1
|
Zhuo C, Gao J, Li A, Liu X, Zhao Y. A Machine Learning Method for RNA-Small Molecule Binding Preference Prediction. J Chem Inf Model 2024; 64:7386-7397. [PMID: 39265103 DOI: 10.1021/acs.jcim.4c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The interaction between RNA and small molecules is crucial in various biological functions. Identifying molecules targeting RNA is essential for the inhibitor design and RNA-related studies. However, traditional methods focus on learning RNA sequence and secondary structure features and neglect small molecule characteristics, and resulting in poor performance on unknown small molecule testing. To overcome this limitation, we developed a double-layer stacking-based machine learning model called ZHMol-RLinter. This approach more effectively predicts RNA-small molecule binding preferences by learning RNA and small molecule features to capture their interaction information. ZHMol-RLinter also combines sequence and secondary structural features with structural geometric and physicochemical environment information to capture the specificity of RNA spatial conformations in recognizing small molecules. Our results demonstrate that ZHMol-RLinter has a success rate of 90.8% on the published RL98 testing set, representing a significant improvement over existing methods. Additionally, ZHMol-RLinter achieved a success rate of 77.1% on the unknown small molecule UNK96 testing set, showing substantial improvement over the existing methods. The evaluation of predicted structures confirms that ZHMol-RLinter is reliable and accurate for predicting RNA-small molecule binding preferences, even for challenging unknown small molecule testing. Predicting RNA-small molecule binding preferences can help in the understanding of RNA-small molecule interactions and promote the design of RNA-related drugs for biological and medical applications.
Collapse
Affiliation(s)
- Chen Zhuo
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Jiaming Gao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Anbang Li
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Xuefeng Liu
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
2
|
Błaszczyk L, Ryczek M, Das B, Mateja-Pluta M, Bejger M, Śliwiak J, Nakatani K, Kiliszek A. Antisense RNA C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms a triplex-like structure and binds small synthetic ligand. Nucleic Acids Res 2024; 52:6707-6717. [PMID: 38738637 PMCID: PMC11194091 DOI: 10.1093/nar/gkae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/05/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
The abnormal expansion of GGGGCC/GGCCCC hexanucleotide repeats (HR) in C9orf72 is associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Structural polymorphisms of HR result in the multifactorial pathomechanism of ALS/FTD. Consequently, many ongoing studies are focused at developing therapies targeting pathogenic HR RNA. One of them involves small molecules blocking sequestration of important proteins, preventing formation of toxic nuclear foci. However, rational design of potential therapeutics is hindered by limited number of structural studies of RNA-ligand complexes. We determined the crystal structure of antisense HR RNA in complex with ANP77 ligand (1.1 Å resolution) and in the free form (0.92 and 1.5 Å resolution). HR RNA folds into a triplex structure composed of four RNA chains. ANP77 interacted with two neighboring single-stranded cytosines to form pseudo-canonical base pairs by adopting sandwich-like conformation and adjusting the position of its naphthyridine units to the helical twist of the RNA. In the unliganded structure, the cytosines formed a peculiar triplex i-motif, assembled by trans C•C+ pair and a third cytosine located at the Hoogsteen edge of the C•C+ pair. These results extend our knowledge of the structural polymorphisms of HR and can be used for rational design of small molecules targeting disease-related RNAs.
Collapse
Affiliation(s)
- Leszek Błaszczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poland
| | - Marcin Ryczek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poland
| | - Bimolendu Das
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Martyna Mateja-Pluta
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poland
| | - Magdalena Bejger
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poland
| | - Joanna Śliwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poland
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Agnieszka Kiliszek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poland
| |
Collapse
|
3
|
Nagasawa R, Onizuka K, Komatsu KR, Miyashita E, Murase H, Ojima K, Ishikawa S, Ozawa M, Saito H, Nagatsugi F. Large-scale analysis of small molecule-RNA interactions using multiplexed RNA structure libraries. Commun Chem 2024; 7:98. [PMID: 38693284 DOI: 10.1038/s42004-024-01181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
The large-scale analysis of small-molecule binding to diverse RNA structures is key to understanding the required interaction properties and selectivity for developing RNA-binding molecules toward RNA-targeted therapies. Here, we report a new system for performing the large-scale analysis of small molecule-RNA interactions using a multiplexed pull-down assay with RNA structure libraries. The system profiled the RNA-binding landscapes of G-clamp and thiazole orange derivatives, which recognizes an unpaired guanine base and are good probes for fluorescent indicator displacement (FID) assays, respectively. We discuss the binding preferences of these molecules based on their large-scale affinity profiles. In addition, we selected combinations of fluorescent indicators and different ranks of RNA based on the information and screened for RNA-binding molecules using FID. RNAs with high- and intermediate-rank RNA provided reliable results. Our system provides fundamental information about small molecule-RNA interactions and facilitates the discovery of novel RNA-binding molecules.
Collapse
Affiliation(s)
- Ryosuke Nagasawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Miyagi, 980-8578, Japan
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan.
- Department of Chemistry, Graduate School of Science, Tohoku University, Miyagi, 980-8578, Japan.
- Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Miyagi, 980-8577, Japan.
| | - Kaoru R Komatsu
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Emi Miyashita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Hirotaka Murase
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan
| | - Kanna Ojima
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Miyagi, 980-8578, Japan
| | - Shunya Ishikawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Miyagi, 980-8578, Japan
| | - Mamiko Ozawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan
| | - Hirohide Saito
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan.
- Department of Chemistry, Graduate School of Science, Tohoku University, Miyagi, 980-8578, Japan.
| |
Collapse
|
4
|
Ottesen EW, Singh NN, Luo D, Kaas B, Gillette B, Seo J, Jorgensen H, Singh RN. Diverse targets of SMN2-directed splicing-modulating small molecule therapeutics for spinal muscular atrophy. Nucleic Acids Res 2023; 51:5948-5980. [PMID: 37026480 PMCID: PMC10325915 DOI: 10.1093/nar/gkad259] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Designing an RNA-interacting molecule that displays high therapeutic efficacy while retaining specificity within a broad concentration range remains a challenging task. Risdiplam is an FDA-approved small molecule for the treatment of spinal muscular atrophy (SMA), the leading genetic cause of infant mortality. Branaplam is another small molecule which has undergone clinical trials. The therapeutic merit of both compounds is based on their ability to restore body-wide inclusion of Survival Motor Neuron 2 (SMN2) exon 7 upon oral administration. Here we compare the transcriptome-wide off-target effects of these compounds in SMA patient cells. We captured concentration-dependent compound-specific changes, including aberrant expression of genes associated with DNA replication, cell cycle, RNA metabolism, cell signaling and metabolic pathways. Both compounds triggered massive perturbations of splicing events, inducing off-target exon inclusion, exon skipping, intron retention, intron removal and alternative splice site usage. Our results of minigenes expressed in HeLa cells provide mechanistic insights into how these molecules targeted towards a single gene produce different off-target effects. We show the advantages of combined treatments with low doses of risdiplam and branaplam. Our findings are instructive for devising better dosing regimens as well as for developing the next generation of small molecule therapeutics aimed at splicing modulation.
Collapse
Affiliation(s)
- Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Diou Luo
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Bailey Kaas
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Benjamin J Gillette
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Hannah J Jorgensen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
5
|
Lau MHY, Wong CH, Chan HYE, Au-Yeung HY. Development of Fluorescent Turn-On Probes for CAG-RNA Repeats. BIOSENSORS 2022; 12:1080. [PMID: 36551047 PMCID: PMC9775061 DOI: 10.3390/bios12121080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Fluorescent sensing of nucleic acids is a highly sensitive and efficient bioanalytical method for their study in cellular processes, detection and diagnosis in related diseases. However, the design of small molecule fluorescent probes for the selective binding and detection of RNA of a specific sequence is very challenging because of their diverse, dynamic, and flexible structures. By modifying a bis(amidinium)-based small molecular binder that is known to selectively target RNA with CAG repeats using an environment-sensitive fluorophore, a turn-on fluorescent probe featuring aggregation-induced emission (AIE) is successfully developed in this proof-of-concept study. The probe (DB-TPE) exhibits a strong, 19-fold fluorescence enhancement upon binding to a short CAG RNA, and the binding and fluorescence response was found to be specific to the overall RNA secondary structure with A·A mismatches. These promising analytical performances suggest that the probe could be applied in pathological studies, disease progression monitoring, as well as diagnosis of related neurodegenerative diseases due to expanded CAG RNA repeats.
Collapse
Affiliation(s)
- Matthew Ho Yan Lau
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chun-Ho Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Yin Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
6
|
NAKATANI K. Possibilities and challenges of small molecule organic compounds for the treatment of repeat diseases. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:30-48. [PMID: 35013029 PMCID: PMC8795530 DOI: 10.2183/pjab.98.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
The instability of repeat sequences in the human genome results in the onset of many neurological diseases if the repeats expand above a certain threshold. The transcripts containing long repeats sequester RNA binding proteins. The mechanism of repeat instability involves metastable slip-out hairpin DNA structures. Synthetic organic chemists have focused on the development of small organic molecules targeting repeat DNA and RNA sequences to treat neurological diseases with repeat-binding molecules. Our laboratory has studied a series of small molecules binding to mismatched base pairs and found molecules capable of binding CAG repeat DNA, which causes Huntington's disease upon expansion, CUG repeat RNA, a typical toxic RNA causing myotonic dystrophy type 1, and UGGAA repeat RNA causing spinocerebellar ataxia type 31. These molecules exhibited significant beneficial effects on disease models in vivo, suggesting the possibilities for small molecules as drugs for treating these neurological diseases.
Collapse
Affiliation(s)
- Kazuhiko NAKATANI
- SANKEN, The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan
| |
Collapse
|