotides (deoxy)inosine and (deoxy)xanthosine triphosphate into monophosphates and pyrophosphate. Variants in the ITPA gene can cause partial or complete ITPase deficiency. Partial ITPase deficiency is benign but clinically relevant as it is linked to altered drug responses. Complete ITPase deficiency causes a severe multisystem disorder characterized by seizures and encephalopathy that is frequently associated with fatal infantile dilated cardiomyopathy. In the absence of ITPase activity, its substrate noncanonical nucleotides have the potential to accumulate and become aberrantly incorporated into DNA and RNA. Hence, the pathophysiology of ITPase deficiency could arise from metabolic imbalance, altered DNA or RNA regulation, or from a combination of these factors. Here, we review the known functions of ITPase and highlight recent work aimed at determining the molecular basis for ITPA-associated pathogenesis which provides evidence for RNA dysfunction. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jacob H Schroader
- The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Mark T Handley
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kaalak Reddy
- The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
11
|
Gao Z, Jiang W, Zhang Y, Zhang L, Yi M, Wang H, Ma Z, Qu B, Ji X, Long H, Zhang S. Amphioxus adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U and A-to-I deamination of DNA. Commun Biol 2023; 6:744. [PMID: 37464027 PMCID: PMC10354150 DOI: 10.1038/s42003-023-05134-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Adenosine-to-inosine tRNA-editing enzyme has been identified for more than two decades, but the study on its DNA editing activity is rather scarce. We show that amphioxus (Branchiostoma japonicum) ADAT2 (BjADAT2) contains the active site 'HxE-PCxxC' and the key residues for target-base-binding, and amphioxus ADAT3 (BjADAT3) harbors both the N-terminal positively charged region and the C-terminal pseudo-catalytic domain important for recognition of substrates. The sequencing of BjADAT2-transformed Escherichia coli genome suggests that BjADAT2 has the potential to target E. coli DNA and can deaminate at TCG and GAA sites in the E. coli genome. Biochemical analyses further demonstrate that BjADAT2, in complex with BjADAT3, can perform A-to-I editing of tRNA and convert C-to-U and A-to-I deamination of DNA. We also show that BjADAT2 preferentially deaminates adenosines and cytidines in the loop of DNA hairpin structures of substrates, and BjADAT3 also affects the type of DNA substrate targeted by BjADAT2. Finally, we find that C89, N113, C148 and Y156 play critical roles in the DNA editing activity of BjADAT2. Collectively, our study indicates that BjADAT2/3 is the sole naturally occurring deaminase with both tRNA and DNA editing capacity identified so far in Metazoa.
Collapse
Affiliation(s)
- Zhan Gao
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China.
| | - Wanyue Jiang
- Institute of Evolution & Marine Biodiversity, KLMME, Ocean University of China, 266003, Qingdao, China
| | - Yu Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China
| | - Liping Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China
| | - Mengmeng Yi
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China
| | - Haitao Wang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China
| | - Zengyu Ma
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China
| | - Baozhen Qu
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China
| | - Xiaohan Ji
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China
| | - Hongan Long
- Institute of Evolution & Marine Biodiversity, KLMME, Ocean University of China, 266003, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, 266237, Qingdao, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, 266237, Qingdao, China.
| |
Collapse
|
12
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
13
|
Bimai O, Legrand P, Ravanat JL, Touati N, Zhou J, He N, Lénon M, Barras F, Fontecave M, Golinelli-Pimpaneau B. The thiolation of uridine 34 in tRNA, which controls protein translation, depends on a [4Fe-4S] cluster in the archaeum Methanococcus maripaludis. Sci Rep 2023; 13:5351. [PMID: 37005440 PMCID: PMC10067955 DOI: 10.1038/s41598-023-32423-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
Thiolation of uridine 34 in the anticodon loop of several tRNAs is conserved in the three domains of life and guarantees fidelity of protein translation. U34-tRNA thiolation is catalyzed by a complex of two proteins in the eukaryotic cytosol (named Ctu1/Ctu2 in humans), but by a single NcsA enzyme in archaea. We report here spectroscopic and biochemical experiments showing that NcsA from Methanococcus maripaludis (MmNcsA) is a dimer that binds a [4Fe-4S] cluster, which is required for catalysis. Moreover, the crystal structure of MmNcsA at 2.8 Å resolution shows that the [4Fe-4S] cluster is coordinated by three conserved cysteines only, in each monomer. Extra electron density on the fourth nonprotein-bonded iron most likely locates the binding site for a hydrogenosulfide ligand, in agreement with the [4Fe-4S] cluster being used to bind and activate the sulfur atom of the sulfur donor. Comparison of the crystal structure of MmNcsA with the AlphaFold model of the human Ctu1/Ctu2 complex shows a very close superposition of the catalytic site residues, including the cysteines that coordinate the [4Fe-4S] cluster in MmNcsA. We thus propose that the same mechanism for U34-tRNA thiolation, mediated by a [4Fe-4S]-dependent enzyme, operates in archaea and eukaryotes.
Collapse
Affiliation(s)
- Ornella Bimai
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91198, Gif-sur-Yvette, France
| | - Jean-Luc Ravanat
- University of Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, UMR 5819, 38000, Grenoble, France
| | - Nadia Touati
- IR CNRS Renard, Chimie-ParisTech, 11 rue Pierre et Marie Curie, 75005, Paris, France
| | - Jingjing Zhou
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Nisha He
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Marine Lénon
- Stress Adaptation and Metabolism in Enterobacteria Unit, Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Paris, France
| | - Frédéric Barras
- Stress Adaptation and Metabolism in Enterobacteria Unit, Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Paris, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France.
| |
Collapse
|
14
|
Longan ER, Ramos J, Fu D. ADATscan - A flexible tool for scanning exomes for wobble inosine-dependent codons reveals a neurological bias for genes enriched in such codons in humans and mice. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000675. [PMID: 36733466 PMCID: PMC9887483 DOI: 10.17912/micropub.biology.000675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
The conversion of adenosine to inosine at the wobble position of select tRNAs is essential for decoding specific codons in bacteria and eukarya. In eukarya, wobble inosine modification is catalyzed by the heterodimeric ADAT complex containing ADAT2 and ADAT3. Human individuals homozygous for loss of function variants in ADAT3 exhibit intellectual disability disorders. We created a flexible computational tool to scan the human, mouse, nematode, fruit fly, and yeast exomes for genes either enriched or depleted in ADAT-dependent codons as compared to background models of codon bias derived from the exomes themselves. We find that many genes are enriched or depleted for ADAT-dependent codons as compared to the genomic background in all five species. Among those genes enriched for ADAT-dependent codons in humans, we find there is significant Gene Ontology (GO) enrichment for genes involved in diverse neurological processes. This pattern persists in the mouse exome but not the fruit fly or nematode exome. In the nematode exome, genes enriched in ADAT-dependent codons are GO enriched for translation associated genes, and in yeast there is GO enrichment for genes involved in metabolic functions. There is also GO-term overlap between yeast and fruit flies. Importantly, in its generalized form, ADATscan can also be used to scan any exome for genes enriched in any subset of codons specified by the user.
Collapse
Affiliation(s)
- Emery R. Longan
- University of Rochester, Department of Biology, Rochester, NY 14620
| | - Jillian Ramos
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045
| | - Dragony Fu
- University of Rochester, Department of Biology, Rochester, NY 14620
| |
Collapse
|
15
|
Liao W, Nie W, Ahmad I, Chen G, Zhu B. The occurrence, characteristics, and adaptation of A-to-I RNA editing in bacteria: A review. Front Microbiol 2023; 14:1143929. [PMID: 36960293 PMCID: PMC10027721 DOI: 10.3389/fmicb.2023.1143929] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
A-to-I RNA editing is a very important post-transcriptional modification or co-transcriptional modification that creates isoforms and increases the diversity of proteins. In this process, adenosine (A) in RNA molecules is hydrolyzed and deaminated into inosine (I). It is well known that ADAR (adenosine deaminase acting on RNA)-dependent A-to-I mRNA editing is widespread in animals. Next, the discovery of A-to-I mRNA editing was mediated by TadA (tRNA-specific adenosine deaminase) in Escherichia coli which is ADAR-independent event. Previously, the editing event S128P on the flagellar structural protein FliC enhanced the bacterial tolerance to oxidative stress in Xoc. In addition, the editing events T408A on the enterobactin iron receptor protein XfeA act as switches by controlling the uptake of Fe3+ in response to the concentration of iron in the environment. Even though bacteria have fewer editing events, the great majority of those that are currently preserved have adaptive benefits. Interestingly, it was found that a TadA-independent A-to-I RNA editing event T408A occurred on xfeA, indicating that there may be other new enzymes that perform a function like TadA. Here, we review recent advances in the characteristics, functions, and adaptations of editing in bacteria.
Collapse
Affiliation(s)
- Weixue Liao
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhan Nie
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Wenhan Nie,
| | - Iftikhar Ahmad
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Gongyou Chen
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Zhu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Bo Zhu,
| |
Collapse
|
16
|
Dolce LG, Zimmer AA, Tengo L, Weis F, Rubio MAT, Alfonzo JD, Kowalinski E. Structural basis for sequence-independent substrate selection by eukaryotic wobble base tRNA deaminase ADAT2/3. Nat Commun 2022; 13:6737. [PMID: 36347890 PMCID: PMC9643335 DOI: 10.1038/s41467-022-34441-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
The essential deamination of adenosine A34 to inosine at the wobble base is the individual tRNA modification with the greatest effects on mRNA decoding, empowering a single tRNA to translate three different codons. To date, many aspects of how eukaryotic deaminases specifically select their multiple substrates remain unclear. Here, using cryo-EM, we present the structure of a eukaryotic ADAT2/3 deaminase bound to a full-length tRNA, revealing that the enzyme distorts the anticodon loop, but in contrast to the bacterial enzymes, selects its substrate via sequence-independent contacts of eukaryote-acquired flexible or intrinsically unfolded motifs distal from the conserved catalytic core. A gating mechanism for substrate entry to the active site is identified. Our multi-step tRNA recognition model yields insights into how RNA editing by A34 deamination evolved, shaped the genetic code, and directly impacts the eukaryotic proteome.
Collapse
Affiliation(s)
- Luciano G Dolce
- EMBL Grenoble, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Aubree A Zimmer
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Laura Tengo
- EMBL Grenoble, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Félix Weis
- EMBL Heidelberg, Structural and Computational Biology Unit, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Mary Anne T Rubio
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Juan D Alfonzo
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Eva Kowalinski
- EMBL Grenoble, 71 Avenue des Martyrs, 38042, Grenoble, France.
| |
Collapse
|
17
|
Dutta N, Deb I, Sarzynska J, Lahiri A. Inosine and its methyl derivatives: Occurrence, biogenesis, and function in RNA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 169-170:21-52. [PMID: 35065168 DOI: 10.1016/j.pbiomolbio.2022.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 05/21/2023]
Abstract
Inosine is one of the most common post-transcriptional modifications. Since its discovery, it has been noted for its ability to contribute to non-Watson-Crick interactions within RNA. Rapidly accumulating evidence points to the widespread generation of inosine through hydrolytic deamination of adenosine to inosine by different classes of adenosine deaminases. Three naturally occurring methyl derivatives of inosine, i.e., 1-methylinosine, 2'-O-methylinosine and 1,2'-O-dimethylinosine are currently reported in RNA modification databases. These modifications are expected to lead to changes in the structure, folding, dynamics, stability and functions of RNA. The importance of the modifications is indicated by the strong conservation of the modifying enzymes across organisms. The structure, binding and catalytic mechanism of the adenosine deaminases have been well-studied, but the underlying mechanism of the catalytic reaction is not very clear yet. Here we extensively review the existing data on the occurrence, biogenesis and functions of inosine and its methyl derivatives in RNA. We also included the structural and thermodynamic aspects of these modifications in our review to provide a detailed and integrated discussion on the consequences of A-to-I editing in RNA and the contribution of different structural and thermodynamic studies in understanding its role in RNA. We also highlight the importance of further studies for a better understanding of the mechanisms of the different classes of deamination reactions. Further investigation of the structural and thermodynamic consequences and functions of these modifications in RNA should provide more useful information about their role in different diseases.
Collapse
Affiliation(s)
- Nivedita Dutta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Indrajit Deb
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India.
| |
Collapse
|
18
|
Bertotti S, Fleming I, Cámara MDLM, Centeno Cameán C, Carmona SJ, Agüero F, Balouz V, Zahn A, Di Noia JM, Alfonzo JD, Buscaglia CA. Characterization of ADAT2/3 molecules in Trypanosoma cruzi and regulation of mucin gene expression by tRNA editing. Biochem J 2022; 479:561-580. [PMID: 35136964 DOI: 10.1042/bcj20210850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022]
Abstract
Adenosine-to-inosine conversion at position 34 (A34-to-I) of certain tRNAs is essential for expanding their decoding capacity. This reaction is catalyzed by the adenosine deaminase acting on tRNA (ADAT) complex, which in Eukarya is formed by two subunits: ADAT2 and ADAT3. We herein identified and thoroughly characterized the ADAT molecules from the protozoan pathogen Trypanosoma cruzi, the causative agent of Chagas Disease. TcADAT2 and TcADAT3 spontaneously form a catalytically active complex, as shown by expression in engineered bacteria and/or by the increased ex vivo tRNA A-to-I deamination activity of T. cruzi epimastigotes overexpressing TcADAT subunits. Importantly, enhanced TcADAT2/3 activity in transgenic parasites caused a shift in their in vivo tRNAThrAGU signature, which correlated with significant changes in the expression of the Thr-rich TcSMUG proteins. To our knowledge, this is the first evidence indicating that T. cruzi tRNA editing can be modulated in vivo, in turn post-transcriptionally changing the expression of specific genes. Our findings suggest tRNA editing/availability as a forcible step in controlling gene expression and driving codon adaptation in T. cruzi. Moreover, we unveil certain differences between parasite and mammalian host tRNA editing and processing, such as cytosine-to-uridine conversion at position 32 of tRNAThrAGU in T. cruzi, that may be exploited for the identification of novel druggable targets of intervention.
Collapse
Affiliation(s)
- Santiago Bertotti
- Laboratory of Molecular Biology of Protozoa, Instituto de Investigaciones Biotecnológicas 'Dr Rodolfo Ugalde' (IIBio, Universidad Nacional de San Martín, UNSAM, and Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET), Av. 25 de Mayo y Francia, Campus UNSAM, San Martín (1650), Buenos Aires, Argentina
| | - Ian Fleming
- Department of Microbiology, The Ohio State University, 318 W 12th Ave. (Aronoff Building), Columbus, U.S.A
| | - María de Los Milagros Cámara
- Laboratory of Molecular Biology of Protozoa, Instituto de Investigaciones Biotecnológicas 'Dr Rodolfo Ugalde' (IIBio, Universidad Nacional de San Martín, UNSAM, and Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET), Av. 25 de Mayo y Francia, Campus UNSAM, San Martín (1650), Buenos Aires, Argentina
| | - Camila Centeno Cameán
- Laboratory of Molecular Biology of Protozoa, Instituto de Investigaciones Biotecnológicas 'Dr Rodolfo Ugalde' (IIBio, Universidad Nacional de San Martín, UNSAM, and Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET), Av. 25 de Mayo y Francia, Campus UNSAM, San Martín (1650), Buenos Aires, Argentina
| | - Santiago J Carmona
- Trypanosomatics Laboratory, IIBio (UNSAM and CONICET), Buenos Aires, Argentina
| | - Fernán Agüero
- Trypanosomatics Laboratory, IIBio (UNSAM and CONICET), Buenos Aires, Argentina
| | - Virginia Balouz
- Laboratory of Molecular Biology of Protozoa, Instituto de Investigaciones Biotecnológicas 'Dr Rodolfo Ugalde' (IIBio, Universidad Nacional de San Martín, UNSAM, and Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET), Av. 25 de Mayo y Francia, Campus UNSAM, San Martín (1650), Buenos Aires, Argentina
| | - Astrid Zahn
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Juan D Alfonzo
- Department of Microbiology, The Ohio State University, 318 W 12th Ave. (Aronoff Building), Columbus, U.S.A
| | - Carlos A Buscaglia
- Laboratory of Molecular Biology of Protozoa, Instituto de Investigaciones Biotecnológicas 'Dr Rodolfo Ugalde' (IIBio, Universidad Nacional de San Martín, UNSAM, and Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET), Av. 25 de Mayo y Francia, Campus UNSAM, San Martín (1650), Buenos Aires, Argentina
| |
Collapse
|