1
|
Zhang R, Bu Y, Zhang Y, Choi SH, Wang Q, Ma Y, Shao S. Fur-mediated regulation of hydrogen sulfide synthesis, stress response, and virulence in Edwardsiella piscicida. Microbiol Res 2024; 284:127735. [PMID: 38678681 DOI: 10.1016/j.micres.2024.127735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
The production of endogenous hydrogen sulfide (H2S) is an important phenotype of bacteria. H2S plays an important role in bacterial resistance to ROS and antibiotics, which significantly contributes to bacterial pathogenicity. Edwardsiella piscicida, the Gram-negative pathogen causing fish edwardsiellosis, has been documented to produce hydrogen sulfide. In the study, we revealed that Ferric uptake regulator (Fur) controlled H2S synthesis by activating the expression of phsABC operon. Besides, Fur participated in the bacterial defense against ROS and cationic antimicrobial peptides and modulated T3SS expression. Furthermore, the disruption of fur exhibited a significant in vivo colonization defect. Collectively, our study demonstrated the regulation of Fur in H2S synthesis, stress response, and virulence, providing a new perspective for better understanding the pathogenesis of Edwardsiella.
Collapse
Affiliation(s)
- Riyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yifan Bu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China; Shanghai Haosi Marine Biotechnology Co., Ltd, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China.
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China.
| |
Collapse
|
2
|
Liu Y, Zhou M, Bu Y, Qin L, Zhang Y, Shao S, Wang Q. Lysine acetylation regulates the AT-rich DNA possession ability of H-NS. Nucleic Acids Res 2024; 52:1645-1660. [PMID: 38059366 PMCID: PMC10899749 DOI: 10.1093/nar/gkad1172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/01/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023] Open
Abstract
H-NS, the histone-like nucleoid-structuring protein in bacteria, regulates the stability of the bacterial genome by inhibiting the transcription of horizontally transferred genes, such as the type III and type VI secretion systems (T3/T6SS). While eukaryotic histone posttranslational modifications (PTMs) have been extensively studied, little is known about prokaryotic H-NS PTMs. Here, we report that the acetylation of H-NS attenuates its ability to silence horizontally transferred genes in response to amino acid nutrition and immune metabolites. Moreover, LC-MS/MS profiling showed that the acetyllysine sites of H-NS and K120 are indispensable for its DNA-binding ability. Acetylation of K120 leads to a low binding affinity for DNA and enhances T3/T6SS expression. Furthermore, acetylation of K120 impairs the AT-rich DNA recognition ability of H-NS. In addition, lysine acetylation in H-NS modulates in vivo bacterial virulence. These findings reveal the mechanism underlying H-NS PTMs and propose a novel mechanism by which bacteria counteract the xenogeneic silencing of H-NS.
Collapse
Affiliation(s)
- Yabo Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mengqing Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yifan Bu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Qin
- New Product R&D, GenScript Biotech Corporation, Nanjing 211100, China
| | - Yuanxing Zhang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China
| |
Collapse
|
3
|
Zhou M, Liu Y, Zhang Y, Ma Y, Zhang Y, Choi SH, Shao S, Wang Q. Type III secretion system effector YfiD inhibits the activation of host poly(ADP-ribose) polymerase-1 to promote bacterial infection. Commun Biol 2024; 7:162. [PMID: 38332126 PMCID: PMC10853565 DOI: 10.1038/s42003-024-05852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
Modulation of cell death is a powerful strategy employed by pathogenic bacteria to evade host immune clearance and occupy profitable replication niches during infection. Intracellular pathogens employ the type III secretion system (T3SS) to deliver effectors, which interfere with regulated cell death pathways to evade immune defenses. Here, we reveal that poly(ADP-ribose) polymerase-1 (PARP1)-dependent cell death restrains Edwardsiella piscicida's proliferation in mouse monocyte macrophages J774A.1, of which PARP1 activation results in the accumulation of poly(ADP-ribose) (PAR) and enhanced inflammatory response. Moreover, E. piscicida, an important intracellular pathogen, leverages a T3SS effector YfiD to impair PARP1's activity and inhibit PAR accumulation. Once translocated into the host nucleus, YfiD binds to the ADP-ribosyl transferase (ART) domain of PARP1 to suppress its PARylation ability as the pharmacological inhibitor of PARP1 behaves. Furthermore, the interaction between YfiD and ART mainly relies on the complete unfolding of the helical domain, which releases the inhibitory effect on ART. In addition, YfiD impairs the inflammatory response and cell death in macrophages and promotes in vivo colonization and virulence of E. piscicida. Collectively, our results establish the functional mechanism of YfiD as a potential PARP1 inhibitor and provide more insights into host defense against bacterial infection.
Collapse
Affiliation(s)
- Mengqing Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yabo Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yibei Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai, China
| | - Yuanxing Zhang
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China.
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai, China.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Shanghai Haosi Marine Biotechnology Co., Ltd, Shanghai, China
| |
Collapse
|
4
|
Liu S, Wang W, Jia T, Xin L, Xu TT, Wang C, Xie G, Luo K, Li J, Kong J, Zhang Q. Vibrio parahaemolyticus becomes lethal to post-larvae shrimp via acquiring novel virulence factors. Microbiol Spectr 2023; 11:e0049223. [PMID: 37850796 PMCID: PMC10714935 DOI: 10.1128/spectrum.00492-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE As a severe emerging shrimp disease, TPD has heavily impacted the shrimp aquaculture industry and resulted in serious economic losses in China since spring 2020. This study aimed to identify the key virulent factors and related genes of the Vp TPD, for a better understanding of its pathogenicity of the novel highly lethal infectious pathogen, as well as its molecular epidemiological characteristics in China. The present study revealed that a novel protein, Vibrio high virulent protein-2 (MW >100 kDa), is responsible to the lethal virulence of V. parahaemolyticus to shrimp post-larvae. The results are essential for effectively diagnosing and monitoring novel pathogenic bacteria, like Vp TPD, in aquaculture shrimps and would be beneficial to the fisheries department in early warning of Vp TPD emergence and developing prevention strategies to reduce economic losses due to severe outbreaks of TPD. Elucidation of the key virulence genes and genomics of Vp TPD could also provide valuable information on the evolution and ecology of this emerging pathogen in aquaculture environments.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
- Key Laboratory of Marine Aquaculture Disease Control, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Wei Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
| | - Tianchang Jia
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
| | - Lusheng Xin
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
- Key Laboratory of Marine Aquaculture Disease Control, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Ting-ting Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
- Key Laboratory of Marine Aquaculture Disease Control, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Chong Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
| | - Guosi Xie
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
- Key Laboratory of Marine Aquaculture Disease Control, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Kun Luo
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
| | - Jun Li
- School of Sciences and Medicine, Lake Superior State University, Sault Ste. Marie, Michigan, USA
| | - Jie Kong
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
- Key Laboratory of Marine Aquaculture Disease Control, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Qingli Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
- Key Laboratory of Marine Aquaculture Disease Control, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| |
Collapse
|
5
|
Getz LJ, Brown JM, Sobot L, Chow A, Mahendrarajah J, Thomas N. Attenuation of a DNA cruciform by a conserved regulator directs T3SS1 mediated virulence in Vibrio parahaemolyticus. Nucleic Acids Res 2023; 51:6156-6171. [PMID: 37158250 PMCID: PMC10325908 DOI: 10.1093/nar/gkad370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
Pathogenic Vibrio species account for 3-5 million annual life-threatening human infections. Virulence is driven by bacterial hemolysin and toxin gene expression often positively regulated by the winged helix-turn-helix (wHTH) HlyU transcriptional regulator family and silenced by histone-like nucleoid structural protein (H-NS). In the case of Vibrio parahaemolyticus, HlyU is required for virulence gene expression associated with type 3 Secretion System-1 (T3SS1) although its mechanism of action is not understood. Here, we provide evidence for DNA cruciform attenuation mediated by HlyU binding to support concomitant virulence gene expression. Genetic and biochemical experiments revealed that upon HlyU mediated DNA cruciform attenuation, an intergenic cryptic promoter became accessible allowing for exsA mRNA expression and initiation of an ExsA autoactivation feedback loop at a separate ExsA-dependent promoter. Using a heterologous E. coli expression system, we reconstituted the dual promoter elements which revealed that HlyU binding and DNA cruciform attenuation were strictly required to initiate the ExsA autoactivation loop. The data indicate that HlyU acts to attenuate a transcriptional repressive DNA cruciform to support T3SS1 virulence gene expression and reveals a non-canonical extricating gene regulation mechanism in pathogenic Vibrio species.
Collapse
Affiliation(s)
- Landon J Getz
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University. Halifax, NS, Canada
| | - Justin M Brown
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University. Halifax, NS, Canada
| | - Lauren Sobot
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University. Halifax, NS, Canada
| | - Alexandra Chow
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University. Halifax, NS, Canada
| | - Jastina Mahendrarajah
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University. Halifax, NS, Canada
| | - Nikhil A Thomas
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University. Halifax, NS, Canada
- Department of Medicine, Faculty of Medicine, Dalhousie University. Halifax, NS, Canada
| |
Collapse
|