1
|
Li ZH, Zhou XL. Eukaryotic AlaX provides multiple checkpoints for quality and quantity of aminoacyl-tRNAs in translation. Nucleic Acids Res 2024; 52:7825-7842. [PMID: 38869066 PMCID: PMC11260482 DOI: 10.1093/nar/gkae486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Translational fidelity relies critically on correct aminoacyl-tRNA supply. The trans-editing factor AlaX predominantly hydrolyzes Ser-tRNAAla, functioning as a third sieve of alanyl-tRNA synthetase (AlaRS). Despite extensive studies in bacteria and archaea, the mechanism of trans-editing in mammals remains largely unknown. Here, we show that human AlaX (hAlaX), which is exclusively distributed in the cytoplasm, is an active trans-editing factor with strict Ser-specificity. In vitro, both hAlaX and yeast AlaX (ScAlaX) were capable of hydrolyzing nearly all Ser-mischarged cytoplasmic and mitochondrial tRNAs; and robustly edited cognate Ser-charged cytoplasmic and mitochondrial tRNASers. In vivo or cell-based studies revealed that loss of ScAlaX or hAlaX readily induced Ala- and Thr-to-Ser misincorporation. Overexpression of hAlaX impeded the decoding efficiency of consecutive Ser codons, implying its regulatory role in Ser codon decoding. Remarkably, yeast cells with ScAlaX deletion responded differently to translation inhibitor treatment, with a gain in geneticin resistance, but sensitivity to cycloheximide, both of which were rescued by editing-capable ScAlaX, alanyl- or threonyl-tRNA synthetase. Altogether, our results demonstrated the previously undescribed editing peculiarities of eukaryotic AlaXs, which provide multiple checkpoints to maintain the speed and fidelity of genetic decoding.
Collapse
Affiliation(s)
- Zi-Han Li
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Xiao-Long Zhou
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
2
|
Barai P, Chen J. Beyond protein synthesis: non-translational functions of threonyl-tRNA synthetases. Biochem Soc Trans 2024; 52:661-670. [PMID: 38477373 PMCID: PMC11088916 DOI: 10.1042/bst20230506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Aminoacyl-tRNA synthetases (AARSs) play an indispensable role in the translation of mRNAs into proteins. It has become amply clear that AARSs also have non-canonical or non-translational, yet essential, functions in a myriad of cellular and developmental processes. In this mini-review we discuss the current understanding of the roles of threonyl-tRNA synthetase (TARS) beyond protein synthesis and the underlying mechanisms. The two proteins in eukaryotes - cytoplasmic TARS1 and mitochondrial TARS2 - exert their non-canonical functions in the regulation of gene expression, cell signaling, angiogenesis, inflammatory responses, and tumorigenesis. The TARS proteins utilize a range of biochemical mechanisms, including assembly of a translation initiation complex, unexpected protein-protein interactions that lead to activation or inhibition of intracellular signaling pathways, and cytokine-like signaling through cell surface receptors in inflammation and angiogenesis. It is likely that new functions and novel mechanisms will continue to emerge for these multi-talented proteins.
Collapse
Affiliation(s)
- Pallob Barai
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
3
|
Zhang Y, Zhou JB, Yin Y, Wang ED, Zhou XL. Multifaceted roles of t6A biogenesis in efficiency and fidelity of mitochondrial gene expression. Nucleic Acids Res 2024; 52:3213-3233. [PMID: 38227555 PMCID: PMC11014344 DOI: 10.1093/nar/gkae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
N 6-Threonylcarbamoyladenosine at A37 (t6A37) of ANN-decoding transfer RNAs (tRNAs) is a universal modification whose functions have been well documented in bacteria and lower eukaryotes; however, its role in organellar translation is not completely understood. In this study, we deleted the mitochondrial t6A37-modifying enzyme OSGEPL1 in HEK293T cells. OSGEPL1 is dispensable for cell viability. t6A37 hypomodification selectively stimulated N1-methyladenosine at A9 (m1A9) and N2-methylguanosine at G10 (m2G10) modifications and caused a substantial reduction in the aminoacylation of mitochondrial tRNAThr and tRNALys, resulting in impaired translation efficiency. Multiple types of amino acid misincorporation due to the misreading of near-cognate codons by t6A37-unmodified tRNAs were detected, indicating a triggered translational infidelity. Accordingly, the alterations in mitochondrial structure, function, and the activated mitochondrial unfolded protein response were observed. Mitochondrial function was efficiently restored by wild-type, but not by tRNA-binding-defective OSGEPL1. Lastly, in Osgepl1 deletion mice, disruption to mitochondrial translation was evident but resulted in no observable deficiency under physiological conditions in heart, which displays the highest Osgepl1 expression. Taken together, our data delineate the multifaceted roles of mitochondrial t6A37 modification in translation efficiency and quality control in mitochondria.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Jing-Bo Zhou
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, 333 Haike Road, Shanghai 201210, China
| | - En-Duo Wang
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Xiao-Long Zhou
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
4
|
Zhang JH, Eriani G, Zhou XL. Pathophysiology of human mitochondrial tRNA metabolism. Trends Endocrinol Metab 2024; 35:285-289. [PMID: 38307811 DOI: 10.1016/j.tem.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/04/2024]
Abstract
Mitochondria play multiple critical roles in cellular activity. In particular, mitochondrial translation is pivotal in the regulation of mitochondrial and cellular homeostasis. In this forum article, we discuss human mitochondrial tRNA metabolism and highlight its tight connection with various mitochondrial diseases caused by mutations in aminoacyl-tRNA synthetases, tRNAs, and tRNA-modifying enzymes.
Collapse
Affiliation(s)
- Jian-Hui Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Gilbert Eriani
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 allée Konrad Roentgen, 67084 Strasbourg, France.
| | - Xiao-Long Zhou
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.
| |
Collapse
|
5
|
Huang MH, Wang JT, Zhang JH, Mao XL, Peng GX, Lin X, Lv D, Yuan C, Lin H, Wang ED, Zhou XL. Mitochondrial RNA m 3C methyltransferase METTL8 relies on an isoform-specific N-terminal extension and modifies multiple heterogenous tRNAs. Sci Bull (Beijing) 2023; 68:2094-2105. [PMID: 37573249 DOI: 10.1016/j.scib.2023.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 08/14/2023]
Abstract
Methyltransferase-like 8 (METTL8) encodes a mitochondria-localized METTL8-Iso1 and a nucleolus-distributed METTL8-Iso4 isoform, which differ only in their N-terminal extension (N-extension), by mRNA alternative splicing. METTL8-Iso1 generates 3-methylcytidine at position 32 (m3C32) of mitochondrial tRNAThr and tRNASer(UCN). Whether METTL8-Iso4 is an active m3C32 methyltransferase and the role of the N-extension in mitochondrial tRNA m3C32 formation remain unclear. Here, we revealed that METTL8-Iso4 was inactive in m3C32 generation due to the lack of N-extension, which contains several absolutely conserved modification-critical residues; the counterparts were likewise essential in cytoplasmic m3C32 biogenesis by methyltransferase-like 2A (METTL2A) or budding yeasts tRNA N3-methylcytidine methyltransferase (Trm140), in vitro and in vivo. Cross-compartment/species tRNA modification assays unexpectedly found that METTL8-Iso1 efficiently introduced m3C32 to several cytoplasmic or even bacterial tRNAs in vitro. m3C32 did not influence tRNAThrN6-threonylcarbamoyladenosine (t6A) modification or aminoacylation. In addition to its interaction with mitochondrial seryl-tRNA synthetase (SARS2), we further discovered an interaction between mitochondrial threonyl-tRNA synthetase (TARS2) and METTL8-Iso1. METTL8-Iso1 substantially stimulated the aminoacylation activities of SARS2 and TARS2 in vitro, suggesting a functional connection between mitochondrial tRNA modification and charging. Altogether, our results deepen the mechanistic insights into mitochondrial m3C32 biogenesis and provide a valuable route to prepare cytoplasmic/bacterial tRNAs with only a m3C32 moiety, aiding in future efforts to investigate its effects on tRNA structure and function.
Collapse
Affiliation(s)
- Meng-Han Huang
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin-Tao Wang
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian-Hui Zhang
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xue-Ling Mao
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Gui-Xin Peng
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiuying Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; School of Life Sciences, Hainan University, Haikou 570228, China
| | - Daizhu Lv
- Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Chen Yuan
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Huan Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - En-Duo Wang
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Xiao-Long Zhou
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
6
|
Zheng WQ, Zhang JH, Li ZH, Liu X, Zhang Y, Huang S, Li J, Zhou B, Eriani G, Wang ED, Zhou XL. Mammalian mitochondrial translation infidelity leads to oxidative stress-induced cell cycle arrest and cardiomyopathy. Proc Natl Acad Sci U S A 2023; 120:e2309714120. [PMID: 37669377 PMCID: PMC10500172 DOI: 10.1073/pnas.2309714120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023] Open
Abstract
Proofreading (editing) of mischarged tRNAs by cytoplasmic aminoacyl-tRNA synthetases (aaRSs), whose impairment causes neurodegeneration and cardiac diseases, is of high significance for protein homeostasis. However, whether mitochondrial translation needs fidelity and the significance of editing by mitochondrial aaRSs have been unclear. Here, we show that mammalian cells critically depended on the editing of mitochondrial threonyl-tRNA synthetase (mtThrRS, encoded by Tars2), disruption of which accumulated Ser-tRNAThr and generated a large abundance of Thr-to-Ser misincorporated peptides in vivo. Such infidelity impaired mitochondrial translation and oxidative phosphorylation, causing oxidative stress and cell cycle arrest in the G0/G1 phase. Notably, reactive oxygen species (ROS) scavenging by N-acetylcysteine attenuated this abnormal cell proliferation. A mouse model of heart-specific defective mtThrRS editing was established. Increased ROS levels, blocked cardiomyocyte proliferation, contractile dysfunction, dilated cardiomyopathy, and cardiac fibrosis were observed. Our results elucidate that mitochondria critically require a high level of translational accuracy at Thr codons and highlight the cellular dysfunctions and imbalance in tissue homeostasis caused by mitochondrial mistranslation.
Collapse
Affiliation(s)
- Wen-Qiang Zheng
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Jian-Hui Zhang
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
| | - Zi-Han Li
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Xiuxiu Liu
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Yong Zhang
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Shuo Huang
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Jinsong Li
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
| | - Bin Zhou
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
| | - Gilbert Eriani
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, Strasbourg67084, France
| | - En-Duo Wang
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Xiao-Long Zhou
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
| |
Collapse
|
7
|
Loguercio Polosa P, Capriglia F, Bruni F. Molecular Investigation of Mitochondrial RNA19 Role in the Pathogenesis of MELAS Disease. Life (Basel) 2023; 13:1863. [PMID: 37763267 PMCID: PMC10532844 DOI: 10.3390/life13091863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
In mammalian mitochondria, the processing of primary RNA transcripts involves a coordinated series of cleavage and modification events, leading to the formation of processing intermediates and mature mt-RNAs. RNA19 is an unusually stable unprocessed precursor, physiologically polyadenylated, which includes the 16S mt-rRNA, the mt-tRNALeuUUR and the mt-ND1 mRNA. These peculiarities, together with the alteration of its steady-state levels in cellular models with defects in mitochondrial function, make RNA19 a potentially important molecule for the physiological regulation of mitochondrial molecular processes as well as for the pathogenesis of mitochondrial diseases. In this work, we quantitatively and qualitatively examined RNA19 in MELAS trans-mitochondrial cybrids carrying the mtDNA 3243A>G transition and displaying a profound mitochondrial translation defect. Through a combination of isokinetic sucrose gradient and RT-qPCR experiments, we found that RNA19 accumulated and co-sedimented with the mitoribosomal large subunit (mt-LSU) in mutant cells. Intriguingly, exogenous expression of the isolated LARS2 C-terminal domain (Cterm), which was shown to rescue defective translation in MELAS cybrids, decreased the levels of mt-LSU-associated RNA19 by relegating it to the pool of free unbound RNAs. Overall, the data reported here support a regulatory role for RNA19 in mitochondrial physiopathological processes, designating this RNA precursor as a possible molecular target in view of therapeutic strategy development.
Collapse
Affiliation(s)
| | | | - Francesco Bruni
- Department of Biosciences, Biotechnologies and Environment, University of Bari ‘Aldo Moro’, 70125 Bari, Italy; (P.L.P.); (F.C.)
| |
Collapse
|
8
|
Tyynismaa H. Disease models of mitochondrial aminoacyl-tRNA synthetase defects. J Inherit Metab Dis 2023; 46:817-823. [PMID: 37410890 DOI: 10.1002/jimd.12652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/12/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Mitochondrial aminoacyl-tRNA synthetases (mtARS) are enzymes critical for the first step of mitochondrial protein synthesis by charging mitochondrial tRNAs with their cognate amino acids. Pathogenic variants in all 19 nuclear mtARS genes are now recognized as causing recessive mitochondrial diseases. Most mtARS disorders affect the nervous system, but the phenotypes range from multisystem diseases to tissue-specific manifestations. However, the mechanisms behind the tissue specificities are poorly understood, and challenges remain in obtaining accurate disease models for developing and testing treatments. Here, some of the currently existing disease models that have increased our understanding of mtARS defects are discussed.
Collapse
Affiliation(s)
- Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Tijaro-Bulla S, Nyandwi SP, Cui H. Physiological and engineered tRNA aminoacylation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1789. [PMID: 37042417 DOI: 10.1002/wrna.1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 04/13/2023]
Abstract
Aminoacyl-tRNA synthetases form the protein family that controls the interpretation of the genetic code, with tRNA aminoacylation being the key chemical step during which an amino acid is assigned to a corresponding sequence of nucleic acids. In consequence, aminoacyl-tRNA synthetases have been studied in their physiological context, in disease states, and as tools for synthetic biology to enable the expansion of the genetic code. Here, we review the fundamentals of aminoacyl-tRNA synthetase biology and classification, with a focus on mammalian cytoplasmic enzymes. We compile evidence that the localization of aminoacyl-tRNA synthetases can be critical in health and disease. In addition, we discuss evidence from synthetic biology which made use of the importance of subcellular localization for efficient manipulation of the protein synthesis machinery. This article is categorized under: RNA Processing Translation > Translation Regulation RNA Processing > tRNA Processing RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
| | | | - Haissi Cui
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Gui Z, Liu P, Zhang D, Wang W. Clinical implications and immune implications features of TARS1 in breast cancer. Front Oncol 2023; 13:1207867. [PMID: 37637061 PMCID: PMC10455957 DOI: 10.3389/fonc.2023.1207867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Background There has been an increase in the number of women suffering from breast cancer in recent years, and discovering new therapeutic targets and efficacy predictive markers is critical for comprehensive breast cancer treatment. Methods First, we used bioinformatics methods to analyze TARS1(encoding cytoplasmicthreonyl-tRNA synthetase) expression, prognosis, and clinicopathological characteristics in TCGA database breast cancers, and then we collected breast cancer specimens from our center for validation. TARS1 was then subjected to GSEA (Gene Set Enrichment Analysis) enrichment analysis, GO/KEGG pathway enrichment analysis, and breast cancer immune infiltration characterization. As a last step, we examined TARS1's effects on breast cancer cell behavior with cellular assays. Results The overexpression of TARS1 has been found in several malignant tumors, including breast cancer, and has been linked to poor prognoses. Breast cancers with large primary tumors and negative hormone receptors are more likely to overexpress TARS1. Overexpression of TARS1 promotes the infiltration of T cells, such as Tregs and Th2s, while inhibiting the infiltration of NK cells and CD8+ T cells, which are anticancer cells in breast cancer. TARS1 was also found to be co-expressed with the majority of immune checkpoint-related genes, and breast cancer with TARS1 overexpression responded better to immunotherapy. By knocking down TARS1, breast cancer cells were prevented from proliferating and invading, as well as exhibiting other malignant biological properties. Conclusion According to our study, TARS1 may be an oncogene in breast cancer and may be a biomarker of efficacy or a target of immunotherapy in breast cancer.
Collapse
Affiliation(s)
- Zhengwei Gui
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Breast and Thyroid Surgery, Tongji Hospital, Wuhan, Hubei, China
| | - Piao Liu
- Department of General Surgery, Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, China
| | - Dong Zhang
- Department of General Surgery, Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, China
| | - Wanju Wang
- Department of General Surgery, Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, China
| |
Collapse
|
11
|
Sun CL, Van Gilst M, Crowder CM. Hypoxia-induced mitochondrial stress granules. Cell Death Dis 2023; 14:448. [PMID: 37468471 PMCID: PMC10356818 DOI: 10.1038/s41419-023-05988-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Perturbations of mitochondrial proteostasis have been associated with aging, neurodegenerative diseases, and recently with hypoxic injury. While examining hypoxia-induced mitochondrial protein aggregation in C. elegans, we found that sublethal hypoxia, sodium azide, or heat shock-induced abundant ethidium bromide staining mitochondrial granules that preceded evidence of protein aggregation. Genetic manipulations that reduce cellular and organismal hypoxic death block the formation of these mitochondrial stress granules (mitoSG). Knockdown of mitochondrial nucleoid proteins also blocked the formation of mitoSG by a mechanism distinct from the mitochondrial unfolded protein response. Lack of the major mitochondrial matrix protease LONP-1 resulted in the constitutive formation of mitoSG without external stress. Ethidium bromide-staining RNA-containing mitochondrial granules were also observed in rat cardiomyocytes treated with sodium azide, a hypoxia mimetic. Mitochondrial stress granules are an early mitochondrial pathology controlled by LONP and the nucleoid, preceding hypoxia-induced protein aggregation.
Collapse
Affiliation(s)
- Chun-Ling Sun
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, 98109, USA
- Mitochondrial and Metabolism Center, University of Washington School of Medicine, Seattle, Washington, 98109, USA
| | - Marc Van Gilst
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, 98109, USA
- Mitochondrial and Metabolism Center, University of Washington School of Medicine, Seattle, Washington, 98109, USA
| | - C Michael Crowder
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, 98109, USA.
- Mitochondrial and Metabolism Center, University of Washington School of Medicine, Seattle, Washington, 98109, USA.
- Department of Genome Science, University of Washington School of Medicine, Seattle, Washington, 98109, USA.
| |
Collapse
|
12
|
Zeng QY, Zhang F, Zhang JH, Hei Z, Li ZH, Huang MH, Fang P, Wang ED, Sun XJ, Zhou XL. Loss of threonyl-tRNA synthetase-like protein Tarsl2 has little impact on protein synthesis but affects mouse development. J Biol Chem 2023; 299:104704. [PMID: 37059185 DOI: 10.1016/j.jbc.2023.104704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential components for mRNA translation. Two sets of aaRSs are required for cytoplasmic and mitochondrial translation in vertebrates. Interestingly, TARSL2 is a recently evolved duplicated gene of TARS1 (encoding cytoplasmic threonyl-tRNA synthetase) and represents the only duplicated aaRS gene in vertebrates. Although TARSL2 retains the canonical aminoacylation and editing activities in vitro, whether it is a true tRNA synthetase for mRNA translation in vivo is unclear. In this study, we showed that Tars1 is an essential gene since homozygous Tars1 knockout mice were lethal. In contrast, when Tarsl2 was deleted in mice and zebrafish, neither the abundance nor the charging levels of tRNAThrs were changed, indicating that cells relied on Tars1 but not on Tarsl2 for mRNA translation. Furthermore, Tarsl2 deletion did not influence the integrity of the multiple tRNA synthetase complex (MSC), suggesting that Tarsl2 is a peripheral member of the MSC. Finally, we observed that Tarsl2-deleted mice exhibited severe developmental retardation, elevated metabolic capacity, and abnormal bone and muscle development after 3 weeks. Collectively, these data suggest that, despite its intrinsic activity, loss of Tarsl2 has little influence on protein synthesis but does affect mouse development.
Collapse
Affiliation(s)
- Qi-Yu Zeng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031
| | - Fan Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200010
| | - Jian-Hui Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024
| | - Zhoufei Hei
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zi-Han Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031
| | - Meng-Han Huang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031.
| | - Xiao-Jian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200010.
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024.
| |
Collapse
|