1
|
Zhuo C, Gao J, Li A, Liu X, Zhao Y. A Machine Learning Method for RNA-Small Molecule Binding Preference Prediction. J Chem Inf Model 2024; 64:7386-7397. [PMID: 39265103 DOI: 10.1021/acs.jcim.4c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The interaction between RNA and small molecules is crucial in various biological functions. Identifying molecules targeting RNA is essential for the inhibitor design and RNA-related studies. However, traditional methods focus on learning RNA sequence and secondary structure features and neglect small molecule characteristics, and resulting in poor performance on unknown small molecule testing. To overcome this limitation, we developed a double-layer stacking-based machine learning model called ZHMol-RLinter. This approach more effectively predicts RNA-small molecule binding preferences by learning RNA and small molecule features to capture their interaction information. ZHMol-RLinter also combines sequence and secondary structural features with structural geometric and physicochemical environment information to capture the specificity of RNA spatial conformations in recognizing small molecules. Our results demonstrate that ZHMol-RLinter has a success rate of 90.8% on the published RL98 testing set, representing a significant improvement over existing methods. Additionally, ZHMol-RLinter achieved a success rate of 77.1% on the unknown small molecule UNK96 testing set, showing substantial improvement over the existing methods. The evaluation of predicted structures confirms that ZHMol-RLinter is reliable and accurate for predicting RNA-small molecule binding preferences, even for challenging unknown small molecule testing. Predicting RNA-small molecule binding preferences can help in the understanding of RNA-small molecule interactions and promote the design of RNA-related drugs for biological and medical applications.
Collapse
Affiliation(s)
- Chen Zhuo
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Jiaming Gao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Anbang Li
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Xuefeng Liu
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
2
|
Li C, Xu X, Geng Z, Zheng L, Song Q, Shen X, Wu J, zhao J, Li H, He M, Tai X, Zhang L, Ma J, Dong Y, Ren A. Structure-based characterization and compound identification of the wild-type THF class-II riboswitch. Nucleic Acids Res 2024; 52:8454-8465. [PMID: 38769061 PMCID: PMC11317127 DOI: 10.1093/nar/gkae377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Riboswitches are conserved regulatory RNA elements participating in various metabolic pathways. Recently, a novel RNA motif known as the folE RNA motif was discovered upstream of folE genes. It specifically senses tetrahydrofolate (THF) and is therefore termed THF-II riboswitch. To unravel the ligand recognition mechanism of this newly discovered riboswitch and decipher the underlying principles governing its tertiary folding, we determined both the free-form and bound-form THF-II riboswitch in the wild-type sequences. Combining structural information and isothermal titration calorimetry (ITC) binding assays on structure-based mutants, we successfully elucidated the significant long-range interactions governing the function of THF-II riboswitch and identified additional compounds, including alternative natural metabolites and potential lead compounds for drug discovery, that interact with THF-II riboswitch. Our structural research on the ligand recognition mechanism of the THF-II riboswitch not only paves the way for identification of compounds targeting riboswitches, but also facilitates the exploration of THF analogs in diverse biological contexts or for therapeutic applications.
Collapse
Affiliation(s)
- Chunyan Li
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Key Laboratory of Biotherapy, Zhejiang University, Hangzhou 310058, China
| | - Xiaochen Xu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Zhi Geng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Luqian Zheng
- College of Life Sciences, Anhui Normal University, Wuhu 241000 Anhui, China
| | - Qianqian Song
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Key Laboratory of Biotherapy, Zhejiang University, Hangzhou 310058, China
| | - Xin Shen
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Key Laboratory of Biotherapy, Zhejiang University, Hangzhou 310058, China
| | - Jingjing Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jin zhao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hongcheng Li
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Key Laboratory of Biotherapy, Zhejiang University, Hangzhou 310058, China
| | - Mengqi He
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Key Laboratory of Biotherapy, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqing Tai
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Key Laboratory of Biotherapy, Zhejiang University, Hangzhou 310058, China
| | - Long Zhang
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Key Laboratory of Biotherapy, Zhejiang University, Hangzhou 310058, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aiming Ren
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Key Laboratory of Biotherapy, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Zhang Y, Xu Z, Xiao Y, Jiang H, Zuo X, Li X, Fang X. Structural mechanisms for binding and activation of a contact-quenched fluorophore by RhoBAST. Nat Commun 2024; 15:4206. [PMID: 38760339 PMCID: PMC11101630 DOI: 10.1038/s41467-024-48478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
The fluorescent light-up aptamer RhoBAST, which binds and activates the fluorophore-quencher conjugate tetramethylrhodamine-dinitroaniline with high affinity, super high brightness, remarkable photostability, and fast exchange kinetics, exhibits excellent performance in super-resolution RNA imaging. Here we determine the co-crystal structure of RhoBAST in complex with tetramethylrhodamine-dinitroaniline to elucidate the molecular basis for ligand binding and fluorescence activation. The structure exhibits an asymmetric "A"-like architecture for RhoBAST with a semi-open binding pocket harboring the xanthene of tetramethylrhodamine at the tip, while the dinitroaniline quencher stacks over the phenyl of tetramethylrhodamine instead of being fully released. Molecular dynamics simulations show highly heterogeneous conformational ensembles with the contact-but-unstacked fluorophore-quencher conformation for both free and bound tetramethylrhodamine-dinitroaniline being predominant. The simulations also show that, upon RNA binding, the fraction of xanthene-dinitroaniline stacked conformation significantly decreases in free tetramethylrhodamine-dinitroaniline. This highlights the importance of releasing dinitroaniline from xanthene tetramethylrhodamine to unquench the RhoBAST-tetramethylrhodamine-dinitroaniline complex. Using SAXS and ITC, we characterized the magnesium dependency of the folding and binding mode of RhoBAST in solution and indicated its strong structural robustness. The structures and binding modes of relevant fluorescent light-up aptamers are compared, providing mechanistic insights for rational design and optimization of this important fluorescent light-up aptamer-ligand system.
Collapse
Affiliation(s)
- Yufan Zhang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics Chinese Academy of Sciences, Beijing, China
| | - Zhonghe Xu
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yu Xiao
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haodong Jiang
- Institute of Zoology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Xing Li
- Institute of Zoology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
| | - Xianyang Fang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics Chinese Academy of Sciences, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Singh K, Reddy G. Excited States of apo-Guanidine-III Riboswitch Contribute to Guanidinium Binding through Both Conformational and Induced-Fit Mechanisms. J Chem Theory Comput 2024; 20:421-435. [PMID: 38134376 DOI: 10.1021/acs.jctc.3c00999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Riboswitches are mRNA segments that regulate gene expression through conformational changes driven by their cognate ligand binding. The ykkC motif forms a riboswitch class that selectively senses a guanidinium ion (Gdm+) and regulates the downstream expression of proteins which aid in the efflux of excess Gdm+ from the cells. The aptamer domain (AD) of the guanidine-III riboswitch forms an H-type pseudoknot with a triple helical domain that binds a Gdm+. We studied the binding of Gdm+ to the AD of the guanidine (ykkC)-III riboswitch using computer simulations to probe the specificity of the riboswitch to Gdm+ binding. We show that Gdm+ binding is a fast process occurring on the nanosecond time scale, with minimal conformational changes to the AD. Using machine learning and Markov-state models, we identified the excited conformational states of the AD, which have a high Gdm+ binding propensity, making the Gdm+ binding landscape complex exhibiting both conformational selection and induced-fit mechanisms. The proposed apo-AD excited states and their role in the ligand-sensing mechanism are amenable to experimental verification. Further, targeting these excited-state conformations in discovering new antibiotics can be explored.
Collapse
Affiliation(s)
- Kushal Singh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012 Karnataka, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012 Karnataka, India
| |
Collapse
|
5
|
Xu J, Hou J, Ding M, Wang Z, Chen T. Riboswitches, from cognition to transformation. Synth Syst Biotechnol 2023; 8:357-370. [PMID: 37325181 PMCID: PMC10265488 DOI: 10.1016/j.synbio.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023] Open
Abstract
Riboswitches are functional RNA elements that regulate gene expression by directly detecting metabolites. Twenty years have passed since it was first discovered, researches on riboswitches are becoming increasingly standardized and refined, which could significantly promote people's cognition of RNA function as well. Here, we focus on some representative orphan riboswitches, enumerate the structural and functional transformation and artificial design of riboswitches including the coupling with ribozymes, hoping to attain a comprehensive understanding of riboswitch research.
Collapse
Affiliation(s)
- Jingdong Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Junyuan Hou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Mengnan Ding
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Zhiwen Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Tao Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| |
Collapse
|
6
|
Huang K, Fang X. A review on recent advances in methods for site-directed spin labeling of long RNAs. Int J Biol Macromol 2023; 239:124244. [PMID: 37001783 DOI: 10.1016/j.ijbiomac.2023.124244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/12/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
RNAs are important biomolecules that play essential roles in various cellular processes and are crucially linked with many human diseases. The key to elucidate the mechanisms underlying their biological functions and develop RNA-based therapeutics is to investigate RNA structure and dynamics and their connections to function in detail using a variety of approaches. Magnetic resonance techniques including paramagnetic nuclear magnetic resonance (NMR) and electron magnetic resonance (EPR) spectroscopies have proved to be powerful tools to gain insights into such properties. The prerequisites for paramagnetic NMR and EPR studies on RNAs are to achieve site-specific spin labeling of the intrinsically diamagnetic RNAs, which however is not trivial, especially for long ones. In this review, we present some covalent labeling strategies that allow site-specific introduction of electron spins to long RNAs. Generally, these strategies include assembly of long RNAs via enzymatic ligation of short oligonucleotides, co- and post-transcriptional site-specific labeling empowered with the unnatural base pair system, and direct enzymatic functionalization of natural RNAs. We introduce a few case studies to discuss the advantages and limitations of each strategy, and to provide a vision for the future development.
Collapse
|