1
|
Deng H, Cao H, Wang Y, Li J, Dai J, Li LF, Qiu HJ, Li S. Viral replication organelles: the highly complex and programmed replication machinery. Front Microbiol 2024; 15:1450060. [PMID: 39144209 PMCID: PMC11322364 DOI: 10.3389/fmicb.2024.1450060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Viral infections usually induce the rearrangement of cellular cytoskeletal proteins and organelle membrane structures, thus creating independent compartments [termed replication organelles (ROs)] to facilitate viral genome replication. Within the ROs, viral replicases, including polymerases, helicases, and ligases, play functional roles during viral replication. These viral replicases are pivotal in the virus life cycle, and numerous studies have demonstrated that the viral replicases could be the potential targets for drugs development. Here, we summarize primarily the key replicases within viral ROs and emphasize the advancements of antiviral drugs targeting crucial viral replicases, providing novel insights into the future development of antiviral strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
2
|
Roche R, Tarafder S, Bhattacharya D. Single-sequence protein-RNA complex structure prediction by geometric attention-enabled pairing of biological language models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.27.605468. [PMID: 39091736 PMCID: PMC11291176 DOI: 10.1101/2024.07.27.605468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Ground-breaking progress has been made in structure prediction of biomolecular assemblies, including the recent breakthrough of AlphaFold 3. However, it remains challenging for AlphaFold 3 and other state-of-the-art deep learning-based methods to accurately predict protein-RNA complex structures, in part due to the limited availability of evolutionary and structural information related to protein-RNA interactions that are used as inputs to the existing approaches. Here, we introduce ProRNA3D-single, a new deep-learning framework for protein-RNA complex structure prediction with only single-sequence input. Using a novel geometric attention-enabled pairing of biological language models of protein and RNA, a previously unexplored avenue, ProRNA3D-single enables the prediction of interatomic protein-RNA interaction maps, which are then transformed into multi-scale geometric restraints for modeling 3D structures of protein-RNA complexes via geometry optimization. Benchmark tests show that ProRNA3D-single convincingly outperforms current state-of-the-art methods including AlphaFold 3, particularly when evolutionary information is limited; and exhibits remarkable robustness and performance resilience by attaining better accuracy with only single-sequence input than what most methods can achieve even with explicit evolutionary information. Freely available at https://github.com/Bhattacharya-Lab/ProRNA3D-single, ProRNA3D-single should be broadly useful for modeling 3D structures of protein-RNA complexes at scale, regardless of the availability of evolutionary information.
Collapse
Affiliation(s)
- Rahmatullah Roche
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Sumit Tarafder
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Debswapna Bhattacharya
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States of America
| |
Collapse
|
3
|
Guo W, Gu P, Li Y, Zhang C, Wang D, Zhang Y, Hao X, Liu G, Zhou S. Synthesis of tetraphenylethylene-based small molecular sensor for the selective "turn-on" detection of pyrophosphoric acid in the aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123990. [PMID: 38340450 DOI: 10.1016/j.saa.2024.123990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Pyrophosphoric acid (PPi) is a crucial indicator for monitoring adenosine triphosphate hydrolysis processes, and abnormal PPi levels in the human body seriously threaten human health. Thus the efficient detection of the concentration of PPi in the aqueous solution is important and urgent. This paper described the successful synthesis of a tetraphenylethylene (TPE) derivative, named as TPE-4B, which contained four chelate pyridinium groups exhibiting aggregation-induced emission characteristics. TPE-4B was explicitly developed for the selective and sensitive fluorescence detection of PPi in aqueous solutions, showing a fluorescence "turn-on" response, and the detection limit was 65 nM. The four chelate pyridinium moieties of TPE-4B exhibited robust electrostatic interactions and binding capacity towards PPi, leading to the formation of aggregations, which was confirmed by zeta potential, dynamic light scattering, and scanning electron microscopy. Compared with free TPE-4B in the aqueous solution, the zeta potential of aggregations decreased from 20.7 to 4.2 mV, the average diameter increased from 155 to 403 nm, and the morphology transformed from porous nanostructures into a block-like format. Leveraging these properties, TPE-4B is a promising candidate for a "turn-on" fluorescence sensor designed to detect PPi in the aqueous solution.
Collapse
Affiliation(s)
- Wenxiu Guo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Peiyang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ye Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xiaoqiong Hao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Guangfeng Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Shiyuan Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
4
|
Fang X, Lu G, Deng Y, Yang S, Hou C, Gong P. Unusual substructure conformations observed in crystal structures of a dicistrovirus RNA-dependent RNA polymerase suggest contribution of the N-terminal extension in proper folding. Virol Sin 2023; 38:531-540. [PMID: 37156298 PMCID: PMC10436059 DOI: 10.1016/j.virs.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023] Open
Abstract
The Dicistroviridae is a virus family that includes many insect pathogens. These viruses contain a positive-sense RNA genome that is replicated by the virally encoded RNA-dependent RNA polymerase (RdRP) also named 3Dpol. Compared with the Picornaviridae RdRPs such as poliovirus (PV) 3Dpol, the Dicistroviridae representative Israeli acute paralysis virus (IAPV) 3Dpol has an additional N-terminal extension (NE) region that is about 40-residue in length. To date, both the structure and catalytic mechanism of the Dicistroviridae RdRP have remain elusive. Here we reported crystal structures of two truncated forms of IAPV 3Dpol, namely Δ85 and Δ40, both missing the NE region, and the 3Dpol protein in these structures exhibited three conformational states. The palm and thumb domains of these IAPV 3Dpol structures are largely consistent with those of the PV 3Dpol structures. However, in all structures, the RdRP fingers domain is partially disordered, while different conformations of RdRP substructures and interactions between them are also present. In particular, a large-scale conformational change occurred in the motif B-middle finger region in one protein chain of the Δ40 structure, while a previously documented alternative conformation of motif A was observed in all IAPV structures. These experimental data on one hand show intrinsic conformational variances of RdRP substructures, and on the other hand suggest possible contribution of the NE region in proper RdRP folding in IAPV.
Collapse
Affiliation(s)
- Xiang Fang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoliang Lu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China
| | - Yanchun Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chunsheng Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, 430207, China.
| |
Collapse
|