3
|
Nelson-Rigg R, Fagan SP, Jaremko WJ, Pata JD. Pre-Steady-State Kinetic Characterization of an Antibiotic-Resistant Mutant of Staphylococcus aureus DNA Polymerase PolC. Antimicrob Agents Chemother 2023; 67:e0157122. [PMID: 37222615 PMCID: PMC10269047 DOI: 10.1128/aac.01571-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
The emergence and spread of antibiotic resistance in bacterial pathogens are serious and ongoing threats to public health. Since chromosome replication is essential to cell growth and pathogenesis, the essential DNA polymerases in bacteria have long been targets of antimicrobial development, although none have yet advanced to the market. Here, we use transient-state kinetic methods to characterize the inhibition of the PolC replicative DNA polymerase from Staphylococcus aureus by 2-methoxyethyl-6-(3'-ethyl-4'-methylanilino)uracil (ME-EMAU), a member of the 6-anilinouracil compounds that specifically target PolC enzymes, which are found in low-GC content Gram-positive bacteria. We find that ME-EMAU binds to S. aureus PolC with a dissociation constant of 14 nM, more than 200-fold tighter than the previously reported inhibition constant, which was determined using steady-state kinetic methods. This tight binding is driven by a very slow off rate of 0.006 s-1. We also characterized the kinetics of nucleotide incorporation by PolC containing a mutation of phenylalanine 1261 to leucine (F1261L). The F1261L mutation decreases ME-EMAU binding affinity by at least 3,500-fold but also decreases the maximal rate of nucleotide incorporation by 11.5-fold. This suggests that bacteria acquiring this mutation would be likely to replicate slowly and be unable to out-compete wild-type strains in the absence of inhibitors, reducing the likelihood of the resistant bacteria propagating and spreading resistance.
Collapse
Affiliation(s)
- Rachel Nelson-Rigg
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - Sean P. Fagan
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - William J. Jaremko
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Janice D. Pata
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| |
Collapse
|
5
|
Sun L, Zhuang H, Di L, Ling X, Yin Y, Wang Z, Chen M, Jiang S, Chen Y, Zhu F, Wang H, Ji S, Sun L, Wu D, Yu Y, Chen Y. Transmission and microevolution of methicillin-resistant Staphylococcus aureus ST88 strain among patients, healthcare workers, and household contacts at a trauma and orthopedic ward. Front Public Health 2023; 10:1053785. [PMID: 36699930 PMCID: PMC9868773 DOI: 10.3389/fpubh.2022.1053785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Background Surgical sites infections (SSIs) caused by Methicillin-resistant Staphylococcus aureus (MRSA) constitute a major clinical problem. Understanding the transmission mode of MRSA is important for its prevention and control. Aim We investigated the transmission mode of a MRSA outbreak in a trauma and orthopedic hospital ward. Methods Clinical data were collected from patients (n = 9) with MRSA infection in a trauma and orthopedic ward from January 1, 2015 to December 31, 2019. The wards (n = 18), patients (n = 48), medical staff (n = 23), and their households (n = 5) were screened for MRSA. The transmission mode of MRSA isolates was investigated using next-generation sequencing and phylogenetic analyses. The resistance genes, plasmids, and single-nucleotide variants of the isolates were analyzed to evaluate microevolution of MRSA isolates causing SSIs. The MRSA colonization-positive doctor was asked to suspend his medical activities to stop MRSA spread. Findings Nine MRSA infected patients were investigated, of which three patients were diagnosed with SSI and had prolonged hospitalization due to the persistent MRSA infection. After screening, MRSA isolates were not detected in environmental samples. The surgeon in charge of the patients with SSI caused by MRSA and his son were positive for MRSA colonization. The MRSA from the son was closely related to the isolates detected in MRSA-induced SSIs patients with 8-9 single-nucleotide variants, while ST88-MRSA isolates with three different spa types were detected in the surgeon's nasal cavity. Comparative genomic analysis showed that ST88-MRSA isolates acquired mutations in genes related to cell wall synthesis, colonization, metabolism, and virulence during their transmission. Suspending the medical activity of this surgeon interrupted the spread of MRSA infection in this ward. Conclusion Community-associated MRSA clones can invade hospitals and cause severe postoperative nosocomial infections. Further MRSA surveillance in the households of health workers may prevent the transition of MRSA from colonization to infection.
Collapse
Affiliation(s)
- Long Sun
- Department of Clinical Laboratory, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Zhejiang, China
| | - Hemu Zhuang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingfang Di
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Department of Clinical Laboratory, Tongxiang First People's Hospital, Tongxiang, Zhejiang, China
| | - Xia Ling
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Blood Center of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yiping Yin
- Hospital Infection Control Office, Hospital of Zhejiang People's Armed Police, Zhejiang, China
| | - Zhengan Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengzhen Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengnan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiyi Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feiteng Zhu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiping Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shujuan Ji
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dandan Wu
- Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Yunsong Yu ✉
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Yan Chen ✉
| |
Collapse
|
7
|
Kumari A, Yadav A, Lahiri I. Transient State Kinetics of Plasmodium falciparum Apicoplast DNA Polymerase Suggests the Involvement of Accessory Factors for Efficient and Accurate DNA Synthesis. Biochemistry 2022; 61:2319-2333. [PMID: 36251801 DOI: 10.1021/acs.biochem.2c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmodium, the causative agent of malaria, belongs to the phylum Apicomplexa. Most apicomplexans, including Plasmodium, contain an essential nonphotosynthetic plastid called the apicoplast that harbors its own genome that is replicated by a dedicated organellar replisome. This replisome employs a single DNA polymerase (apPol), which is expected to perform both replicative and translesion synthesis. Unlike other replicative polymerases, no processivity factor for apPol has been identified. While preliminary structural and biochemical studies have provided an overall characterization of apPol, the kinetic mechanism of apPol's activity remains unknown. We have used transient state methods to determine the kinetics of replicative and translesion synthesis by apPol and show that apPol has low processivity and efficiency while copying undamaged DNA. Moreover, while apPol can bypass oxidatively damaged lesions, the bypass is error-prone. Taken together, our results raise the following question─how does a polymerase with low processivity, efficiency, and fidelity (for translesion synthesis) faithfully replicate the apicoplast organellar DNA within the hostile environment of the human host? We hypothesize that interactions with putative components of the apicoplast replisome and/or an as-yet-undiscovered processivity factor transform apPol into an efficient and accurate enzyme.
Collapse
Affiliation(s)
- Anamika Kumari
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Anjali Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Indrajit Lahiri
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India.,Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| |
Collapse
|