1
|
Jiménez-Cortegana C, Sánchez-Jiménez F, De La Cruz-Merino L, Sánchez-Margalet V. Role of Sam68 in different types of cancer (Review). Int J Mol Med 2025; 55:3. [PMID: 39450529 PMCID: PMC11537268 DOI: 10.3892/ijmm.2024.5444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Src‑associated in mitosis 68 kDa protein (Sam68) is a protein encoded by the heteronuclear ribonucleoprotein particle K homology (KH) single domain‑containing, RNA‑binding, signal transduction‑associated protein 1 (known as KHDRBS1) gene in humans. This protein contains binding sites for critical components in a variety of cellular processes, including the regulation of gene expression, RNA processing and cell signaling. Thus, Sam68 may play a role in a variety of diseases, including cancer. Sam68 has been widely demonstrated to participate in tumor cell proliferation, progression and metastasis to be involved in the regulation of cancer stem cell self‑renewal. Based on the body of evidence available, Sam68 emerges as a promising target for this disease. The objectives of the present included summarizing the role of Sam68 in cancer murine models and cancer patients, unraveling the molecular mechanisms underlying its oncogenic potential and discussing the effectiveness of antitumor agents in reducing the malignant effects of Sam68 during tumorigenesis.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Flora Sánchez-Jiménez
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, 41009 Seville, Spain
| | - Luis De La Cruz-Merino
- Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
- Medical Oncology Service, Virgen Macarena University Hospital, 41009 Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Seville, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, 41009 Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Seville, Spain
| |
Collapse
|
2
|
Modic M, Adamek M, Ule J. The impact of IDR phosphorylation on the RNA binding profiles of proteins. Trends Genet 2024; 40:580-586. [PMID: 38705823 PMCID: PMC7616821 DOI: 10.1016/j.tig.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Due to their capacity to mediate repetitive protein interactions, intrinsically disordered regions (IDRs) are crucial for the formation of various types of protein-RNA complexes. The functions of IDRs are strongly modulated by post-translational modifications (PTMs). Phosphorylation is the most common and well-studied modification of IDRs, which can alter homomeric or heteromeric interactions of proteins and impact their ability to phase separate. Moreover, phosphorylation can influence the RNA-binding properties of proteins, and recent studies demonstrated its selective impact on the global profiles of protein-RNA binding and regulation. These findings highlight the need for further integrative approaches to understand how signalling remodels protein-RNA networks in cells.
Collapse
Affiliation(s)
- Miha Modic
- National Institute of Chemistry, Ljubljana, Slovenia; The Francis Crick Institute, London, UK; UK Dementia Research Institute at King's College London, London, UK.
| | - Maksimiljan Adamek
- National Institute of Chemistry, Ljubljana, Slovenia; PhD Program 'Biosciences', Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Ule
- National Institute of Chemistry, Ljubljana, Slovenia; The Francis Crick Institute, London, UK; UK Dementia Research Institute at King's College London, London, UK.
| |
Collapse
|
3
|
Fan R, Liu F, Gong Q, Liu D, Tang S, Shen D. KHDRBS1 as a novel prognostic signaling biomarker influencing hepatocellular carcinoma cell proliferation, migration, immune microenvironment, and drug sensitivity. Front Immunol 2024; 15:1393801. [PMID: 38660302 PMCID: PMC11041018 DOI: 10.3389/fimmu.2024.1393801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Background Human tumors pose significant challenges, with targeted therapy against specific molecular targets or signaling pathways being a mainstay alongside surgical resection. Previous studies have implicated KHDRBS1 in the oncogenesis of certain human tumors such as colorectal and prostate cancers, underscoring its potential as a therapeutic target. However, the comprehensive expression pattern of KHDRBS1 in hepatocellular carcinoma (HCC) warrants further exploration. Methods Integrating and analyzing multi-omics, multi-cohort data from public databases, coupled with clinical samples and molecular biology validation, we elucidate the oncogenic role of KHDRBS1 in HCC progression. Additionally, leveraging HCC single-cell sequencing data, we segregate malignant cells into KHDRBS1-positive and negative subsets, uncovering significant differences in their expression profiles and functional roles. Results Our study identifies KHDRBS1 as a tumor-promoting factor in HCC, with its positivity correlating with tumor progression. Furthermore, we highlight the clinical significance of KHDRBS1-positive malignant cells, aiming to further propel its clinical utility. Conclusion KHDRBS1 plays a key role in HCC development. This study provides crucial insights for further investigation into KHDRBS1 as a therapeutic target in HCC.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/immunology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Tumor Microenvironment/immunology
- Cell Proliferation
- Biomarkers, Tumor
- Cell Movement
- Prognosis
- Signal Transduction
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Drug Resistance, Neoplasm/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Male
Collapse
Affiliation(s)
- Rui Fan
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fahui Liu
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qiming Gong
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Metabolic Diseases (Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, China
| | - Donghua Liu
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shihang Tang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Dongyan Shen
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
da Silva AM, Yevdokimova V, Benoit YD. Sam68 is a druggable vulnerability point in cancer stem cells. Cancer Metastasis Rev 2024; 43:441-456. [PMID: 37792222 PMCID: PMC11016129 DOI: 10.1007/s10555-023-10145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
Sam68 (Src associated in mitosis of 68 kDa) is an RNA-binding and multifunctional protein extensively characterized in numerous cellular functions, such as RNA processing, cell cycle regulation, kinase- and growth factor signaling. Recent investigations highlighted Sam68 as a primary target of a class of reverse-turn peptidomimetic drugs, initially developed as inhibitors of Wnt/β-catenin mediated transcription. Further investigations on such compounds revealed their capacity to selectively eliminate cancer stem cell (CSC) activity upon engaging Sam68. This work highlighted previously unappreciated roles for Sam68 in the maintenance of neoplastic self-renewal and tumor-initiating functions. Here, we discuss the implication of Sam68 in tumorigenesis, where central findings support its contribution to chromatin regulation processes essential to CSCs. We also review advances in CSC-targeting drug discovery aiming to modulate Sam68 cellular distribution and protein-protein interactions. Ultimately, Sam68 constitutes a vulnerability point of CSCs and an attractive therapeutic target to impede neoplastic stemness in human tumors.
Collapse
Affiliation(s)
- Amanda Mendes da Silva
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Veronika Yevdokimova
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Yannick D Benoit
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
5
|
Gupta K, Yang C, McCue K, Bastani O, Sharp PA, Burge CB, Solar-Lezama A. Improved modeling of RNA-binding protein motifs in an interpretable neural model of RNA splicing. Genome Biol 2024; 25:23. [PMID: 38229106 PMCID: PMC10790492 DOI: 10.1186/s13059-023-03162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024] Open
Abstract
Sequence-specific RNA-binding proteins (RBPs) play central roles in splicing decisions. Here, we describe a modular splicing architecture that leverages in vitro-derived RNA affinity models for 79 human RBPs and the annotated human genome to produce improved models of RBP binding and activity. Binding and activity are modeled by separate Motif and Aggregator components that can be mixed and matched, enforcing sparsity to improve interpretability. Training a new Adjusted Motif (AM) architecture on the splicing task not only yields better splicing predictions but also improves prediction of RBP-binding sites in vivo and of splicing activity, assessed using independent data.
Collapse
Affiliation(s)
- Kavi Gupta
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chenxi Yang
- Department of Computer Science, University of Texas at Austin, Austin, TX, 78712, USA
| | - Kayla McCue
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Osbert Bastani
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Phillip A Sharp
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Armando Solar-Lezama
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
6
|
Analysis of Wild Type and Variant B Cystatin C Interactome in Retinal Pigment Epithelium Cells Reveals Variant B Interacting Mitochondrial Proteins. Cells 2023; 12:cells12050713. [PMID: 36899848 PMCID: PMC10001352 DOI: 10.3390/cells12050713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Cystatin C, a secreted cysteine protease inhibitor, is abundantly expressed in retinal pigment epithelium (RPE) cells. A mutation in the protein's leader sequence, corresponding to formation of an alternate variant B protein, has been linked with an increased risk for both age-related macular degeneration (AMD) and Alzheimer's disease (AD). Variant B cystatin C displays intracellular mistrafficking with partial mitochondrial association. We hypothesized that variant B cystatin C interacts with mitochondrial proteins and impacts mitochondrial function. We sought to determine how the interactome of the disease-related variant B cystatin C differs from that of the wild-type (WT) form. For this purpose, we expressed cystatin C Halo-tag fusion constructs in RPE cells to pull down proteins interacting with either the WT or variant B form, followed by identification and quantification by mass spectrometry. We identified a total of 28 interacting proteins, of which 8 were exclusively pulled down by variant B cystatin C. These included 18 kDa translocator protein (TSPO) and cytochrome B5 type B, both of which are localized to the mitochondrial outer membrane. Variant B cystatin C expression also affected RPE mitochondrial function with increased membrane potential and susceptibility to damage-induced ROS production. The findings help us to understand how variant B cystatin C differs functionally from the WT form and provide leads to RPE processes adversely affected by the variant B genotype.
Collapse
|