1
|
Liu P, Vigneau J, Craig RJ, Barrera-Redondo J, Avdievich E, Martinho C, Borg M, Haas FB, Liu C, Coelho SM. 3D chromatin maps of a brown alga reveal U/V sex chromosome spatial organization. Nat Commun 2024; 15:9590. [PMID: 39505852 PMCID: PMC11541908 DOI: 10.1038/s41467-024-53453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Nuclear three dimensional (3D) folding of chromatin structure has been linked to gene expression regulation and correct developmental programs, but little is known about the 3D architecture of sex chromosomes within the nucleus, and how that impacts their role in sex determination. Here, we determine the sex-specific 3D organization of the model brown alga Ectocarpus chromosomes at 2 kb resolution, by mapping long-range chromosomal interactions using Hi-C coupled with Oxford Nanopore long reads. We report that Ectocarpus interphase chromatin exhibits a non-Rabl conformation, with strong contacts among telomeres and among centromeres, which feature centromere-specific LTR retrotransposons. The Ectocarpus chromosomes do not contain large local interactive domains that resemble TADs described in animals, but their 3D genome organization is largely shaped by post-translational modifications of histone proteins. We show that the sex determining region (SDR) within the U and V chromosomes are insulated and span the centromeres and we link sex-specific chromatin dynamics and gene expression levels to the 3D chromatin structure of the U and V chromosomes. Finally, we uncover the unique conformation of a large genomic region on chromosome 6 harboring an endogenous viral element, providing insights regarding the impact of a latent giant dsDNA virus on the host genome's 3D chromosomal folding.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Jeromine Vigneau
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Rory J Craig
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Josué Barrera-Redondo
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Elena Avdievich
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Claudia Martinho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- School of Life Sciences, Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Road, Invergowrie, Dundee, UK
| | - Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Fabian B Haas
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Ali M, Younas L, Liu J, He H, Zhang X, Zhou Q. Development and evolution of Drosophila chromatin landscape in a 3D genome context. Nat Commun 2024; 15:9452. [PMID: 39487148 PMCID: PMC11530545 DOI: 10.1038/s41467-024-53892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
Little is known about how the epigenomic states change during development and evolution in a 3D genome context. Here we use Drosophila pseudoobscura with complex turnover of sex chromosomes as a model to address this, by collecting massive epigenomic and Hi-C data from five developmental stages and three adult tissues. We reveal that over 60% of the genes and transposable elements (TE) exhibit at least one developmental transition of chromatin state. Transitions on specific but not housekeeping enhancers are associated with specific chromatin loops and topologically associated domain borders (TABs). While evolutionarily young TEs are generally silenced, old TEs more often have been domesticated as interacting TABs or specific enhancers. But on the recently evolved X chromosome, young TEs are instead often active and recruited as TABs, due to acquisition of dosage compensation. Overall we characterize how Drosophila epigenomic landscapes change during development and in response to chromosome evolution, and highlight the important roles of TEs in genome organization and regulation.
Collapse
Affiliation(s)
- Mujahid Ali
- Center for Reproductive Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
- Institute of Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Lubna Younas
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Jing Liu
- Center for Evolutionary & Organismal Biology & Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huangyi He
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xinpei Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qi Zhou
- Center for Reproductive Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria.
- Center for Evolutionary & Organismal Biology & Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China.
| |
Collapse
|
3
|
Vigneau J, Martinho C, Godfroy O, Zheng M, Haas FB, Borg M, Coelho SM. Interactions between U and V sex chromosomes during the life cycle of Ectocarpus. Development 2024; 151:dev202677. [PMID: 38512707 PMCID: PMC11057875 DOI: 10.1242/dev.202677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
In many animals and flowering plants, sex determination occurs in the diploid phase of the life cycle with XX/XY or ZW/ZZ sex chromosomes. However, in early diverging plants and most macroalgae, sex is determined by female (U) or male (V) sex chromosomes in a haploid phase called the gametophyte. Once the U and V chromosomes unite at fertilization to produce a diploid sporophyte, sex determination no longer occurs, raising key questions about the fate of the U and V sex chromosomes in the sporophyte phase. Here, we investigate genetic and molecular interactions of the UV sex chromosomes in both the haploid and diploid phases of the brown alga Ectocarpus. We reveal extensive developmental regulation of sex chromosome genes across its life cycle and implicate the TALE-HD transcription factor OUROBOROS in suppressing sex determination in the diploid phase. Small RNAs may also play a role in the repression of a female sex-linked gene, and transition to the diploid sporophyte coincides with major reconfiguration of histone H3K79me2, suggesting a more intricate role for this histone mark in Ectocarpus development than previously appreciated.
Collapse
Affiliation(s)
| | | | - Olivier Godfroy
- Roscoff Biological Station, CNRS-Sorbonne University, Place Georges Teissier, Roscoff 29680, France
| | - Min Zheng
- Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Fabian B. Haas
- Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Michael Borg
- Max Planck Institute for Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
4
|
Luthringer R, Raphalen M, Guerra C, Colin S, Martinho C, Zheng M, Hoshino M, Badis Y, Lipinska AP, Haas FB, Barrera-Redondo J, Alva V, Coelho SM. Repeated co-option of HMG-box genes for sex determination in brown algae and animals. Science 2024; 383:eadk5466. [PMID: 38513029 DOI: 10.1126/science.adk5466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024]
Abstract
In many eukaryotes, genetic sex determination is not governed by XX/XY or ZW/ZZ systems but by a specialized region on the poorly studied U (female) or V (male) sex chromosomes. Previous studies have hinted at the existence of a dominant male-sex factor on the V chromosome in brown algae, a group of multicellular eukaryotes distantly related to animals and plants. The nature of this factor has remained elusive. Here, we demonstrate that an HMG-box gene acts as the male-determining factor in brown algae, mirroring the role HMG-box genes play in sex determination in animals. Over a billion-year evolutionary timeline, these lineages have independently co-opted the HMG box for male determination, representing a paradigm for evolution's ability to recurrently use the same genetic "toolkit" to accomplish similar tasks.
Collapse
Affiliation(s)
- Rémy Luthringer
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Morgane Raphalen
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Carla Guerra
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Sébastien Colin
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Claudia Martinho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Min Zheng
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Masakazu Hoshino
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
- Research Center for Inland Seas, Kobe University, Kobe 658-0022, Japan
| | - Yacine Badis
- Roscoff Biological Station, CNRS-Sorbonne University, Place Georges Teissier, 29680 Roscoff, France
| | - Agnieszka P Lipinska
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Fabian B Haas
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Josué Barrera-Redondo
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Coelho SM. The brown seaweed Ectocarpus. Nat Methods 2024; 21:363-364. [PMID: 38472460 DOI: 10.1038/s41592-024-02198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Affiliation(s)
- Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
6
|
Borg M, Krueger-Hadfield SA, Destombe C, Collén J, Lipinska A, Coelho SM. Red macroalgae in the genomic era. THE NEW PHYTOLOGIST 2023; 240:471-488. [PMID: 37649301 DOI: 10.1111/nph.19211] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023]
Abstract
Rhodophyta (or red algae) are a diverse and species-rich group that forms one of three major lineages in the Archaeplastida, a eukaryotic supergroup whose plastids arose from a single primary endosymbiosis. Red algae are united by several features, such as relatively small intron-poor genomes and a lack of cytoskeletal structures associated with motility like flagella and centrioles, as well as a highly efficient photosynthetic capacity. Multicellular red algae (or macroalgae) are one of the earliest diverging eukaryotic lineages to have evolved complex multicellularity, yet despite their ecological, evolutionary, and commercial importance, they have remained a largely understudied group of organisms. Considering the increasing availability of red algal genome sequences, we present a broad overview of fundamental aspects of red macroalgal biology and posit on how this is expected to accelerate research in many domains of red algal biology in the coming years.
Collapse
Affiliation(s)
- Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076, Tübingen, Germany
| | - Stacy A Krueger-Hadfield
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Virginia Institute of Marine Science Eastern Shore Laboratory, Wachapreague, VA, 23480, USA
| | - Christophe Destombe
- International Research Laboratory 3614 (IRL3614) - Evolutionary Biology and Ecology of Algae, Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Roscoff, 29680, France
| | - Jonas Collén
- CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff, Sorbonne Université, Roscoff, 29680, France
| | - Agnieszka Lipinska
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076, Tübingen, Germany
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076, Tübingen, Germany
| |
Collapse
|
7
|
Godfroy O, Zheng M, Yao H, Henschen A, Peters AF, Scornet D, Colin S, Ronchi P, Hipp K, Nagasato C, Motomura T, Cock JM, Coelho SM. The baseless mutant links protein phosphatase 2A with basal cell identity in the brown alga Ectocarpus. Development 2023; 150:dev201283. [PMID: 36786333 PMCID: PMC10112911 DOI: 10.1242/dev.201283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/16/2023] [Indexed: 02/15/2023]
Abstract
The first mitotic division of the initial cell is a key event in all multicellular organisms and is associated with the establishment of major developmental axes and cell fates. The brown alga Ectocarpus has a haploid-diploid life cycle that involves the development of two multicellular generations: the sporophyte and the gametophyte. Each generation deploys a distinct developmental programme autonomously from an initial cell, the first cell division of which sets up the future body pattern. Here, we show that mutations in the BASELESS (BAS) gene result in multiple cellular defects during the first cell division and subsequent failure to produce basal structures during both generations. BAS encodes a type B″ regulatory subunit of protein phosphatase 2A (PP2A), and transcriptomic analysis identified potential effector genes that may be involved in determining basal cell fate. The bas mutant phenotype is very similar to that observed in distag (dis) mutants, which lack a functional Tubulin-binding co-factor Cd1 (TBCCd1) protein, indicating that TBCCd1 and PP2A are two essential components of the cellular machinery that regulates the first cell division and mediates basal cell fate determination.
Collapse
Affiliation(s)
- Olivier Godfroy
- Laboratory of Integrative Biology of Marine Models, Sorbonne Université, UPMC University of Paris 06, CNRS, UMR 8227, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Min Zheng
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Haiqin Yao
- Laboratory of Integrative Biology of Marine Models, Sorbonne Université, UPMC University of Paris 06, CNRS, UMR 8227, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Agnes Henschen
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | | - Delphine Scornet
- Laboratory of Integrative Biology of Marine Models, Sorbonne Université, UPMC University of Paris 06, CNRS, UMR 8227, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Sebastien Colin
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Katharina Hipp
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan
| | - J. Mark Cock
- Laboratory of Integrative Biology of Marine Models, Sorbonne Université, UPMC University of Paris 06, CNRS, UMR 8227, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Susana M. Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Bourdareau S, Godfroy O, Gueno J, Scornet D, Coelho SM, Tirichine L, Cock JM. An Efficient Chromatin Immunoprecipitation Protocol for the Analysis of Histone Modification Distributions in the Brown Alga Ectocarpus. Methods Protoc 2022; 5:mps5030036. [PMID: 35645344 PMCID: PMC9149930 DOI: 10.3390/mps5030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
The brown algae are an important but understudied group of multicellular marine organisms. A number of genetic and genomic tools have been developed for the model brown alga Ectocarpus; this includes, most recently, chromatin immunoprecipitation methodology, which allows genome-wide detection and analysis of histone post-translational modifications. Post-translational modifications of histone molecules have been shown to play an important role in gene regulation in organisms from other major eukaryotic lineages, and this methodology will therefore be a very useful tool to investigate genome function in the brown algae. This article provides a detailed, step-by-step description of the Ectocarpus ChIP protocol, which effectively addresses the difficult problem of efficiently extracting chromatin from cells protected by a highly resistant cell wall. The protocol described here will be an essential tool for the future application of chromatin analysis methodologies in brown algal research.
Collapse
Affiliation(s)
- Simon Bourdareau
- Algal Genetics Group, Integrative Biology of Marine Models Laboratory, CNRS, Sorbonne Université, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France; (S.B.); (O.G.); (J.G.); (D.S.); (S.M.C.)
| | - Olivier Godfroy
- Algal Genetics Group, Integrative Biology of Marine Models Laboratory, CNRS, Sorbonne Université, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France; (S.B.); (O.G.); (J.G.); (D.S.); (S.M.C.)
| | - Josselin Gueno
- Algal Genetics Group, Integrative Biology of Marine Models Laboratory, CNRS, Sorbonne Université, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France; (S.B.); (O.G.); (J.G.); (D.S.); (S.M.C.)
| | - Delphine Scornet
- Algal Genetics Group, Integrative Biology of Marine Models Laboratory, CNRS, Sorbonne Université, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France; (S.B.); (O.G.); (J.G.); (D.S.); (S.M.C.)
| | - Susana M. Coelho
- Algal Genetics Group, Integrative Biology of Marine Models Laboratory, CNRS, Sorbonne Université, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France; (S.B.); (O.G.); (J.G.); (D.S.); (S.M.C.)
| | - Leila Tirichine
- Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France
- Correspondence: (L.T.); (J.M.C.); Tel.: +33-2-98-29-23-60 (J.M.C.)
| | - J. Mark Cock
- Algal Genetics Group, Integrative Biology of Marine Models Laboratory, CNRS, Sorbonne Université, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France; (S.B.); (O.G.); (J.G.); (D.S.); (S.M.C.)
- Correspondence: (L.T.); (J.M.C.); Tel.: +33-2-98-29-23-60 (J.M.C.)
| |
Collapse
|