1
|
Jin Q, Feng X, Hong M, Wang K, Chen X, Cheng J, Kuang Y, Si X, Xu M, Huang X, Guang S, Zhu C. Peri-centrosomal localization of small interfering RNAs in C. elegans. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2818-7. [PMID: 39825209 DOI: 10.1007/s11427-024-2818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025]
Abstract
The centrosome is the microtubule-organizing center and a crucial part of cell division. Centrosomal RNAs (cnRNAs) have been reported to enable precise spatiotemporal control of gene expression during cell division in many species. Whether and how cnRNAs exist in C. elegans are unclear. Here, using the nuclear RNAi Argonaute protein NRDE-3 as a reporter, we observed potential peri-centrosome localized small interfering (si)RNAs in C. elegans. NRDE-3 was previously shown to associate with pre-mRNAs and pre-rRNAs via a process involving the presence of complementary siRNAs. We generated a GFP-NRDE-3 knock-in transgene through CRISPR/Cas9 technology and observed that NRDE-3 formed peri-centrosomal foci neighboring the tubulin protein TBB-2, other centriole proteins and pericentriolar material (PCM) components in C. elegans embryos. The peri-centrosomal accumulation of NRDE-3 depends on RNA-dependent RNA polymerase (RdRP)-synthesized 22G siRNAs and the PAZ domain of NRDE-3, which is essential for siRNA binding. Mutation of eri-1, ergo-1, or drh-3 significantly increased the percentage of pericentrosome-enriched NRDE-3. At the metaphase of the cell cycle, NRDE-3 was enriched in both the peri-centrosomal region and the spindle. Moreover, the integrity of centriole proteins and pericentriolar material (PCM) components is also required for the peri-centrosomal accumulation of NRDE-3. Therefore, we concluded that siRNAs could accumulate in the pericentrosomal region in C. elegans and suggested that the peri-centrosomal region may also be a platform for RNAi-mediated gene regulation.
Collapse
Affiliation(s)
- Qile Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Xuezhu Feng
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Minjie Hong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Jiewei Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Yan Kuang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Xiaoyue Si
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Mingjing Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
2
|
Zhou B, Zheng L, Wu B, Yi K, Zhong B, Tan Y, Liu Q, Liò P, Hong L. A conditional protein diffusion model generates artificial programmable endonuclease sequences with enhanced activity. Cell Discov 2024; 10:95. [PMID: 39251570 PMCID: PMC11385924 DOI: 10.1038/s41421-024-00728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Deep learning-based methods for generating functional proteins address the growing need for novel biocatalysts, allowing for precise tailoring of functionalities to meet specific requirements. This advancement leads to the development of highly efficient and specialized proteins with diverse applications across scientific, technological, and biomedical fields. This study establishes a pipeline for protein sequence generation with a conditional protein diffusion model, namely CPDiffusion, to create diverse sequences of proteins with enhanced functions. CPDiffusion accommodates protein-specific conditions, such as secondary structures and highly conserved amino acids. Without relying on extensive training data, CPDiffusion effectively captures highly conserved residues and sequence features for specific protein families. We applied CPDiffusion to generate artificial sequences of Argonaute (Ago) proteins based on the backbone structures of wild-type (WT) Kurthia massiliensis Ago (KmAgo) and Pyrococcus furiosus Ago (PfAgo), which are complex multi-domain programmable endonucleases. The generated sequences deviate by up to nearly 400 amino acids from their WT templates. Experimental tests demonstrated that the majority of the generated proteins for both KmAgo and PfAgo show unambiguous activity in DNA cleavage, with many of them exhibiting superior activity as compared to the WT. These findings underscore CPDiffusion's remarkable success rate in generating novel sequences for proteins with complex structures and functions in a single step, leading to enhanced activity. This approach facilitates the design of enzymes with multi-domain molecular structures and intricate functions through in silico generation and screening, all accomplished without the need for supervision from labeled data.
Collapse
Affiliation(s)
- Bingxin Zhou
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
- Shanghai National Center for Applied Mathematics (SJTU center), Shanghai Jiao Tong University, Shanghai, China
| | - Lirong Zheng
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China.
- Department of Cell and Developmental Biology & Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Banghao Wu
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Yi
- School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, Australia
| | - Bozitao Zhong
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Tan
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Liu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Pietro Liò
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK.
| | - Liang Hong
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai National Center for Applied Mathematics (SJTU center), Shanghai Jiao Tong University, Shanghai, China.
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Artificial Intelligence Laboratory, Shanghai, China.
| |
Collapse
|
3
|
Zheng L, Zhou B, Yang Y, Zan B, Zhong B, Wu B, Feng Y, Liu Q, Hong L. Mn 2+-induced structural flexibility enhances the entire catalytic cycle and the cleavage of mismatches in prokaryotic argonaute proteins. Chem Sci 2024; 15:5612-5626. [PMID: 38638240 PMCID: PMC11023060 DOI: 10.1039/d3sc06221j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024] Open
Abstract
Prokaryotic Argonaute (pAgo) proteins, a class of DNA/RNA-guided programmable endonucleases, have been extensively utilized in nucleic acid-based biosensors. The specific binding and cleavage of nucleic acids by pAgo proteins, which are crucial processes for their applications, are dependent on the presence of Mn2+ bound in the pockets, as verified through X-ray crystallography. However, a comprehensive understanding of how dissociated Mn2+ in the solvent affects the catalytic cycle, and its underlying regulatory role in this structure-function relationship, remains underdetermined. By combining experimental and computational methods, this study reveals that unbound Mn2+ in solution enhances the flexibility of diverse pAgo proteins. This increase in flexibility through decreasing the number of hydrogen bonds, induced by Mn2+, leads to higher affinity for substrates, thus facilitating cleavage. More importantly, Mn2+-induced structural flexibility increases the mismatch tolerance between guide-target pairs by increasing the conformational states, thereby enhancing the cleavage of mismatches. Further simulations indicate that the enhanced flexibility in linkers triggers conformational changes in the PAZ domain for recognizing various lengths of nucleic acids. Additionally, Mn2+-induced dynamic alterations of the protein cause a conformational shift in the N domain and catalytic sites towards their functional form, resulting in a decreased energy penalty for target release and cleavage. These findings demonstrate that the dynamic conformations of pAgo proteins, resulting from the presence of the unbound Mn2+ in solution, significantly promote the catalytic cycle of endonucleases and the tolerance of cleavage to mismatches. This flexibility enhancement mechanism serves as a general strategy employed by Ago proteins from diverse prokaryotes to accomplish their catalytic functions and provide useful information for Ago-based precise molecular diagnostics.
Collapse
Affiliation(s)
- Lirong Zheng
- Institute of Natural Sciences, Shanghai Jiao Tong University Shanghai 200240 China
- Department of Cell and Developmental Biology & Michigan Neuroscience Institute, University of Michigan Medical School 48105 Ann Arbor MI USA
| | - Bingxin Zhou
- Institute of Natural Sciences, Shanghai Jiao Tong University Shanghai 200240 China
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai Jiao Tong University Shanghai 200240 China
| | - Yu Yang
- State Key Laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Bing Zan
- Institute of Natural Sciences, Shanghai Jiao Tong University Shanghai 200240 China
| | - Bozitao Zhong
- State Key Laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Banghao Wu
- State Key Laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yan Feng
- State Key Laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Qian Liu
- State Key Laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Liang Hong
- Institute of Natural Sciences, Shanghai Jiao Tong University Shanghai 200240 China
- State Key Laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai Jiao Tong University Shanghai 200240 China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
4
|
Tocchini C, Mango SE. An adapted MS2-MCP system to visualize endogenous cytoplasmic mRNA with live imaging in Caenorhabditis elegans. PLoS Biol 2024; 22:e3002526. [PMID: 38427703 PMCID: PMC10936773 DOI: 10.1371/journal.pbio.3002526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/13/2024] [Accepted: 01/29/2024] [Indexed: 03/03/2024] Open
Abstract
Live imaging of RNA molecules constitutes an invaluable means to track the dynamics of mRNAs, but live imaging in Caenorhabditis elegans has been difficult to achieve. Endogenous transcripts have been observed in nuclei, but endogenous mRNAs have not been detected in the cytoplasm, and functional mRNAs have not been generated. Here, we have adapted live imaging methods to visualize mRNA in embryonic cells. We have tagged endogenous transcripts with MS2 hairpins in the 3' untranslated region (UTR) and visualized them after adjusting MS2 Coat Protein (MCP) expression. A reduced number of these transcripts accumulates in the cytoplasm, leading to loss-of-function phenotypes. In addition, during epithelial morphogenesis, MS2-tagged mRNAs for dlg-1 fail to associate with the adherens junction, as observed for untagged, endogenous mRNAs. These defects are reversed by inactivating the nonsense-mediated decay pathway. RNA accumulates in the cytoplasm, mutant phenotypes are rescued, and dlg-1 RNA associates with the adherens junction. These data suggest that MS2 repeats can induce the degradation of endogenous RNAs and alter their cytoplasmic distribution. Although our focus is RNAs expressed in epithelial cells during morphogenesis, we find that this method can be applied to other cell types and stages.
Collapse
|
5
|
Wu Z, Yu L, Shi W, Ma J. Argonaute protein-based nucleic acid detection technology. Front Microbiol 2023; 14:1255716. [PMID: 37744931 PMCID: PMC10515653 DOI: 10.3389/fmicb.2023.1255716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
It is vital to diagnose pathogens quickly and effectively in the research and treatment of disease. Argonaute (Ago) proteins are recently discovered nucleases with nucleic acid shearing activity that exhibit specific recognition properties beyond CRISPR-Cas nucleases, which are highly researched but restricted PAM sequence recognition. Therefore, research on Ago protein-mediated nucleic acid detection technology has attracted significant attention from researchers in recent years. Using Ago proteins in developing nucleic acid detection platforms can enable efficient, convenient, and rapid nucleic acid detection and pathogen diagnosis, which is of great importance for human life and health and technological development. In this article, we introduce the structure and function of Argonaute proteins and discuss the latest advances in their use in nucleic acid detection.
Collapse
Affiliation(s)
- Zhiyun Wu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Li Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Weifeng Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jinhong Ma
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
6
|
Nisaa K, Ben-Zvi A. HLH-1 Modulates Muscle Proteostasis During Caenorhabditis elegans Larval Development. Front Cell Dev Biol 2022; 10:920569. [PMID: 35733850 PMCID: PMC9207508 DOI: 10.3389/fcell.2022.920569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Muscle proteostasis is shaped by the myogenic transcription factor MyoD which regulates the expression of chaperones during muscle differentiation. Whether MyoD can also modulate chaperone expression in terminally differentiated muscle cells remains open. Here we utilized a temperature-sensitive (ts) conditional knockdown nonsense mutation in MyoD ortholog in C. elegans, HLH-1, to ask whether MyoD plays a role in maintaining muscle proteostasis post myogenesis. We showed that hlh-1 is expressed during larval development and that hlh-1 knockdown at the first, second, or third larval stages resulted in severe defects in motility and muscle organization. Motility defects and myofilament organization were rescued when the clearance of hlh-1(ts) mRNA was inhibited, and hlh-1 mRNA levels were restored. Moreover, hlh-1 knockdown modulated the expression of chaperones with putative HLH-1 binding sites in their promoters, supporting HLH-1 role in muscle maintenance during larval development. Finally, mild disruption of hlh-1 expression during development resulted in earlier dysregulation of muscle maintenance and function during adulthood. We propose that the differentiation transcription factor, HLH-1, contributes to muscle maintenance and regulates cell-specific chaperone expression post differentiation. HLH-1 may thus impact muscle proteostasis and potentially the onset and manifestation of sarcopenia.
Collapse
Affiliation(s)
| | - Anat Ben-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
7
|
Barrière A, Bertrand V. Labelling of Active Transcription Sites with Argonaute NRDE-3-Image Active Transcription Sites in vivo in Caenorhabditis elegans. Bio Protoc 2022; 12:e4427. [PMID: 35799904 PMCID: PMC9244494 DOI: 10.21769/bioprotoc.4427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/15/2022] [Accepted: 04/13/2022] [Indexed: 12/29/2022] Open
Abstract
Live labelling of active transcription sites is critical to our understanding of transcriptional dynamics. In the most widely used method, RNA sequence MS2 repeats are added to the transcript of interest, on which fluorescently tagged Major Coat Protein binds, and labels transcription sites and transcripts. Here we describe another strategy, using the Argonaute protein NRDE-3, repurposed as an RNA-programmable RNA binding protein. We label active transcription sites in C. elegans embryos and larvae, without editing the gene of interest. NRDE-3 is programmed by feeding nematodes with double-stranded RNA matching the target gene. This method does not require genome editing and is inexpensive and fast to apply to many different genes. Graphical abstract.
Collapse
Affiliation(s)
- Antoine Barrière
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
,
*For correspondence:
| | - Vincent Bertrand
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
8
|
Bordet G, Couillault C, Soulavie F, Filippopoulou K, Bertrand V. PRC1 chromatin factors strengthen the consistency of neuronal cell fate specification and maintenance in C. elegans. PLoS Genet 2022; 18:e1010209. [PMID: 35604893 PMCID: PMC9126393 DOI: 10.1371/journal.pgen.1010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
In the nervous system, the specific identity of a neuron is established and maintained by terminal selector transcription factors that directly activate large batteries of terminal differentiation genes and positively regulate their own expression via feedback loops. However, how this is achieved in a reliable manner despite noise in gene expression, genetic variability or environmental perturbations remains poorly understood. We addressed this question using the AIY cholinergic interneurons of C. elegans, whose specification and differentiation network is well characterized. Via a genetic screen, we found that a loss of function of PRC1 chromatin factors induces a stochastic loss of AIY differentiated state in a small proportion of the population. PRC1 factors act directly in the AIY neuron and independently of PRC2 factors. By quantifying mRNA and protein levels of terminal selector transcription factors in single neurons, using smFISH and CRISPR tagging, we observed that, in PRC1 mutants, terminal selector expression is still initiated during embryonic development but the level is reduced, and expression is subsequently lost in a stochastic manner during maintenance phase in part of the population. We also observed variability in the level of expression of terminal selectors in wild type animals and, using correlation analysis, established that this noise comes from both intrinsic and extrinsic sources. Finally, we found that PRC1 factors increase the resistance of AIY neuron fate to environmental stress, and also secure the terminal differentiation of other neuron types. We propose that PRC1 factors contribute to the consistency of neuronal cell fate specification and maintenance by protecting neurons against noise and perturbations in their differentiation program.
Collapse
Affiliation(s)
- Guillaume Bordet
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Carole Couillault
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Fabien Soulavie
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | | | - Vincent Bertrand
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
9
|
Emerging Argonaute-based nucleic acid biosensors. Trends Biotechnol 2022; 40:910-914. [DOI: 10.1016/j.tibtech.2022.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022]
|