1
|
Lange M, Piran Z, Klein M, Spanjaard B, Klein D, Junker JP, Theis FJ, Nitzan M. Mapping lineage-traced cells across time points with moslin. Genome Biol 2024; 25:277. [PMID: 39434128 PMCID: PMC11492637 DOI: 10.1186/s13059-024-03422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024] Open
Abstract
Simultaneous profiling of single-cell gene expression and lineage history holds enormous potential for studying cellular decision-making. Recent computational approaches combine both modalities into cellular trajectories; however, they cannot make use of all available lineage information in destructive time-series experiments. Here, we present moslin, a Gromov-Wasserstein-based model to couple cellular profiles across time points based on lineage and gene expression information. We validate our approach in simulations and demonstrate on Caenorhabditis elegans embryonic development how moslin predicts fate probabilities and putative decision driver genes. Finally, we use moslin to delineate lineage relationships among transiently activated fibroblast states during zebrafish heart regeneration.
Collapse
Affiliation(s)
- Marius Lange
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Department of Mathematics, Technical University of Munich, Munich, Germany
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Zoe Piran
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Bastiaan Spanjaard
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Paediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dominik Klein
- Department of Mathematics, Technical University of Munich, Munich, Germany
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Jan Philipp Junker
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Fabian J Theis
- Department of Mathematics, Technical University of Munich, Munich, Germany.
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.
| | - Mor Nitzan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Pan X, Zhang X. Studying temporal dynamics of single cells: expression, lineage and regulatory networks. Biophys Rev 2024; 16:57-67. [PMID: 38495440 PMCID: PMC10937865 DOI: 10.1007/s12551-023-01090-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/27/2023] [Indexed: 03/19/2024] Open
Abstract
Learning how multicellular organs are developed from single cells to different cell types is a fundamental problem in biology. With the high-throughput scRNA-seq technology, computational methods have been developed to reveal the temporal dynamics of single cells from transcriptomic data, from phenomena on cell trajectories to the underlying mechanism that formed the trajectory. There are several distinct families of computational methods including Trajectory Inference (TI), Lineage Tracing (LT), and Gene Regulatory Network (GRN) Inference which are involved in such studies. This review summarizes these computational approaches which use scRNA-seq data to study cell differentiation and cell fate specification as well as the advantages and limitations of different methods. We further discuss how GRNs can potentially affect cell fate decisions and trajectory structures. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-023-01090-5.
Collapse
Affiliation(s)
- Xinhai Pan
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Xiuwei Zhang
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| |
Collapse
|
3
|
Pan X, Li H, Putta P, Zhang X. LinRace: cell division history reconstruction of single cells using paired lineage barcode and gene expression data. Nat Commun 2023; 14:8388. [PMID: 38104156 PMCID: PMC10725445 DOI: 10.1038/s41467-023-44173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023] Open
Abstract
Lineage tracing technology using CRISPR/Cas9 genome editing has enabled simultaneous readouts of gene expressions and lineage barcodes in single cells, which allows for inference of cell lineage and cell types at the whole organism level. While most state-of-the-art methods for lineage reconstruction utilize only the lineage barcode data, methods that incorporate gene expressions are emerging. Effectively incorporating the gene expression data requires a reasonable model of how gene expression data changes along generations of divisions. Here, we present LinRace (Lineage Reconstruction with asymmetric cell division model), which integrates lineage barcode and gene expression data using asymmetric cell division model and infers cell lineages and ancestral cell states using Neighbor-Joining and maximum-likelihood heuristics. On both simulated and real data, LinRace outputs more accurate cell division trees than existing methods. With inferred ancestral states, LinRace can also show how a progenitor cell generates a large population of cells with various functionalities.
Collapse
Affiliation(s)
- Xinhai Pan
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hechen Li
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Pranav Putta
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Xiuwei Zhang
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
4
|
Prusokiene A, Prusokas A, Retkute R. Machine learning based lineage tree reconstruction improved with knowledge of higher level relationships between cells and genomic barcodes. NAR Genom Bioinform 2023; 5:lqad077. [PMID: 37608801 PMCID: PMC10440785 DOI: 10.1093/nargab/lqad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/26/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Tracking cells as they divide and progress through differentiation is a fundamental step in understanding many biological processes, such as the development of organisms and progression of diseases. In this study, we investigate a machine learning approach to reconstruct lineage trees in experimental systems based on mutating synthetic genomic barcodes. We refine previously proposed methodology by embedding information of higher level relationships between cells and single-cell barcode values into a feature space. We test performance of the algorithm on shallow trees (up to 100 cells) and deep trees (up to 10 000 cells). Our proposed algorithm can improve tree reconstruction accuracy in comparison to reconstructions based on a maximum parsimony method, but this comes at a higher computational time requirement.
Collapse
Affiliation(s)
- Alisa Prusokiene
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | | - Renata Retkute
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
5
|
Pan X, Li H, Putta P, Zhang X. LinRace: single cell lineage reconstruction using paired lineage barcode and gene expression data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536601. [PMID: 37090498 PMCID: PMC10120693 DOI: 10.1101/2023.04.12.536601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Understanding how single cells divide and differentiate into different cell types in developed organs is one of the major tasks of developmental and stem cell biology. Recently, lineage tracing technology using CRISPR/Cas9 genome editing has enabled simultaneous readouts of gene expressions and lineage barcodes in single cells, which allows for the reconstruction of the cell division tree, and even the detection of cell types and differentiation trajectories at the whole organism level. While most state-of-the-art methods for lineage reconstruction utilize only the lineage barcode data, methods that incorporate gene expression data are emerging, aiming to improve the accuracy of lineage reconstruction. However, effectively incorporating the gene expression data requires a reasonable model on how gene expression data changes along generations of divisions. Here, we present LinRace (Lineage Reconstruction with asymmetric cell division model), a method that integrates the lineage barcode and gene expression data using the asymmetric cell division model and infers cell lineage under a framework combining Neighbor Joining and maximum-likelihood heuristics. On both simulated and real data, LinRace outputs more accurate cell division trees than existing methods. Moreover, LinRace can output the cell states (cell types) of ancestral cells, which is rarely performed with existing lineage reconstruction methods. The information on ancestral cells can be used to analyze how a progenitor cell generates a large population of cells with various functionalities. LinRace is available at: https://github.com/ZhangLabGT/LinRace.
Collapse
Affiliation(s)
- Xinhai Pan
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta GA 30332, USA
| | - Hechen Li
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta GA 30332, USA
| | - Pranav Putta
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta GA 30332, USA
| | - Xiuwei Zhang
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta GA 30332, USA
| |
Collapse
|